Match Me if You Can:
How Smart Choices are Fueled by Competition

Christin Schulze (c.schulze@unsw.edu.au)
School of Psychology, University of New South Wales
Sydney, NSW 2052 Australia

Don van Ravenzwaaij (d.vanravenzwaaij@unsw.edu.au)
School of Psychology, University of New South Wales
Sydney, NSW 2052 Australia

Ben R. Newell (ben.newell@ unsw.edu.au)
School of Psychology, University of New South Wales
Sydney, NSW 2052 Australia

Abstract

In a world of limited resources, scarcity and rivalry are central
challenges for decision makers. We examine choice behavior
in competitive probability learning environments that
reinforce one of two strategies. The optimality of a strategy is
dependent on the behavior of a computerized opponent: if the
opponent mimics participant choices, probability matching is
optimal; if the opponent is indifferent, probability maximizing
is optimal. We observed accurate asymptotic strategy use in
both conditions suggesting participants were sensitive to the
differences in opponent behavior. Moreover, the results
emphasize that ‘irrational’ probability matching can be
adaptive once such competitive pressures are taken into
account. The application of reinforcement learning models to
the data suggests that computational conceptualizations of
opponent behavior are critical to account for the observed
divergence in strategy adoption.

Keywords: Decision making; Probability —matching;
Reinforcement  learning; Evolutionary  psychology;
Mathematical modeling

Introduction

Competition is a pervasive characteristic of the world —
plants compete for light, water and pollination; animals are
in continual competition for territory, food and mating; and
even as humans we are constantly competing in sports, for
social standing and companionship. Considering the
ubiquity of competitive pressures in virtually all aspects of
our lives, their crucial impact on the development of
adaptive decision strategies in a broad range of contexts
may seem self-evident. And yet, prior research has
concentrated on assessing the rationality of numerous choice
phenomena primarily by focusing on individual decision
makers in social isolation. Consequently, observed choice
inconsistencies are frequently dismissed as suboptimal with
little or no regard for their adaptive potential in ecologically
valid settings (see e.g., Todd & Gigerenzer, 2007).

One such extensively studied choice anomaly is the
tendency to proportionately match choices to outcome
probabilities in repeated binary decisions, a phenomenon
known as probability matching (for a review see Vulkan,

2000). In a typical setup a decision maker repeatedly has
two choice options available, one of which is the correct
choice with greater probability than its alternative, e.g.
p(A)=.7 and p(A;)=.3, and correct predictions are
rewarded with monetary payoffs. Assuming the outcome
probabilities are stationary and irrespective of prior events
or subjects’ behavior, A, is the superior choice option
throughout and, following an initial period of probability
learning, should be chosen exclusively. By contrast, the
frequently observed probability (over-) matching tendency
results in inferior prediction accuracies and payoffs and is
therefore considered fallacious within context-independent
interpretations of rational choice behavior (Vulkan, 2000).

Probability Matching in Competitive Environments

What seems irrational in individualized context-free
environments, however, can be optimal in ecologically more
valid situations that take prospective social interactions into
account (Gallistel, 1990; Gigerenzer, 2000). That is to say,
when decision makers seek to exploit limited resources
under natural circumstances (e.g. forage for food or make
money), they are rarely alone but typically in fierce
competition for the exploitation of these resources with
other agents. The more individual agents then choose the
seemingly richest resource, the smaller each one’s share. In
nature, this situation cannot remain stable as natural
selection would favor those agents who sometimes chose
options with potentially scarce resources that are exploitable
under less competition (Gallistel, 1990).

Following this line of argument, it has been suggested that
agents should distribute their choices among resources
relative to their reward potentials, i.e. adopt a probability
matching strategy, to create an equilibrated evolutionary
stable situation that does not give rise to conditions
selecting against it (Gallistel, 1990). Evidence for such
behavior has been provided by experiments that studied
groups of animals in the wild, e.g. foraging behavior of
ducks on a lake (Harper, 1982) and fish in a tank (Godin &
Keenleyside, 1984).
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Our aim was to examine the role of competitive pressures
for the facilitation of optimal decision making in simple
binary human choice contexts. Specifically, we wanted to
assess potential benefits of probability matching under the
premise that competitive conditions reinforce its superiority.
Following the logic of natural foraging situations, we
designed a choice environment in which each decision
maker competes against a computerized opponent for the
exploitation of a monetary resource that an indifferent
‘nature’ repeatedly places at one of two choice options with
stable probabilities. When both agents converge on the same
choice, potential rewards are split evenly between them.

In this competitive context, the success of any strategy
largely depends on the behavior of the opponent. Under the
assumption that the competitor is attentive towards the
decision maker’s choice behavior and imitates her course of
action, probability matching is an optimal strategy. The
prevalence of aggregative behavior in a broad range of
natural group settings, e.g. flocking behavior of birds,
shoaling of fish, swarming of insects and herd behavior of
land animals (Allee, 1978), suggests that a strategy-
mirroring opponent creates competitive conditions closely
in line with real life ecological pressures. Thus, in one
experimental condition each opponent’s choice probabilities
are close imitations of participant behavior which renders
probability matching optimal (see appendix). In a second
condition (between-subjects), each participant is paired with
a computer opponent who is indifferent towards subjects’
choices thereby making exclusive preference for the more
profitable resource (i.e. probability maximizing) the optimal
strategy. This is the case because sporadic choices by the
participant to the lesser option will not tempt this indifferent
opponent to replicate deviant behavior but will merely result
in relinquished earning potential for the participant.

By manipulating opponent behavior as described, we
created two competitive choice environments that differed
solely in the extent to which participants had influence on
their competitors’ behavior. Thus, we can assess the role of
the qualitative nature of competition for the facilitation of
adaptive decision making. Given the availability of
sufficient feedback (Shanks, Tunney, & McCarthy, 2002),
we predicted that choices will converge on the respective
optimal strategy in both environments as learning
progresses, i.e. probability matching when competing
against a mimicking opponent and probability maximizing
when encountering an indifferent opponent.

Models of Learning under Competition

To shed more light on the nature of underlying learning
processes within such competitive environments, we discuss
the applicability of reinforcement learning models proposed
for similar choice settings, e.g. learning in experimental
games (Erev & Roth, 1998), learning in the lowa Gambling
task (Yechiam & Busemeyer, 2005) and strategy selection
learning (Rieskamp & Otto, 2006), to our experiments and
outline potential adaptions of such models to account for the
competitive pressures examined here. Such models typically

include assumptions regarding three main components (see
e.g., Sutton, 1998): a utility function that specifies the goal
of the learning problem; a learning rule which establishes
propensities for each choice option; and a choice rule
defining the course of action given current propensities.
Here, we examine two learning models postulating different
conceptualizations of the utility formation process.

Utility Function In a learning environment where an
agent’s primary goal is maximization of total payoffs, the
utility of a choice is typically directly specified by its
associated monetary reward (e.g., Rieskamp & Otto, 2006):

u (i) = r.(0), (1)

where u, (i) corresponds to the utility of the monetary gains
(i) associated with choice i on trial #, namely, in our task,
0, 2 or 4 cents for no, split and full payoffs (see below). The
focus on monetary gains for the evaluation of choice utilities
has left systematic investigations of a wider range of factors
potentially influencing this important model component
largely unexplored (with few notable exceptions, e.g.,
Janssen & Gray, 2012; Singh, Lewis, & Barto, 2009). This
is the case even though various additional motivational
sources of utility are conceivable: e.g. avoidance of
boredom associated with repetitive tasks (Keren &
Wagenaar, 1985) or task completion time (Gray, Sims, Fu,
& Schoelles, 2006). Relating this prevalent negligence to
the competitive task employed here, we argue that
describing utilities in terms of monetary rewards only
confounds two discrete learning goals vital in this context,
namely, correctly assessing the profitability of an option and
attending to the competitor’s choices. In fact, monetary
based utilities understate the crucial role differential causes
of opponent behavior play when subjects face an imitative
vs. an indifferent competitor. That is to say, different
opponent strategies necessitate divergent learning goals: if
an opponent is identified as attentive, deciding on a course
of action requires consideration of ways to influence and
outsmart that other agent; if, on the other hand, the
competitor is indifferent, the impact of opposing actions on
one’s own decisions should be strongly discounted.
Incorporating these aspects into the learning model we
propose a utility function that disentangles the two learning
goals present in our task and allows direct estimation of the
importance decision makers attribute to the choice strategies
they observe in their competitors compared to the
importance they ascribe to making accurate choices:

u (@ = [ g9:D] +[(1=p) s (D] 2

Here, the utility u,(i) of a choice, is expressed as the
weighted sum of its accuracy g, (i) (0 for incorrect and 1 for
correct guesses) and the choice of the competitor s;(i) (-1
for converging choices and 1 for incongruent choices) on
any given trial. The additional free parameter / determines
the weight a subject assigns to choosing the correct option
as compared to outsmarting their competitor in terms of
choosing the opposite line of action. For f=1 subjects
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value the accuracy of their choices only, whereas for f=.5
the importance of correct choices and outwitting the
competitor are weighted equally. We predict that balancing
these two requirements of the task would be more
pronounced when facing an imitative competitor, thus
My indigierent > Mg mimicr» and that learning models considering
these differential challenges of the task would account for
the data more thoroughly.

Updating and Choice Rule Adjustment of propensities
follows a delta learning rule commonly employed in similar
decision tasks (e.g., Yechiam & Busemeyer, 2005):

q: (@) = qe—1 (D) + afu, (@) — q—1 (D] (3)

Here, initial propensities towards both options are assumed
to equal zero and are then gradually updated in increments
of the learning rate a based on the prediction error in
brackets. As outcomes are mutually exclusive in our task,
propensities for both options are updated simultaneously
regardless of the actual choice on any given trial. An agent’s
probability of choosing either option is determined by these
propensities following an exponential ‘softmax’ choice rule:
6at®

p() = PEEHOFPLE O 6 =3"¢—1, (4)

where the sensitivity parameter & governs the precision with
which the preferred option is chosen. If 8= 0, decisions are
made at random, i.e. p (i) = p.(j) =.5, whereas large
sensitivity parameter values (6 — o) correspond to strictly
deterministic choices to the option with the higher
propensity. Following Yechiam & Ert (2007), an
exponential transformation of & was employed to allow
variation of choice sensitivities between random guessing
(for6 = 0) to fully deterministic (for & > 700) within
narrow bounds of ¢, which denotes the sensitivity constant
constrained between 0 and 1.

Method

Participants

Fifty (35 female) undergraduate students from the
University of New South Wales (mean age 18.9, SD=1.2
years) participated in this experiment in return for course
credit and performance based monetary compensation.

Decision Task

A standard probability learning paradigm involving repeated
binary decisions with mutually exclusive outcomes over 500
choice trials was employed. Choice alternatives were
represented by two light bulbs displayed on a computer
screen and programmed to illuminate with probabilities of .7
and .3, counterbalanced across participants for left and right
choice options. Correct predictions were rewarded with
4 cents (1 AUD =.95USD). Choices were made while
competing against a computerized opponent and when both
agents converged on the correct response, the payoff was
evenly split between them, i.e. each agent received 2 cents.

Design

We employed a 2 x 5 mixed model design with opponent
type (mimicry or indifferent) as between-subjects factor and
trial block (five blocks of 100 trials each) as within-subjects
factor. The dependent measure was the proportion of
choices to the more probable choice option. For the mimicry
group, the choice sequence of each opponent was computed
one step ahead by equating the opponent’s choice
probabilities on each trial with the choice proportions the
subject had displayed during the past ten trials. For example,
when a participant chose the more probable option on 7 out
of the past 10 trials, her opponent’s probability of choosing
the same option on the subsequent trial was .7." This
algorithm creates opponent behavior that probabilistically
mimics participants’ choices.

By contrast, the choice sequence of each opponent for
subjects in the indifferent condition was computed
irrespective of participants’ choices. Instead, each subject
played against an opponent whose set of choice
probabilities simply repeated those of an opponent
encountered by another subject in the mimicry condition.

Procedure

Subjects were asked to predict which of two light bulbs
would illuminate over a series of trials while attempting to
earn as much money as possible. Instructions indicated that
the lighting sequence was random, i.e. no pattern or system
existed which made it possible to correctly predict the
outcome throughout, and that the outcome probabilities of
both choice options remained constant during the entire
experiment. Additionally, participants in both conditions
were informed that a computerized opponent with learning
abilities such as their own and no initial information about
the lighting frequencies was monitoring their choices and
adapting to their skill level. On each trial, predictions were
made simultaneously by both participant and opponent and
followed by feedback about the other agent’s choice and the
outcome, i.e. one light bulb lit up.

Upon completion of every block of 100 trials a self-paced
pause interrupted the experiment during which block
feedback was provided and a short message reminded
participants that the lighting sequence was random. Subjects
were told: “In this game you earned X$. Using an optimal
strategy you could have earned at least Y$.”, where X
represented the actual earnings of that block and Y was
computed by an optimizing algorithm (Shanks et al., 2002).
This algorithm was set to probability matching in the
mimicry opponent condition and probability maximizing in
the indifferent opponent condition while taking both agents’
actual predictions during that trial block into account.
Additional incentives to improve performance on the
following block were provided by informing participants
that reaching optimal performance (+ three cents) would

' During the first ten trials of the experiment, each opponent
randomly adopted one of three possible initial strategies: random
response, probability matching, or probability maximizing.
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double their payoff, whereas suboptimal performance would
result in halved earnings on the subsequent trial block.

Parameter Estimation and Model Evaluation

We estimated parameters for each individual separately
based on the models’ accuracy in predicting the observed
choice sequence one step ahead for each trial. That is, all
models generate trial-by-trial choice probabilities for both
response alternatives on the basis of subjects’ prior
decisions, their associated payoffs and the respective
model’s parameter values. Employing maximum likelihood
estimation we searched for the set of parameters that
maximized the summed log-likelihood of the predicted
choice probabilities across trials given each participant’s
observed responses with an iterative particle swarm
optimization (Kennedy & Eberhart, 1995). For each
individual, optimization proceeded iteratively with a total of
24 particles, 23 of which started at random positions while
the final particle started at the best parameter combination
from the previous iteration. Optimization terminated once
the model fit did not improve further for at least five
successive iterations. The following parameter bounds
constrained the optimization process: «a € [0,1] for the
learning parameter, ¢ € [0,1] for the transformed sensitivity
0, and B € [0,1] for the additional outsmarting parameter.

The final fit of each learning model was compared to a
baseline statistical model which assumes constant and
statistically independent choice probabilities across trials
(see e.g., Yechiam & Busemeyer, 2005), and hence,
accounts for the data without presuming any learning. The
stationary probability of choosing the more probable option
pooled across all trials (p, pp=1-p;) is the only free
parameter in this baseline model and, to account for
divergent model complexities, both learning models are
evaluated by comparing differences in Bayesian Information
Criterion (BIC; Schwarz, 1978) statistics between learning
and baseline model (see e.g., Yechiam & Busemeyer, 2005).
If a learning model is superior to the statistical baseline
model, i.e. accurately describes how subjects adapt their
choice behavior over time, positive ABIC values result from
this model evaluation.

Results

Behavioral Data

The mean proportion of choices to the more probable choice
option for each block of 100 trials averaged across
participants in the two experimental conditions is displayed
in Figure 1. For inferential statistics, we conducted Bayesian
analyses in addition to conventional methods of hypothesis
testing to quantify evidence in favor of the null and
alternative hypotheses (Wagenmakers, 2007). We assume
equal plausibility for the null and alternative hypotheses a
priori and report the posterior probability for the null

hypothesis, denoted as pya’**, associated with each effect. A

mixed model ANOVA revealed a significant main effect of
trial block (F(2.37,113.8)=27.9, p<.001, 7, =.367,

pggyesz.OO)z, with predictions closer to the respective

optimal response strategy in the last compared to the first
block of 100 trials for both groups. In the mimicry
condition, subjects’ choice behavior accurately approached
optimal probability matching towards the last trial block
(M =.76), whereas an indifferent competitor elicited
decisions more in line with a probability maximizing
strategy (M =.90). This adaptive divergence of learning
processes is emphasized by a significant main effect of
competitor type across all trial blocks (F(1,48)=11.7,
p=.001, 5, =195, piy* = 03). The competition type by
trial block interaction did not reach statistical significance,
although the Bayesian evidence was ambiguous

(F(2.37,113.8) =2.77, p = .058, 5,2 = .055, prY* = 66).
Y HO
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Figure 1: Mean + standard error proportion of choices to the
more probable option averaged across trials and subjects.

Similar adaptive differences in choice behavior were also
observed at an individual level, with high proportions of
subjects in both conditions adopting the respective adequate
rather than suboptimal strategy by the final trial block.

In sum, we have demonstrated that subjects are sensitive
towards their competitors’ decision strategies and modify
their choices accordingly. The underlying psychological
processes that lead to this adaptive divergence in strategy
use, however, remain elusive from the behavioral data.
Thus, we now turn to a computational modeling analysis to
illuminate the determinants of emergent optimal choice
behavior within competitive environments more holistically.

Modeling Data

The parameter estimates and ABIC values for the proposed
learning models are compared in Table 1. The first learning
model we examined defined decision utilities solely based
on their associated monetary payoff and, judging by its

2 Mauchly’s test indicated that the assumption of sphericity had
been violated (4°(9) = 63.0, p < .001), therefore degrees of freedom
were corrected for both conventional and Bayesian analyses using
Greenhouse-Geisser estimates of sphericity (g = .593).
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Table 1: Mean and standard deviations (in parentheses) of parameter estimates and the difference in Bayesian Information
Criterion (4BIC) between statistical baseline and specified model.

Learning (a) Sensitivity (c) Outsmarting (f3) ABIC
mimic indifferent mimic indifferent mimic indifferent
M(')netary utility function .07 .02 .16 .29 ) 17.8 (31.3)
w() =, (21) (.04) (.20) (.29)
Competition u'tility function ' .08 .07 43 28 .85 97% 187 (33.7)
u (@ =[f-9:O1+[A-p) s (D] (2D (14) (:38) (:22) (:24) (.05)

*p <.05

clearly positive average ABIC score, accounts considerably
better for the observed choice behavior than the stationary
baseline model despite greater complexity. However, this
basic utility model does not permit differentiation between
the learning processes that lead to divergent choice behavior
in the examined competitive environments, because
estimated individual model parameters did not differ
significantly between experimental groups, although the
Bayesian evidence was ambiguous (#26.0) = 1.21, p = .238,

pggyes = .71 for learning rates and #(42.6) =-1.87, p =.068,

pggyes = .51 for sensitivity constants).

The second learning model proposed above disentangles
the two learning goals of choosing accurately, yet
outsmarting the competitor by introducing an additional free
parameter, . The differential requirements of the two
competitive environments are well represented by this
additional outsmarting parameter, which was significantly
smaller in the mimicry condition, indicating a tradeoff
between betting on the more probable option and deviating
from the opposing choice behavior, compared to the
indifferent group, where opponent choices were to be
distegarded  ((26.4)=-2.44, p=.022, PtV = 27).
Parameter estimates for learning rate and sensitivity
constant, again, did not differ between conditions, although
the Bayesian evidence was ambiguous (#(48)=.220,
p=827, pIV=8 and «38.6)=1.65 p=.107,

prYes = 59, respectively). Although the more elaborate

utility evaluation model sheds light on the processes
underlying the observed divergence in choice behavior, the
added complexity results in ABIC statistics not significantly
better than those of the simpler utility model (#(49) =-.613,

p =543, pp¥® = 88). Thus, despite the conceptual promise
and excellent parameter fit of the more complex model,
overall, the simple monetary utility model is to be preferred
for its parsimony.

Discussion

Qualitatively different competitive pressures in a binary
prediction task result in adaptively divergent choice
behavior on aggregate and individual learning levels. Under
the influence of an indifferent opponent, resources should
and were found to be exploited without consideration for the
other agent’s preferences, i.e. much like in classic individual

binary prediction tasks, probability matching needed to be
dismissed as an inferior strategy. By contrast, the presence
of an imitative opponent necessitates response allocations
proportional to outcome probabilities in order to maximize
payoffs. In this context, we observed an adaptive tendency
towards probability matching — i.e. probability maximizing
was correctly rejected as an inferior strategy.

What drives this adaptive divergence of strategy adoption
in these two competitive contexts? Our evaluation of
learning models suggests that the observed adaptiveness of
choice behavior largely resulted from differing learning
goals with respect to opponent behavior: imitative
competitors require consideration for strategies that
influence and outsmart these agents, whereas indifferent
opponents necessitate disregard for their choices when
deciding on one’s own course of action. Thus,
conceptualizing opponent behavior as a key factor in the
evaluation of choice utilities that is traded off against the
desire to choose accurately disentangles these divergent
requirements while providing a good approximation of
observed behavior. Yet, when modeling individual data, the
additional outsmarting parameter for each decision maker
increased the complexity of the model beyond its
explanatory potential as indicated by the ABIC score
comparisons. Omitting the computational representation of
opponent behavior from the model, however, resulted in
parameter estimates that gave little indication of the
underlying learning processes prompting decision makers to
respond adaptively to qualitatively different competitive
pressures. At best, within this simpler model, divergent
environmental requirements were somewhat reflected in
marginally decreased sensitivities for evaluated choice
propensities in the mimicry competitor condition, i.e.
adoption of optimal probability matching is explained in
terms of greater randomness in subject’s choice behavior.
Attributing the observed adaptiveness of strategy use in both
contexts to differences in choice rule precision appears,
however, conceptually implausible, because under the
influence of an imitative competitor, participants are not less
sensitive towards monetary rewards per se. On the contrary,
we suggest that it is the added requisite to outmaneuver the
opposing agent that fuels optimal matching in this context.

Consequently, to account for core learning processes that
drive adaptive choice behavior within these competitive
environments, an additional representation of opponent
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behavior is conceptually essential. To remedy potential
disadvantages of added model complexity an interesting
avenue for future research is to explore the suitability of
hierarchical parameter estimation techniques, which may
highlight the benefits of including an outsmarting parameter
without introducing the downsides of overly complex
models. The take-home message from this study is that
learning to choose under uncertainty can indeed be steered
by competition and thus proceed adaptively in situations
where probability maximizing or matching is optimal.
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Appendix

Expected reward proportions are defined as the weighted
average of all possible outcomes resulting from nature’s
move and both agents’ choices. When two decision makers
follow the same course of action, i.e. one imitates the other,
the choice probabilities of both agents are identical. Given
identical choice probabilities, the agents can either converge
or diverge on a choice option, and thus expected rewards
can be broken down into split and full payoffs while their
sum amounts to the total expected payoff proportion:

Tspuie = (Pc(H)? .7 + pc(L)? - .3)/2 6)
Trar = @, (H) *p,(L) . 7) + (p,,(L) " p,(H) - .3) (6)

For each decision maker, split reward proportions are
computed as the joint probability of both agents choosing
the same option (p.(i)°) weighted by the outcome
contingencies (here, .7 and .3) and split by two; whereas full
reward proportions can be expressed as the joint probability
of both players choosing different options (p.;(i) * p.2(f))
weighted by the outcome probabilities. Thus, total expected
payoffs are maximized when both players probability
match. For outcome probabilities of .7 and .3, for example,
each player’s maximal total expected reward proportion
equals .395 (compared with .35 for probability maximizing).
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