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Abstract 
In a world of limited resources, scarcity and rivalry are central 
challenges for decision makers. We examine choice behavior 
in competitive probability learning environments that 
reinforce one of two strategies. The optimality of a strategy is 
dependent on the behavior of a computerized opponent: if the 
opponent mimics participant choices, probability matching is 
optimal; if the opponent is indifferent, probability maximizing 
is optimal. We observed accurate asymptotic strategy use in 
both conditions suggesting participants were sensitive to the 
differences in opponent behavior. Moreover, the results 
emphasize that ‘irrational’ probability matching can be 
adaptive once such competitive pressures are taken into 
account. The application of reinforcement learning models to 
the data suggests that computational conceptualizations of 
opponent behavior are critical to account for the observed 
divergence in strategy adoption. 

Keywords: Decision making; Probability matching; 
Reinforcement learning; Evolutionary psychology; 
Mathematical modeling 

Introduction 
Competition is a pervasive characteristic of the world – 
plants compete for light, water and pollination; animals are 
in continual competition for territory, food and mating; and 
even as humans we are constantly competing in sports, for 
social standing and companionship. Considering the 
ubiquity of competitive pressures in virtually all aspects of 
our lives, their crucial impact on the development of 
adaptive decision strategies in a broad range of contexts 
may seem self-evident. And yet, prior research has 
concentrated on assessing the rationality of numerous choice 
phenomena primarily by focusing on individual decision 
makers in social isolation. Consequently, observed choice 
inconsistencies are frequently dismissed as suboptimal with 
little or no regard for their adaptive potential in ecologically 
valid settings (see e.g., Todd & Gigerenzer, 2007). 

One such extensively studied choice anomaly is the 
tendency to proportionately match choices to outcome 
probabilities in repeated binary decisions, a phenomenon 
known as probability matching (for a review see Vulkan, 

2000). In a typical setup a decision maker repeatedly has 
two choice options available, one of which is the correct 
choice with greater probability than its alternative, e.g. 
p(A1) = .7 and p(A2) = .3, and correct predictions are 
rewarded with monetary payoffs. Assuming the outcome 
probabilities are stationary and irrespective of prior events 
or subjects’ behavior, A1 is the superior choice option 
throughout and, following an initial period of probability 
learning, should be chosen exclusively. By contrast, the 
frequently observed probability (over-) matching tendency 
results in inferior prediction accuracies and payoffs and is 
therefore considered fallacious within context-independent 
interpretations of rational choice behavior (Vulkan, 2000).  

Probability Matching in Competitive Environments 
What seems irrational in individualized context-free 
environments, however, can be optimal in ecologically more 
valid situations that take prospective social interactions into 
account (Gallistel, 1990; Gigerenzer, 2000). That is to say, 
when decision makers seek to exploit limited resources 
under natural circumstances (e.g. forage for food or make 
money), they are rarely alone but typically in fierce 
competition for the exploitation of these resources with 
other agents. The more individual agents then choose the 
seemingly richest resource, the smaller each one’s share. In 
nature, this situation cannot remain stable as natural 
selection would favor those agents who sometimes chose 
options with potentially scarce resources that are exploitable 
under less competition (Gallistel, 1990).  

Following this line of argument, it has been suggested that 
agents should distribute their choices among resources 
relative to their reward potentials, i.e. adopt a probability 
matching strategy, to create an equilibrated evolutionary 
stable situation that does not give rise to conditions 
selecting against it (Gallistel, 1990). Evidence for such 
behavior has been provided by experiments that studied 
groups of animals in the wild, e.g. foraging behavior of 
ducks on a lake (Harper, 1982) and fish in a tank (Godin & 
Keenleyside, 1984). 
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Our aim was to examine the role of competitive pressures 
for the facilitation of optimal decision making in simple 
binary human choice contexts. Specifically, we wanted to 
assess potential benefits of probability matching under the 
premise that competitive conditions reinforce its superiority. 
Following the logic of natural foraging situations, we 
designed a choice environment in which each decision 
maker competes against a computerized opponent for the 
exploitation of a monetary resource that an indifferent 
‘nature’ repeatedly places at one of two choice options with 
stable probabilities. When both agents converge on the same 
choice, potential rewards are split evenly between them.  

In this competitive context, the success of any strategy 
largely depends on the behavior of the opponent. Under the 
assumption that the competitor is attentive towards the 
decision maker’s choice behavior and imitates her course of 
action, probability matching is an optimal strategy. The 
prevalence of aggregative behavior in a broad range of 
natural group settings, e.g. flocking behavior of birds, 
shoaling of fish, swarming of insects and herd behavior of 
land animals (Allee, 1978), suggests that a strategy-
mirroring opponent creates competitive conditions closely 
in line with real life ecological pressures. Thus, in one 
experimental condition each opponent’s choice probabilities 
are close imitations of participant behavior which renders 
probability matching optimal (see appendix). In a second 
condition (between-subjects), each participant is paired with 
a computer opponent who is indifferent towards subjects’ 
choices thereby making exclusive preference for the more 
profitable resource (i.e. probability maximizing) the optimal 
strategy. This is the case because sporadic choices by the 
participant to the lesser option will not tempt this indifferent 
opponent to replicate deviant behavior but will merely result 
in relinquished earning potential for the participant. 

By manipulating opponent behavior as described, we 
created two competitive choice environments that differed 
solely in the extent to which participants had influence on 
their competitors’ behavior. Thus, we can assess the role of 
the qualitative nature of competition for the facilitation of 
adaptive decision making. Given the availability of 
sufficient feedback (Shanks, Tunney, & McCarthy, 2002), 
we predicted that choices will converge on the respective 
optimal strategy in both environments as learning 
progresses, i.e. probability matching when competing 
against a mimicking opponent and probability maximizing 
when encountering an indifferent opponent.  

Models of Learning under Competition 
To shed more light on the nature of underlying learning 
processes within such competitive environments, we discuss 
the applicability of reinforcement learning models proposed 
for similar choice settings, e.g. learning in experimental 
games (Erev & Roth, 1998), learning in the Iowa Gambling 
task (Yechiam & Busemeyer, 2005) and strategy selection 
learning (Rieskamp & Otto, 2006), to our experiments and 
outline potential adaptions of such models to account for the 
competitive pressures examined here. Such models typically 

include assumptions regarding three main components (see 
e.g., Sutton, 1998):  a utility function that specifies the goal 
of the learning problem; a learning rule which establishes 
propensities for each choice option; and a choice rule 
defining the course of action given current propensities. 
Here, we examine two learning models postulating different 
conceptualizations of the utility formation process.  
 
Utility Function In a learning environment where an 
agent’s primary goal is maximization of total payoffs, the 
utility of a choice is typically directly specified by its 
associated monetary reward (e.g., Rieskamp & Otto, 2006): 

𝑢𝑡(𝑖) = 𝑟𝑡(𝑖),     (1) 

where 𝑢𝑡(𝑖) corresponds to the utility of the monetary gains 
𝑟𝑡(𝑖) associated with choice i on trial t, namely, in our task, 
0, 2 or 4 cents for no, split and full payoffs (see below). The 
focus on monetary gains for the evaluation of choice utilities 
has left systematic investigations of a wider range of factors 
potentially influencing this important model component 
largely unexplored (with few notable exceptions, e.g., 
Janssen & Gray, 2012; Singh, Lewis, & Barto, 2009). This 
is the case even though various additional motivational 
sources of utility are conceivable: e.g. avoidance of 
boredom associated with repetitive tasks (Keren & 
Wagenaar, 1985) or task completion time (Gray, Sims, Fu, 
& Schoelles, 2006). Relating this prevalent negligence to 
the competitive task employed here, we argue that 
describing utilities in terms of monetary rewards only 
confounds two discrete learning goals vital in this context, 
namely, correctly assessing the profitability of an option and 
attending to the competitor’s choices. In fact, monetary 
based utilities understate the crucial role differential causes 
of opponent behavior play when subjects face an imitative 
vs. an indifferent competitor. That is to say, different 
opponent strategies necessitate divergent learning goals: if 
an opponent is identified as attentive, deciding on a course 
of action requires consideration of ways to influence and 
outsmart that other agent; if, on the other hand, the 
competitor is indifferent, the impact of opposing actions on 
one’s own decisions should be strongly discounted. 

Incorporating these aspects into the learning model we 
propose a utility function that disentangles the two learning 
goals present in our task and allows direct estimation of the 
importance decision makers attribute to the choice strategies 
they observe in their competitors compared to the 
importance they ascribe to making accurate choices: 

𝑢𝑡(𝑖) = [𝛽 ∙ 𝑔𝑡(𝑖)] + [(1 − 𝛽) ∙ 𝑠𝑡(𝑖)].  (2) 

Here, the utility 𝑢𝑡(𝑖) of a choice, is expressed as the 
weighted sum of its accuracy 𝑔𝑡(𝑖) (0 for incorrect and 1 for 
correct guesses) and the choice of the competitor 𝑠𝑡(𝑖) (-1 
for converging choices and 1 for incongruent choices) on 
any given trial. The additional free parameter β determines 
the weight a subject assigns to choosing the correct option 
as compared to outsmarting their competitor in terms of 
choosing the opposite line of action. For β = 1 subjects 
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value the accuracy of their choices only, whereas for β = .5 
the importance of correct choices and outwitting the 
competitor are weighted equally. We predict that balancing 
these two requirements of the task would be more 
pronounced when facing an imitative competitor, thus 
Mβ,indifferent > Mβ,mimicry, and that learning models considering 
these differential challenges of the task would account for 
the data more thoroughly. 
 
Updating and Choice Rule Adjustment of propensities 
follows a delta learning rule commonly employed in similar 
decision tasks (e.g., Yechiam & Busemeyer, 2005): 

𝑞𝑡(𝑖) = 𝑞𝑡−1(𝑖) + 𝛼[𝑢𝑡(𝑖) − 𝑞𝑡−1(𝑖)].  (3) 

Here, initial propensities towards both options are assumed 
to equal zero and are then gradually updated in increments 
of the learning rate α based on the prediction error in 
brackets. As outcomes are mutually exclusive in our task, 
propensities for both options are updated simultaneously 
regardless of the actual choice on any given trial. An agent’s 
probability of choosing either option is determined by these 
propensities following an exponential ‘softmax’ choice rule: 

𝑝𝑡(𝑖) = 𝑒𝜃∙𝑞𝑡(𝑖)

𝑒𝜃∙𝑞𝑡(𝑗)+𝑒𝜃∙𝑞𝑡(𝑖) , 𝜃 = 310∙𝑐 − 1,  (4) 

where the sensitivity parameter θ governs the precision with 
which the preferred option is chosen. If θ = 0, decisions are 
made at random, i.e. 𝑝𝑡(𝑖) =  𝑝𝑡(𝑗) = .5, whereas large 
sensitivity parameter values (𝜃 → ∞) correspond to strictly 
deterministic choices to the option with the higher 
propensity. Following Yechiam & Ert (2007), an 
exponential transformation of θ was employed to allow 
variation of choice sensitivities between random guessing 
(for 𝜃 ≈ 0) to fully deterministic (for 𝜃 > 700) within 
narrow bounds of c, which denotes the sensitivity constant 
constrained between 0 and 1. 

Method 

Participants 
Fifty (35 female) undergraduate students from the 
University of New South Wales (mean age 18.9, SD = 1.2 
years) participated in this experiment in return for course 
credit and performance based monetary compensation. 

Decision Task 
A standard probability learning paradigm involving repeated 
binary decisions with mutually exclusive outcomes over 500 
choice trials was employed. Choice alternatives were 
represented by two light bulbs displayed on a computer 
screen and programmed to illuminate with probabilities of .7 
and .3, counterbalanced across participants for left and right 
choice options. Correct predictions were rewarded with 
4 cents (1 AUD = .95 USD). Choices were made while 
competing against a computerized opponent and when both 
agents converged on the correct response, the payoff was 
evenly split between them, i.e. each agent received 2 cents.  

Design 
We employed a 2 x 5 mixed model design with opponent 
type (mimicry or indifferent) as between-subjects factor and 
trial block (five blocks of 100 trials each) as within-subjects 
factor. The dependent measure was the proportion of 
choices to the more probable choice option. For the mimicry 
group, the choice sequence of each opponent was computed 
one step ahead by equating the opponent’s choice 
probabilities on each trial with the choice proportions the 
subject had displayed during the past ten trials. For example, 
when a participant chose the more probable option on 7 out 
of the past 10 trials, her opponent’s probability of choosing 
the same option on the subsequent trial was .7.1 This 
algorithm creates opponent behavior that probabilistically 
mimics participants’ choices.  

By contrast, the choice sequence of each opponent for 
subjects in the indifferent condition was computed 
irrespective of participants’ choices. Instead, each subject 
played against an opponent whose set of choice 
probabilities simply repeated those of an opponent 
encountered by another subject in the mimicry condition. 

Procedure 
Subjects were asked to predict which of two light bulbs 
would illuminate over a series of trials while attempting to 
earn as much money as possible. Instructions indicated that 
the lighting sequence was random, i.e. no pattern or system 
existed which made it possible to correctly predict the 
outcome throughout, and that the outcome probabilities of 
both choice options remained constant during the entire 
experiment. Additionally, participants in both conditions 
were informed that a computerized opponent with learning 
abilities such as their own and no initial information about 
the lighting frequencies was monitoring their choices and 
adapting to their skill level. On each trial, predictions were 
made simultaneously by both participant and opponent and 
followed by feedback about the other agent’s choice and the 
outcome, i.e. one light bulb lit up.  

Upon completion of every block of 100 trials a self-paced 
pause interrupted the experiment during which block 
feedback was provided and a short message reminded 
participants that the lighting sequence was random. Subjects 
were told: “In this game you earned X$. Using an optimal 
strategy you could have earned at least Y$.”, where X 
represented the actual earnings of that block and Y was 
computed by an optimizing algorithm (Shanks et al., 2002). 
This algorithm was set to probability matching in the 
mimicry opponent condition and probability maximizing in 
the indifferent opponent condition while taking both agents’ 
actual predictions during that trial block into account. 
Additional incentives to improve performance on the 
following block were provided by informing participants 
that reaching optimal performance (± three cents) would 

                                                           
1 During the first ten trials of the experiment, each opponent 

randomly adopted one of three possible initial strategies: random 
response, probability matching, or probability maximizing. 
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double their payoff, whereas suboptimal performance would 
result in halved earnings on the subsequent trial block. 

Parameter Estimation and Model Evaluation 
We estimated parameters for each individual separately 
based on the models’ accuracy in predicting the observed 
choice sequence one step ahead for each trial. That is, all 
models generate trial-by-trial choice probabilities for both 
response alternatives on the basis of subjects’ prior 
decisions, their associated payoffs and the respective 
model’s parameter values. Employing maximum likelihood 
estimation we searched for the set of parameters that 
maximized the summed log-likelihood of the predicted 
choice probabilities across trials given each participant’s 
observed responses with an iterative particle swarm 
optimization (Kennedy & Eberhart, 1995). For each 
individual, optimization proceeded iteratively with a total of 
24 particles, 23 of which started at random positions while 
the final particle started at the best parameter combination 
from the previous iteration. Optimization terminated once 
the model fit did not improve further for at least five 
successive iterations. The following parameter bounds 
constrained the optimization process:  𝛼 ∈ [0,1] for the 
learning parameter, 𝑐 ∈ [0,1] for the transformed sensitivity 
θ, and 𝛽 ∈ [0,1] for the additional outsmarting parameter. 

The final fit of each learning model was compared to a 
baseline statistical model which assumes constant and 
statistically independent choice probabilities across trials 
(see e.g., Yechiam & Busemeyer, 2005), and hence, 
accounts for the data without presuming any learning. The 
stationary probability of choosing the more probable option 
pooled across all trials (p1, p2 = 1 - p1) is the only free 
parameter in this baseline model and, to account for 
divergent model complexities, both learning models are 
evaluated by comparing differences in Bayesian Information 
Criterion (BIC; Schwarz, 1978) statistics between learning 
and baseline model (see e.g., Yechiam & Busemeyer, 2005). 
If a learning model is superior to the statistical baseline 
model, i.e. accurately describes how subjects adapt their 
choice behavior over time, positive ∆BIC values result from 
this model evaluation. 

Results 

Behavioral Data 
The mean proportion of choices to the more probable choice 
option for each block of 100 trials averaged across 
participants in the two experimental conditions is displayed 
in Figure 1. For inferential statistics, we conducted Bayesian 
analyses in addition to conventional methods of hypothesis 
testing to quantify evidence in favor of the null and 
alternative hypotheses (Wagenmakers, 2007). We assume 
equal plausibility for the null and alternative hypotheses a 
priori and report the posterior probability for the null 
hypothesis, denoted as 𝑝H0

Bayes, associated with each effect. A 
mixed model ANOVA revealed a significant main effect of 
trial block (F(2.37,113.8) = 27.9, p < .001, ƞp

2 = .367, 

𝑝H0
Bayes = .00)2, with predictions closer to the respective 

optimal response strategy in the last compared to the first 
block of 100 trials for both groups. In the mimicry 
condition, subjects’ choice behavior accurately approached 
optimal probability matching towards the last trial block 
(M = .76), whereas an indifferent competitor elicited 
decisions more in line with a probability maximizing 
strategy (M = .90). This adaptive divergence of learning 
processes is emphasized by a significant main effect of 
competitor type across all trial blocks (F(1, 48) = 11.7, 
p = .001, ƞp

2 = .195, 𝑝H0
Bayes = .03). The competition type by 

trial block interaction did not reach statistical significance, 
although the Bayesian evidence was ambiguous 
(F(2.37, 113.8) = 2.77, p = .058, ƞp

2 = .055,  𝑝H0
Bayes = .66).  

 
 

Figure 1: Mean ± standard error proportion of choices to the 
more probable option averaged across trials and subjects. 

 
Similar adaptive differences in choice behavior were also 

observed at an individual level, with high proportions of 
subjects in both conditions adopting the respective adequate 
rather than suboptimal strategy by the final trial block.  

In sum, we have demonstrated that subjects are sensitive 
towards their competitors’ decision strategies and modify 
their choices accordingly. The underlying psychological 
processes that lead to this adaptive divergence in strategy 
use, however, remain elusive from the behavioral data. 
Thus, we now turn to a computational modeling analysis to 
illuminate the determinants of emergent optimal choice 
behavior within competitive environments more holistically. 

Modeling Data 
The parameter estimates and ∆BIC values for the proposed 
learning models are compared in Table 1. The first learning 
model we examined defined decision utilities solely based 
on their associated monetary payoff and, judging by its 

                                                           
2 Mauchly’s test indicated that the assumption of sphericity had 

been violated (χ2(9) = 63.0, p < .001), therefore degrees of freedom 
were corrected for both conventional and Bayesian analyses using 
Greenhouse-Geisser estimates of sphericity (ε = .593). 
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Table 1: Mean and standard deviations (in parentheses) of parameter estimates and the difference in Bayesian Information 
Criterion (ΔBIC) between statistical baseline and specified model. 

 

 
Learning (α)  Sensitivity (c)  Outsmarting (β)  

ΔBIC 
mimic indifferent  mimic indifferent  mimic indifferent  

Monetary utility function 
𝑢t(𝑖) = 𝑟t 

.07 
(.21) 

.02 
 (.04) 

 
.16 

(.20) 
.29 

 (.29) 
 - -  17.8 (31.3) 

Competition utility function 
𝑢𝑡(𝑖) = [𝛽 ∙ 𝑔𝑡(𝑖)] + [(1 − 𝛽) ∙ 𝑠𝑡(𝑖)] 

.08 
(.21) 

.07 
 (.14) 

 
.43 

(.38) 
.28 

 (.22) 
 

.85 
(.24) 

.97* 
(.05) 

 18.7 (33.7) 

*p < .05 

clearly positive average ∆BIC score, accounts considerably 
better for the observed choice behavior than the stationary 
baseline model despite greater complexity. However, this 
basic utility model does not permit differentiation between 
the learning processes that lead to divergent choice behavior 
in the examined competitive environments, because 
estimated individual model parameters did not differ 
significantly between experimental groups, although the 
Bayesian evidence was ambiguous (t(26.0) = 1.21, p = .238, 
𝑝H0

Bayes = .71 for learning rates and t(42.6) = -1.87, p = .068, 
𝑝H0

Bayes = .51 for sensitivity constants).  
The second learning model proposed above disentangles 

the two learning goals of choosing accurately, yet 
outsmarting the competitor by introducing an additional free 
parameter, β. The differential requirements of the two 
competitive environments are well represented by this 
additional outsmarting parameter, which was significantly 
smaller in the mimicry condition, indicating a tradeoff 
between betting on the more probable option and deviating 
from the opposing choice behavior, compared to the 
indifferent group, where opponent choices were to be 
disregarded (t(26.4) = -2.44, p = .022, 𝑝H0

Bayes = .27). 
Parameter estimates for learning rate and sensitivity 
constant, again, did not differ between conditions, although 
the Bayesian evidence was ambiguous (t(48) = .220, 
p = .827, 𝑝H0

Bayes = .82 and t(38.6) = 1.65, p = .107, 
𝑝H0

Bayes = .59, respectively). Although the more elaborate 
utility evaluation model sheds light on the processes 
underlying the observed divergence in choice behavior, the 
added complexity results in ∆BIC statistics not significantly 
better than those of the simpler utility model (t(49) = -.613, 
p = .543, 𝑝H0

Bayes = .88). Thus, despite the conceptual promise 
and excellent parameter fit of the more complex model, 
overall, the simple monetary utility model is to be preferred 
for its parsimony. 

Discussion 
Qualitatively different competitive pressures in a binary 
prediction task result in adaptively divergent choice 
behavior on aggregate and individual learning levels. Under 
the influence of an indifferent opponent, resources should 
and were found to be exploited without consideration for the 
other agent’s preferences, i.e. much like in classic individual 

binary prediction tasks, probability matching needed to be 
dismissed as an inferior strategy. By contrast, the presence 
of an imitative opponent necessitates response allocations 
proportional to outcome probabilities in order to maximize 
payoffs. In this context, we observed an adaptive tendency 
towards probability matching – i.e. probability maximizing 
was correctly rejected as an inferior strategy. 

What drives this adaptive divergence of strategy adoption 
in these two competitive contexts? Our evaluation of 
learning models suggests that the observed adaptiveness of 
choice behavior largely resulted from differing learning 
goals with respect to opponent behavior: imitative 
competitors require consideration for strategies that 
influence and outsmart these agents, whereas indifferent 
opponents necessitate disregard for their choices when 
deciding on one’s own course of action. Thus, 
conceptualizing opponent behavior as a key factor in the 
evaluation of choice utilities that is traded off against the 
desire to choose accurately disentangles these divergent 
requirements while providing a good approximation of 
observed behavior. Yet, when modeling individual data, the 
additional outsmarting parameter for each decision maker 
increased the complexity of the model beyond its 
explanatory potential as indicated by the ∆BIC score 
comparisons. Omitting the computational representation of 
opponent behavior from the model, however, resulted in 
parameter estimates that gave little indication of the 
underlying learning processes prompting decision makers to 
respond adaptively to qualitatively different competitive 
pressures. At best, within this simpler model, divergent 
environmental requirements were somewhat reflected in 
marginally decreased sensitivities for evaluated choice 
propensities in the mimicry competitor condition, i.e. 
adoption of optimal probability matching is explained in 
terms of greater randomness in subject’s choice behavior.  
Attributing the observed adaptiveness of strategy use in both 
contexts to differences in choice rule precision appears, 
however, conceptually implausible, because under the 
influence of an imitative competitor, participants are not less 
sensitive towards monetary rewards per se. On the contrary, 
we suggest that it is the added requisite to outmaneuver the 
opposing agent that fuels optimal matching in this context. 

Consequently, to account for core learning processes that 
drive adaptive choice behavior within these competitive 
environments, an additional representation of opponent 
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behavior is conceptually essential. To remedy potential 
disadvantages of added model complexity an interesting 
avenue for future research is to explore the suitability of 
hierarchical parameter estimation techniques, which may 
highlight the benefits of including an outsmarting parameter 
without introducing the downsides of overly complex 
models. The take-home message from this study is that 
learning to choose under uncertainty can indeed be steered 
by competition and thus proceed adaptively in situations 
where probability maximizing or matching is optimal. 
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Appendix 
Expected reward proportions are defined as the weighted 
average of all possible outcomes resulting from nature’s 
move and both agents’ choices. When two decision makers 
follow the same course of action, i.e. one imitates the other, 
the choice probabilities of both agents are identical. Given 
identical choice probabilities, the agents can either converge 
or diverge on a choice option, and thus expected rewards 
can be broken down into split and full payoffs while their 
sum amounts to the total expected payoff proportion: 

𝑟𝑆𝑝𝑙𝑖𝑡 = (𝑝𝑐(𝐻)2 ∙ .7 + 𝑝𝑐(𝐿)2 ∙ .3) 2⁄        (5) 
𝑟𝐹𝑢𝑙𝑙 = (𝑝𝑐1(𝐻) ∙ 𝑝𝑐2(𝐿) ∙ .7) + (𝑝𝑐1(𝐿) ∙ 𝑝𝑐2(𝐻) ∙ .3) (6) 

For each decision maker, split reward proportions are 
computed as the joint probability of both agents choosing 
the same option (pc(i)2) weighted by the outcome 
contingencies (here, .7 and .3) and split by two; whereas full 
reward proportions can be expressed as the joint probability 
of both players choosing different options (pc1(i) ∙ pc2(j)) 
weighted by the outcome probabilities. Thus, total expected 
payoffs are maximized when both players probability 
match. For outcome probabilities of .7 and .3, for example, 
each player’s maximal total expected reward proportion 
equals .395 (compared with .35 for probability maximizing). 
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