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Abstract

Recent studies have shown that people use covariation
information to infer causal structure. However, there is little
information about how people derive causal directionality
from covariation. The present study is designed to provide
further evidence about the role of covariation in causal
structure learning. In Experiment 1, where covariation
between two variables was systematically manipulated,
participants were asked to observe the states of bacteria
(present or absent) and to infer their causal relationship. We
found that judgments of causal structure varied as a function
of covariation, and that participants interpreted covariation
according to necessity of causation. In Experiment 2,
participants who received information about high causal
strength interpreted covariation according to sufficiency of
causation. These results demonstrate that prior knowledge
modulates interpretation of covariation and suggest that
domain-general covariation information and domain-specific
prior knowledge of causal relations interact in causal structure
learning.
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necessity; sufficiency.

Introduction

Causal knowledge enables us to explain past events, to
control the present environment, and to predict future
outcomes. Using this knowledge, we can achieve desired
outcomes and avoid undesired consequences. Many
psychological studies have investigated how people acquire
and use knowledge of causality (Gopnik & Schulz, 2007;
Sloman, 2005; see also Holyoak & Cheng, 2011, for a
review). Despite the importance of causal knowledge, it is
often difficult to determine the casual structure among
events. For example, imagine that someone feels
unmotivated and makes slow progress on their work. In this
situation, it is unknown whether the lack of motivation leads
to slow progress, or whether slow progress causes lack of
motivation. Furthermore, it is also possible that motivation
and work progress are unrelated. Given this ambiguity, how
do people learn causal structure?

Hume (1739/2000) argued that causal relations are
unobservable and must be induced from observable events.
Information about covariation among events serves as a
fundamental cue for inferring causal structure. Covariation
is represented as the pattern of occurrences and non-
occurrences for binary variables. Figure 1 shows a standard
contingency table where the letters in each cell (a, b, c, d)

represent the joint frequencies for one value of event X and
one value of event Y. It is generally accepted that objective
measure of contingency is described by AP, as shown in
Equation 1 (Jenkins & Ward, 1965).

AP:P(Y\X)—P(Y\ﬁX)za%ib—ﬁ (1)

In this equation, P(Y|X) is the probability of Y given the
presence of X, and P(Y|-X) is the probability of Y given the
absence of X. Values of AP range from —1 to +1. Positive
AP values indicate a generative causal relation; negative AP
values indicate a preventive causal relation. When a causal
relation exists, strong covariation between the cause and the
effect is expected. By contrast, lack of covariation indicates
that two variables are unrelated (i.e., AP does not differ
significantly from zero). Many studies have focused on how
people estimate causal strength between the candidate cause
and the effect, and the results have shown that people are
quite sensitive to covariation information (e.g., Wasserman,
Elek, Chatlosh, & Baker, 1993). However, covariation itself
is inadequate for inferring a unique causal structure: when
event X covaries with event Y, it is difficult to determine
whether X causes Y, or vice versa.

When combined with additional information, covariation
becomes a more useful cue to causal structure. First,
temporal order in which people observe the occurrence of
events facilitates learning causal directionality. As causes
are often observed prior to their effects, when event X
precedes event Y, it is highly probable that X causes Y. For
example, if becoming unmotivated precedes making slow

EventY
Y =Y

Xlal|b
—xl ¢ | d

Figure 1: A contingency table summarizing the
covariation between two binary variables. The letters
in each cell indicate frequencies of co-occurrence for
the two states of events X and Y.

Event X
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progress on work, temporal order information suggests that
decreased motivation causes slow progress. Second,
information about the absence of hidden causes also makes
covariation cues more useful. When event X covaries with
event Y, three possible causal structures are supposed (i.e.,
X—-Y, XY, or X«Z—Y). The possibility that both
events are caused by a hidden common cause, Z, can be
excluded if it is known that there are no hidden causes. If
event X exists alone, necessity of causation indicates that X
causes Y (i.e., X—Y). This is because nothing happens
without a cause (i.e., P(Effectj-Cause) = 0). Therefore,
events that exist alone must be a cause variable, not an
effect variable. In contrast to necessity of causation,
sufficiency of causation draws the opposite conclusion that
event Y causes event X in above situation (i.e., X<Y).
Since sufficiency of causation assumes that causes always
accompany their effects (i.e., P(Effect|Cause) = 1), events
that occur alone must be an effect variable, not a cause
variable. Given that there is no factor that affects both
motivation and work progress and that motivation changes
spontaneously, in previous example, necessity of causation
suggests that decreased motivation causes slow progress and
sufficiency of causation indicates that slow progress causes
decreased motivation.

Recent studies on causal structure learning have revealed
the importance of covariation (e.g., Deverett & Kemp, 2012;
Mayrhofer & Waldmann, 2011; Rottman & Keil, 2012;
Saito & Shimazaki, 2012). For instance, Saito and
Shimazaki (2012) demonstrated that people judge simple
causal structure on the basis of covariation information, but
the use of covariation is modulated by task complexity. The
experimental task was to observe the states of bacteria and
to infer their causal relationship. Participants were
instructed that temporal order was unreliable and that there
were no hidden causes. In the simple causal structure
condition, covariation was favored over temporal order as
the basis for inferring causal structure; in contrast, temporal
order was more influential in the complex causal structure
condition. In addition, Mayrhofer and Waldmann (2011,
Experiment 1) reported that people can differentiate
common cause models (e.g., X«—Z—Y) from common
effect models (e.g., X—Z<Y) on the basis of covariation
information. Although these recent studies show the ability
to infer causal directionality from covariation, how people
use covariation to induce causal directionality is still not
well-understood. Therefore, it is valuable to study how
people make structure judgments according to covariation.

The purpose of the present study is to investigate how
people interpret covariation information in causal structure
learning. In Experiment 1, we systematically manipulated
covariation between two variables and asked participants to
make causal structure judgments. Although causal structure
between two variables is not determined by covariation
alone, this situation enables us to examine whether
participants have some sort of tendency in inferring causal
directionality from covariation. In Experiment 2, we gave
participants different information about causal relations and

investigated whether prior their

interpretation of covariation.

knowledge changed

Experiment 1

Experiment 1 investigated how people interpret covariation
when judging causal structure. The experimental task was to
observe the occurrence of two fictitious bacteria and to infer
their causal relationship. We manipulated covariation
information by varying the number of occurrences and non-
occurrences of each bacterium.

Method

Participants and Design Forty-three undergraduates from
Kwansei Gakuin University received course credit for
participating in this experiment. Two additional participants
were excluded from the analyses due to misunderstanding of
the instructions. Excluding these participants did not alter
the general pattern of results.

Covariation information was systematically manipulated

within participants. There were 15 covariation conditions
(see Table 1) based on the combinations of five levels
(.00, .75, .50, .25, .00) of the conditional probabilities
P(Y|X) and P(Y|-X). The difference between P(Y|X) and
P(Y|-X) for each condition yielded five levels of
nonnegative AP values (1.00, .75, .50, .25, .00). Each
participant completed the causal learning task for all
covariation conditions.
Instructions Participants received verbal and written
instructions in Japanese, and were asked to confirm that
they understood the instructions. An English translation of
outlines of the instructions was provided below:

Imagine that you are a scientist attempting to reveal a
causal relationship between two types of newly
discovered bacteria (These bacteria have the same
shapes but different colors to conjure up an image of
cell divisions). The term “causal relationship” means
a relationship where one bacterium propagates the
other bacterium (i.e., generative causal relationship).
It is unknown whether one bacterium propagates the
other, or whether these bacteria are unrelated. To
investigate the relationship between the bacteria, you
are going to observe the appearance of the bacteria.
The states of the bacteria should help you consider the
causal relationship between them.

Your task is to observe the occurrences and non-
occurrences of these bacteria and to infer their causal
relationship. Note that the experimental task does not
require any knowledge of biology. (The remaining
instructions describe how to progress through the
learning phase and test phase.)

Learning Phase Participants observed the states of bacteria
(present or absent) to infer their causal relationship. On each
trial, a button labeled “NEXT” was displayed on the screen.
After clicking the button, information about the states of
both bacteria X and Y was provided. The presence of a
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bacterium was indicated by the appearance of the bacterium;
in contrast, the absence of a bacterium was represented by
the appearance of the bacterium labeled with a cross mark.
The screen was returned to its primary state (i.e., “NEXT”)
1s after the bacteria appeared.

There were 16 trials for each covariation condition.

Bacterium X was present on eight trials and was absent on
eight trials (i.e., P(X) = .50). Two conditional probabilities,
P(Y|X) and P(Y|-=X), were set to one of five levels in each
condition (Table 1) The difference between these
probabilities yielded five levels of nonnegative APs (AP =
P(Y|X) — P(Y|-X)). Each condition was described through
the difference between the two conditional probabilities. For
example, in the .75-.00 condition (i.e., P(Y[X) = .75,
P(Y|-X) = .00), bacteria X and Y were both present on six
trials. Bacteria X and Y were both absent on eight trials, and
on two trials bacterium X was present and bacterium Y was
absent. The order of trials and conditions was randomized
within participants. To familiarize participants with the
procedure, several practice trials were performed prior to the
learning phase. Participants were informed that the
information in the practice trials was irrelevant to the
learning phase.
Test Phase After observing 16 cases, participants were
asked two yes/no questions about the causal structure. They
were asked whether bacterium X caused bacterium Y, and
whether bacterium Y caused bacterium X. Then, after a
brief delay, participants began the learning and test phases
for the next covariation condition. They were instructed that
judgments should be made independently of their answers
on prior problems.

Results and Discussion

Combining the answers on the two test questions yields four
types of causal models: (1) X causes Y, (2) Y causes X, (3)

bidirectional, and (4) independent. The percentage of
responses in each condition is shown in Table 1. Although
causal structure could not be uniquely determined in all
conditions, participants’ judgments varied greatly. A log-
linear model analysis on the 15 (covariation conditions) x 4
(causal models) cross table revealed a significant interaction
between covariation condition and causal model, y* (42) =
291.37, p < .001.

In order to explore the interaction between covariation
information and causal judgments in greater detail, we
conducted a correspondence analysis. The contributions of
dimensions 1 and 2 are 63.75% and 20.29%, respectively,
and their cumulative contribution is 84.05%. Therefore, we
created scatter plots in two dimensions (Figure 2). As can be
seen from Figure 2, each judgment is closely related to
specific conditions. Most participants concluded that X
caused Y in the .25-.00, .50-.00, and .75-.00 conditions
and that Y caused X in the 1.00-1.00, 1.00-.75, 1.00—.50,
and 1.00-.25 conditions. Bidirectional causal relationships
were only inferred in the 1.00—.00 condition. X and Y were
judged to be independent in the other conditions.

Participants’ judgments are explained in terms of
necessity of causation (cf. Pearl, 2000). Necessity represents
the degree to which the cause is necessary for the effect; in
contrast, sufficiency is the degree to which the cause is
sufficient for the effect. Pearl (2000) introduced three
indices that assess causality: the probability of necessity
(PN), the probability of sufficiency (PS), and the probability
of necessity and sufficiency (PNS). These indices are easily
calculated when the covariation information given does not
include both the case where the effect is present in the
absence of the cause (i.e., cell b), and the case where the
effect is absent despite the presence of the cause (i.e., cell ¢).
There also cannot be any common factors that have an

Table 1: Details of conditions, results, and interpretations in Experiment 1

Covariation conditions

Causal models (% of participants)

Interpretations

P(Y|X) P(Y|-X) AP X—Y XY  X-oY&X<Y X Y PN PS  PNS
1.00 00 1.00 0.00 2.33 53.49 44.19
1.00 25 75 20.93 48.84 6.98 23.26 XY XY XY
75 .00 75 53.49 18.60 6.98 20.93 XY XY XeY
1.00 50 50 27.91 53.49 0.00 18.60 X—Y X-oY X<Y
75 25 50 11.63 13.95 18.60 55.81
50 00 50 51.16 23.26 2.33 23.26 X—>Y XY XY
1.00 75 25 27.91 60.47 2.33 9.30 X<Y X-oY X<Y
75 50 25 9.30 20.93 11.63 58.14
50 25 25 13.95 13.95 16.28 55.81
25 .00 25 46.51 23.26 2.33 27.91 X—>Y XY XY
1.00 1.00 .00 20.93 51.16 0.00 27.91
75 75 .00 11.63 27.91 13.95 46.51
50 50 00 11.63 4.65 11.63 72.09
25 25 .00 16.28 13.95 6.98 62.79
.00 00 00 23.26 16.28 0.00 60.47
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influence on both events X and Y. Under these conditions,
the probability of necessity, PN, is calculated according to
the following equation:

_PYX)-PlYEX)
R

PN @

When event X generates event Y (i.e., AP > 0), values of
PN become higher as the probability of Y given the absence
of X, P(Y[|-X), decreases. This reflects the fact that
necessity of causation assumes that the base rate of the
effect is low (i.e., P(Effect|=Cause) = 0). In contrast, the
probability of sufficiency, PS, is based on the assumption
that causes always accompany their effects (i.e.,
P(Effect|Cause) = 1) and is defined as follows:

PYX)-Plx)

- 3
PS 1PV @)

The probability of necessity and sufficiency, PNS, takes
both necessity and sufficiency aspects of causal relations
into account:

PNS = P(Y[X )-P(Y|-X ) 4)

These indices are calculated on the basis of the causal
direction from event X to event Y. Therefore, indices based
on inverse direction are calculated by interchanging the
rows and columns of the 2 x 2 contingency table. When
index values based on the direction from X to Y (e.g., PN
from X to Y) are compared with those based on the
direction from Y to X (e.g., PN from Y to X) and causal
directionality is inferred by higher agreement with the
conception (i.e., higher values), the three indices lead to
different interpretations (see Table 1). For example, in
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Dimension 1
Figure 2: Results of correspondence analysis.

the .25-.00, .50-.00, and .75-.00 conditions, PN predicts
that X causes Y. In contrast, in the 1.00-.75, 1.00-.50, and
1.00—.25 conditions, PN makes the opposite prediction. On
the basis of responses in the conditions where the three
indices are defined, we classified participants into one of
five clusters: necessity, sufficiency, necessity and
sufficiency, random, and unclassified. These classifications
were made by rates of agreement between judgments and
index predictions (1 for predicted judgments, 0 for
unpredicted judgments). When participants had the same
rate of agreement for different clusters, they were included
in the unclassified cluster. As a result, more than half of the
participants (55.81%) were classified to the necessity
cluster and 27.91% of participants were classified in the
sufficiency cluster. There were few participants in the other
clusters (6.98% in the necessity and sufficiency cluster;
2.33% in the random cluster; 6.98% in the unclassified
cluster). This suggests that most people interpret
covariation information according to necessity.

However, these results are inconsistent with recent work
suggesting that people judge causal relations on the basis of
sufficiency (Mayrhofer & Waldmann, 2011). Sufficiency of
causation assumes that causal relations are deterministic
(i.e., P(Effect|Cause) = 1). According to sufficiency, the
presence of event X in the absence of event Y is interpreted
as an indication that X does not cause Y. Therefore, when
covariation information includes such cases, it is suggested
that Y causes X (i.e., X«<Y). On the other hand, necessity
of causation assumes that all events have a cause (i.e.,
P(Effect|=Cause) = 0) and such cases are taken as evidence
that Y does not cause X. In contrast to sufficiency,
necessity indicates that X causes Y (i.e., X—Y) in the
situation described above. Thus, judgments of causal
directionality between two variables depend on the
interpretation of covariation. In a second experiment,
Mayrhofer and Waldmann (2011) had participants observe
communications between two mind-reading aliens, and
asked them to infer causal directionality. Covariation
information included the case where two aliens X and Y
thought the same thing, and the case where only one alien
thought something (e.g., X) and the other alien thought
nothing (e.g., =Y). Whereas sufficiency would suggest that
alien Y transferred his thought to alien X (i.e., X<Y),
necessity favors the opposite conclusion (i.e., X—Y). More
participants concluded that Y caused X, suggesting that
people judge causal relations on the basis of sufficiency.

These conflicting findings could be due to differences in
prior knowledge about causal relations. Sufficiency of
causation requires high causal strength, whereas necessity
of causation requires the low base rate of the effect. If
participants expect the effect’s base rate to be low before
the learning phase, covariation information is likely to be
interpreted according to necessity. In contrast, prior
knowledge about high causal strength might lead to an
interpretation based on sufficiency. Indeed, it is difficult to
imagine that the effect bacterium could occur in the absence
of the cause bacterium in the bacteria story. That is,
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participants will believe that bacteria do not arise
spontaneously (i.e., P(Effect|=-Cause) = 0) and therefore,
think the bacterium that exists alone must be a cause. In the
alien story, however, such a situation is more plausible: an
alien has the potential to think spontaneously, regardless of
whether a cause alien is present (i.e., P(Effect|-Cause) > 0).
Participants will assume multiple causes in the alien cover
story and regard the single-occurrence of the thought as an
effect. Since necessity and sufficiency differ in their
assumption about the base rate of effect and causal strength,
differences in prior knowledge about these parameters
might result in different judgments of causal structure based
on covariation. We test this hypothesis in Experiment 2.

Experiment 2

Experiment 1 demonstrated that participants made different
judgments as a function of covariation. Whereas the results
of Experiment 1 indicate that people interpret covariation
information according to necessity of causation, Mayrhofer
and Waldmann (2011) suggest that people interpret
covariation according to sufficiency of causation.
Experiment 2 was designed to investigate the effect of prior
knowledge on interpretation of covariation information. The
experimental procedure was similar to that of Experiment 1,
but participants received different instructions about causal
relations. We expected that additional instructions about
high causal strength would lead to interpretations based on
sufficiency of causation, and that participants who were not
given additional instructions would infer causal structure
according to necessity of causation.

Method

Participants and Design Twenty-four undergraduates from
Kwansei Gakuin University participated in the experiment
and received course credit. None of them took part in
Experiment 1. They were randomly assigned to either the
sufficiency instruction or control group.

Procedure Each participant observed the states of bacteria
(present or absent) and inferred their causal relationship.
The procedure was the same as Experiment 1, with the
following exceptions. First, participants in the sufficiency
instruction group received additional instructions that
emphasized the sufficiency of causation. In addition, to
ensure that participants remembered this additional
information, they were allowed to re-read the instructions
during the learning and test phases. Finally, covariation
information was manipulated within a context where

inferences could be uniquely identified as being made
according to necessity or sufficiency.

In the instructions, the cover story was explained and
participants were told to determine the causal relationship
between two newly discovered bacteria. For participants in
the sufficiency instruction group, instructions stated that the
cause bacterium always accompanied the effect bacterium
when one bacterium propagates the other bacterium (i.e.,
P(Effect|Cause) = 1), and that there are other causes in the
environment that can produce the bacteria (i.e.,
P(Effect|-Cause) > 0). This information was not provided
for participants in the control group.

In the learning phase, participants observed the states of
bacteria on 16 trials. Six covariation conditions
(.25-.00, .50-.00, .75-.00, 1.00-.75, 1.00-.50, and
1.00-.25) were used to determine whether participants
interpreted covariation according to necessity (PN) or
sufficiency (PS). Participants performed each condition
twice in order to counterbalance the role of bacteria.

In the test phase, participants were told to judge the
causal relationship in the same way as in Experiment 1.
After a brief delay, participants completed the learning and
test phases for the next condition. They were instructed that
judgments should be made independently of their answers
on prior problems.

Results and Discussion

Participants’ responses were analyzed in a manner similar
to Experiment 1. First, judgments were categorized as one
of four types of causal models. Next, we classified
participants into one of five clusters (i.e., necessity,
sufficiency, necessity and sufficiency, random, and
unclassified) according to whether their judgments were
predicted by PN, PS, or PNS. Table 2 shows the number of
participants assigned to each cluster. Participants in the
sufficiency instruction group were largely divided into the
necessity cluster and sufficiency cluster. In contrast, almost
all participants in the control group were assigned to the
necessity cluster, replicating Experiment 1 where the
majority of participants interpreted covariation on the basis
of necessity. Fisher’s exact test confirmed that there were
significantly more judgments according to sufficiency of
causation for participants in the sufficiency instruction
group than the control group (p < .05). Although some
participants still interpreted covariation according to
necessity, these results indicate that prior knowledge
modulated the interpretation of covariation information.
In summary, Experiment 2 showed that judgments of

Table 2: Number of participants assigned to each cluster in Experiment 2

Necessity and

Necessity Sufficiency Sufficiency Random Unclassified
Sufficiency instruction 4 6 0 1 1
Group
Control group 10 1 0 0 1
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causal structure were largely affected by prior knowledge
about causal relations. When participants were informed
about high causal strength, they were more likely to infer
causal directionality on the basis of sufficiency; in contrast,
participants not given additional instructions always judged
causal structure according to necessity. These results bridge
the gap between the results showing that judgments of
causal structure are based on necessity (Experiment 1) and
those showing that judgments of causal structure are based
on sufficiency (Mayrhofer & Waldmann, 2011).

General Discussion

Recent studies have shown that people use covariation to
infer causal directionality. However, there is little
information about how people infer causal directionality
from covariation. The present study was designed to
investigate how people make causal structure judgments on
the basis of covariation. Experiment 1 demonstrated that
judgments of causal structure vary as a function of
covariation, and that participants’ answers can be explained
in terms of necessity of causation. Experiment 2 showed
that prior knowledge about high causal strength led more
participants to interpret covariation according to sufficiency.
The results of Experiment 2 are consistent with both
findings concerning necessity interpretation of covariation
(Experiment 1) and sufficiency interpretation of covariation
(Mayrhofer & Waldmann, 2011). These results reveal the
importance of interpretations of covariation information in
causal structure learning.

The results of the present study are closely related to the
finding that learners flexibly interpret covariation during
causal learning (Luhmann & Ahn, 2011). Luhmann and Ahn
(2011) asked participants whether they interpreted single
pieces of covariation information as evidence of generative
or preventive causal relations. The results showed that
observations from Cell A can be interpreted as evidence for
either a generative or preventive causal relation. These
studies share the view that covariation information is
flexibly interpreted, but focus on different aspects of causal
learning. Whereas Luhmann and Ahn (2011) focused on
learning causal strength, the present study addressed
learning causal structure. An intriguing question for future
research is to ask participants whether they interpret
covariation as evidence for X causes Y or Y causes X.

The difference between a necessity interpretation of
covariation in the bacteria story (Experiment 1) and a
sufficiency interpretation in the mind-reading aliens story
(Mayrhofer & Waldmann, 2011) can be regarded as an
interaction between domain-general causal inference and
domain-specific knowledge. Whereas covariation is thought
to be domain-general information, prior knowledge about
causal relations seems to differ between the two stories. The
results of Experiment 2 demonstrate that the basis for
interpreting covariation can change from necessity to
sufficiency when information about high causal strength is
provided, but it remains unknown whether there are
conditions that will change participants’ basis for

interpretation from sufficiency to necessity. Another key
question for future research is to investigate whether
information about low base rate of the effect encourages a
necessity interpretation of covariation in the mind-reading
aliens cover story. Future research will provide further
evidence about interactions between domain-general
covariation and domain-specific prior knowledge.
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