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Abstract 

The current experiment investigated the effects of target size 
and symmetry on the dynamics of precision aiming. 
Participants were asked to sit on a chair and point at the 
center of four different targets (a small and big square target, 
and a horizontal and vertical rectangular target). The aiming 
movements were assessed using linear (root mean square) and 
non-linear fractal statistics (DFA and MFDFA). We found 
that participants spontaneously exhibited more movement in 
target dimensions with less spatial constraint (i.e., larger 
target dimensions). These larger movements, however, were 
more deterministic than the movements accompanying the 
smaller targets, indicating that more variation in aiming does 
not necessarily mean more random. Finally, even though 
participants’ movements were multifractal, the different 
manipulations and task constraints had no effect on the width 
of the multifractal spectrum. These results suggest that human 
performance emerges from the complex relationship and 
interactions that exist between the perception and action 
capabilities of the human body and the physical environment.  

Keywords: Cognitive science, psychology, action, motor 
control, complex systems, 1/f noise. 

Introduction 

Accuracy in tasks such as pistol shooting and archery 

depends on a person’s ability to precisely aim at intended 

targets, which requires meticulous and refined control of the 

body and its relationship to the environment around it. 

Scholz, Schöner and Latash (2000) showed that expert 

shooters arrange the different components in their body into 

a motor synergy, coupling certain components to each other 

and therefore minimizing the necessary movements in order 

to be more precise. Complimentary research efforts have 

studied how different task constraints or elements of the 

physical environment affect how people move their bodies 

in order to aim precisely, such as target size (Ramenzoni et 

al., 2011) or distance (Balasubramaniam, Riley & Turvey, 

2000). However, the effect that such environmental factors 

have on how people organize their bodies to achieve 

precision aiming has not yet been revealed in full detail.   

Psychologists have traditionally evaluated the impact of 

task constraints on precision aiming (e.g., target size) using 

linear statistical tools, such as summarizing effects in means 

and standard deviations. Recently, statistical techniques 

allowing researchers to examine more complex aspects of 

such behavior have come to the fore, most notably,  

techniques that allow researchers to uncover the fractal 

structure in movement and behavioral variability (Gilden, 

2001; Ihlen, 2012; Delignières & Marmelat, 2013). Fractal 

or 1/f scaling refers to patterns in the variability of behavior 

that are long-term correlated such that deviations early in a 

recorded behavior are correlated with deviations that occur 

much later in the behavior. This kind of structure in 

variability is often referred to as “pink noise”, denoting its 

difference from the highly irregular or random fluctuations 

of “white noise” and the highly regular or deterministic 

fluctuations of “brown noise” (see Figure 1).  The degree to 

which a behavioral measurement series exhibits fractal 

scaling can be summarized by the Hurst exponent. The 

Hurst exponent (H) for white noise is 0.5 and for brown 

noise is 1.5, with pink noise in-between (H ≈ 1) (Ihlen, 

2012). Pink noise has been associated with signs of healthy 

functioning (for a review, Van Orden, Kloos & Wallot, 

2009) in different human movement tasks, such as tapping 

(Kello et al., 2007; Delignières, Torre & Lemoine, 2008; 

Torre, Balasubramaniam & Delignieres, 2010), stimulus-

response tasks (Holden, Choi, Amazeen & Van Orden, 

2010), postural sway (Schmit, Regis & Riley, 2005; Schmit 

et. al., 2006), walking (Hausdorff, 2007) and eye-movement 

behavior (Coey et al., 2012).  
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It is becoming increasingly apparent, however, that 

human behavior may in fact exhibit even more complex 

patterns of fluctuation than those that can be ascertained 

from standard fractal analysis. In these cases, the patterns 

cannot be captured by a single H, as the fractal scaling in the 

behavior might change over time during the course of 

measurement, or might be different at different scales of 

variability (Kantelhardt et al., 2002). Such “multifractal” 

patterns must, therefore, be characterized by their 

“multifractal spectrum”; a range of H values that 

collectively capture the complex structure inherent in a 

behavioral time series (e.g., Kuznetsov & Wallot, 2011; 

Kuznetsov et al., 2012). This spectrum of H can either be 

time-dependent or independent. When it is time-dependent 

it shows a pattern of long-range correlation where sections 

of rapid fluctuation are interspersed with sections of slow 

fluctuation and it is associated with intermittent processes 

(Kuznetsov & Wallot, 2011). Multifractal spectrums can 

also be time-independent due to the behavior being sampled 

having a frequency distribution with a long tail (Kantelhardt 

et. al., 2002).  

These statistical properties are of interest to cognitive 

scientists primarily because they reveal something more 

about the underlying causal structure of human performance 

than do means and standard deviations (Gilden, 2001; 

Hausdorff, 2007; Kello et. al., 2007; Holden et. al., 2010; 

Kuznetsov & Wallot, 2011). For instance, the presence of 

monofractal or multifractal structure in human performance 

can provide insight about the degree to which a behavioral 

process is self-organized or emerges from interaction-

dominant dynamics (Kuznetsov & Wallot, 2011; Van Orden 

et. al., 2009). Traditional linear statistical tools assume 

behavior to be static and self-contained, while monofractal 

and multifractal analyses reveal the strong relationship or 

coupling between people and their environment (Holden et. 

al., 2010).  

 
Figure 1: (a) sample time series of white noise depicting 

highly irregular or random fluctuations; brown noise, with 

highly regular or deterministic variability; and pink noise, 

located somewhere between random and deterministic 

fluctuations. (b) Plots obtained from a detrended 

fluctuations analysis (DFA) where the mean root mean 

square (RMS) is plotted against the window size both in log 

coordinates. The slope of the best fit line gives us the Hurst 

(H) exponent. 

 

It is for these reasons that the variation in human 

performance is seen as a balance between task constraints 

and a person’s ability or between involuntary and voluntary 

control (Van Orden et. al., 2009; Kloos & Van Orden, 

2010). The embedded nature of human behavior can also be 

revealed by changes in monofractal or multifractal structure 

that result from subtle and sometimes non-obvious changes 

in environmental context or constraints (Chen et al., 2001; 

Balasubramaniam et. al., 2000; Ramenzoni et. al., 2011; 

Holden et. al., 2010). Depending on the nature of the task 

and the different constraints, the variability in behavior can 

go from overly random to more deterministic, or from 

overly deterministic to more random (Van Orden et. al., 

2009; Kloos & Van Orden, 2010). However, the specific 

direction of change in variability is not yet fully understood 

and further study is needed. 

The current study investigates the effect that subtle 

changes in the shape and symmetry of targets have on the 

dynamics of a participant’s precision aiming movements. 

Participants were instructed to complete the same precision 

aiming task, with the exact same instructions (i.e., point at 

the center of the target) over repeated trials. On any given 

trail, however, the shape and symmetry of the target was 

subtly changed to investigate how small changes in 

environmental task constraints can spontaneously 

reorganize the structure and variability of human behavior. 

In addition to performing a standard linear variability 

analysis (i.e., examined the RMS of movement), we 

conducted both a monofractal and multifractal analysis to 

better understand the effects that different targets had on the 

aiming movements  of participants, and whether their 

movements became more deterministic or more random as 

constraints changed.  
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Materials and Method 

Participants 

Ten undergraduate students from the University of 

Cincinnati participated in the study for partial course credit. 

Task, Materials and Procedures 

Participants in this experiment were asked to point at targets 

presented on a display screen. There were four different 

grey colored targets: a big symmetric (6 cm x 6 cm), a small 

symmetric (3 cm x 3 cm), a vertical (3 cm x 6 cm), and a 

horizontal (6 cm x 3 cm). Asymmetric targets matched the 

dimensions of the small symmetric in the strictly 

constrained dimension and the big symmetric in the loosely 

constrained dimension (see Figure 2b), therefore the visual 

angle for both the big symmetric and the vertical targets was 

3.12  and for the small symmetric and horizontal targets 

1.56 . Additionally, the pointer had a visual angle of 0.93  

When participants arrived they were greeted and then 

informed that for this experiment, a sensor would be 

attached to their index finger which would control the 

location of a small red square (1.8 cm x 1.8 cm) presented 

directly in front of them on a display screen. This sensor 

was part of a wired Polhemus magnetic motion tracking 

system (Polhemus Ltd, VT) and tracked and recorded the 

movements of the participants at 120 Hz. Once the sensor 

was attached, participants were seated on a chair located 

110 cm away from the TV (Figure 2a).  

 There were a total of 16 trials; these were completed in 

blocks of four trials, such that each of the four targets was 

viewed in each block. The target viewed on any given trial 

in a four trial block was randomized. The participants were 

informed that their goal for the experiment was to hold the 

red square they controlled with the motion sensor in the 

center of the presented target for the 45 second length of 

each trial. For each trial, the participant was asked to start 

pointing at the center of the target, and then the trial started 

with the Polhemus system being calibrated and the 

recording of their movement. Participants were instructed to 

keep their left hand in their lap. After the participants were 

informed of the number of trials they were to complete, they 

were given about 25 seconds of practice controlling the red 

square with the large square target presented on the screen. 

Once the participant felt comfortable with the procedure, all 

16 trials were completed with long breaks given if needed 

between every block of four trials, between each trial the 

participant was allowed to lower their hand and place it on 

their lap. Once the experiment was completed, participants 

were thanked for their time and debriefed.   

Signal Processing and Measures 

To examine the impact the different targets had on the 

participants’ pointing movements, the first 4096 data points 

of the X (frontal, side-side movement) and Y (sagittal, up-

down movement) position time series were extracted for 

analysis. The Z (back-and-forth) dimension of movement 

had little to no effect on task performance and was therefore 

not analyzed. Each dimension was analyzed separately to 

better understand the effect that the different target 

constraints posed on each of the degrees of freedom used by 

the participants. 

 

Movement Variability. The root mean square (RMS) was 

calculated of both the X and Y position time series to 

examine the effects of the target manipulations on the 

stability of a participant's pointing movements. 

 

 
Figure 2: (a) Experiment set-up and (b) the four different 

targets used in the experiment 

 

Fractal Analysis. Detrended fluctuations analysis (DFA) 

was employed to calculate the monofractal dimension of the 

X and Y positional time series for each trial. Detailed 

explanations of this method can be found in several articles 

(Delignières et. al., 2006; Ihlen, 2012; Delignières & 

Marmelat, 2013). Essentially, the time series is divided into 

windows of a particular size and the average variation (i.e., 

RMS) around a linear trend is calculated within each 

window. This procedure is then repeated for windows of 

different sizes. These averaged RMS are then plotted against 

the associated window size on log-coordinates. The slope of 

the best-fit line in this log-log plot represents the scaling 

relation and corresponds to the Hurst Exponent (H) of the 

time series (see Figure 1). For the current data we employed 

50% overlapping window sizes from 16 to 1024 points. 

Additionally, surrogate time series were created for each 

time series by randomly shuffling the data points and then a 

DFA analysis was done to determine whether the fractal 

dimension observed was time-dependent and therefore a 

characteristic of long-range correlation. 
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Multifractal Analysis. Multifractal detrended fluctuation 

analysis (MFDFA) was used to determine the multifractal 

dimension present in each time series. This method follows 

the same steps as DFA, but does so with a scaling parameter 

(q) that allows for a calculation of H at different scales of 

variation in the time series. The final outcome of this 

procedure is the “width” of all the different H exponents 

present in the time series. If this width is equal to 0, then the 

monofractal dimension is enough to completely describe the 

behavior. For the current data we employed 50% 

overlapping window sizes from 16 to 1024 points and 

examined q’s from -3.0 to +3.0 in .5 steps. The surrogate 

time series created were also analyzed through MFDFA to 

determine whether the spectrum observed was due to time-

dependent fluctuations, or due to the frequency distribution 

of the behavior being sampled having a long tail. 

 

Statistical Analyses. One way analyses of variance were 

computed for each measure in order to understand the effect 

that the different targets had on participants’ behavior. If 

there was a significant difference, Tukey HSD post-hoc tests 

were performed.  

Results 

 
  Figure 3: Mean root mean square of movement in the (a) 

X dimension (side-to-side) and in the (b) Y dimension (up- 

down) depending on target type. The error bars represent 

standard error of the mean. 

RMS 

Target type had a significant impact on the amount of side-

to-side movement, F (3, 156) = 3.96, p = .009, ηp
2
 = .07. 

Post-hoc tests revealed that there was significantly more 

movement for the horizontal target (M = .071) compared to 

the small symmetric target (M = .051, p = .003), and the 

vertical target (M = .052, p = .006; see Figure 3a), indicating 

that participants naturally exhibited more movement in the 

direction of less constraint.  

Type of target also had a significant influence on the root 

mean square value of movement in the up-down direction, 

F(3, 156) = 10.43, p < .001, ηp
2
 = .167. Post-hoc tests 

showed that there was significantly more up-and-down 

movement for the big symmetrical target (M = .069) 

compared to the small symmetric (M = .051, p = .03) and 

the horizontal targets (M = .05, p = .03). There was also 

significantly more up-down movement for the vertical target 

(M = .097) compared to the small symmetric (p <.001) and 

the horizontal targets (p < .001; see Figure 3b). Again, 

participants’ movements seemed to spontaneously increase 

in the Y plane when the target was loosely constrained in 

this dimension as well. Thus, consistent with the result for 

the X dimension of movement, increases in participant 

movement variability appear to be a natural and 

spontaneous effect of the target size and shape.   

 

 
Figure 4: Mean Hurst, H, of (a) side-to-side movement 

and (b) up-down movement depending on target type. The 

error bars represent standard error of the mean. 
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Fractal Analysis  

The analysis of the monofractal dimension, H, calculated 

using DFA, revealed that target type had a significant 

influence on the fractal structure of the participants’ side-to-

side movement, F(3,156) = 17.20, p < .001, ηp
2
 = .25. Post 

hoc tests revealed that side-to-side movement in the big 

symmetric target was significantly “browner” (H = 1.26) 

than for the small symmetric target (H = 1.19; p < .001) and 

vertical target (H = 1.21; p = .003). Furthermore, the side-

to-side movement of participants was significantly browner 

when pointing at the horizontal target (H = 1.28) than when 

pointing at the small symmetric target (p < .001) and 

vertical target (p < .001; see Figure 4a).  This mirrors the 

results for RMS above, with participants’ movement being 

browner in the targets where the X plane was loosely 

constrained and suggests that their movements became more 

deterministic when more freedom was allowed in the task. 

In other words, the participants moved more, but this 

increase in movement was also an increase in the level of 

determinism.  

 The fractal structure of the up-down movement of 

participants was significantly affected by the type of target 

they had to point at, F(3,156) = 38.47, p < .001, ηp
2
 = .43. 

Post hoc tests revealed that participants’ up-down 

movements were significantly browner when pointing at the 

vertical target (H = 1.31) than the big symmetric target (H = 

1.25; p = .01), the horizontal target (H = 1.15; p < .001) or 

the small symmetric target (H = 1.16; p < .001; see Figure 

4b). Consistent with the fractal analysis of X and the RMS 

for Y above, participants’ movements were pinker in 

structure when the target was more constrained in the 

intended plane. This suggests that participants’ movements 

became less correlated in time with increases in task 

constraint.  

 The DFA analysis of the surrogate time series resulted in 

white noise (H ≈ .5) for every trial wiping out any 

correlation present in the collected data. This indicates that 

the above monofractal analysis performed on the recorded 

data is time-dependent and not an analysis artifact. 

Multifractal Analysis 

Participants’ movements were found to be multifractal, with 

a one-sample t-tests demonstrating that the multifactal 

spectrum width for each movement dimension and for each 

target types were significantly different from zero (all t(39) 

> 24.16, p < .001).   Although there was no effect of target 

type on multi-fractal width for participants’ side-to-side 

movement, (F(3,156) = .76, p = .518), an effect of target 

type on multi-fractal width was found for the participants’ 

up-down movement (F(3,156) = 3.07, p = .03,  ηp
2
 = .06). 

Pot-hoc analyses, however, revealed that the only 

significant difference was that participants’ movement while 

pointing at the small symmetric target had a significantly 

wider Hurst spectrum (H width = .57) than while pointing at 

the vertical target (H width = .50, p = .04). Therefore, even 

though precision aiming shows multifractal spectrum 

characteristics, this measure does not capture the effects that 

size and symmetry of target have on the behavior as well as 

RMS and monofractal analyses do. 

 The surrogate time series also had a multifractal spectrum 

(H width ≈ .42) which suggests that the multifractal 

spectrum present in the data is not time-dependent, but 

rather is the result of the behavior having a long-tailed 

frequency distribution (Kantelhardt et. al., 2002). 

Discussion 

Our data indicate that changing some task constraints, while 

leaving the rest of the experiment the same, does change 

human performance behavior. In general, even though the 

participants in the current study were always told to point at 

the center of the target, they moved around more if more 

target space was available. In other words, looser constraints 

brought about more spontaneous movement variability. 

Additionally, this increase in movement variability brought 

about a more deterministic behavior, where looser 

constraints in a certain dimension resulted in a structure of 

variability closer to brown noise. This deterministic 

behavior was also shown to be the result of time-dependent 

long-range correlations. Finally, a multifractal analysis 

showed that the behavior was even more complex and that it 

could be represented by a multifractal spectrum, however, 

this multifractal spectrum did not characterize the influence 

of the different task constraints. Furthermore, the 

multifractal spectrum did not show a time-dependent 

pattern, it was instead due to the frequency distribution of 

the fluctuations of participants’ movements.  

 These results support the idea that participants’ behavior 

in the precision aiming task exhibit the characteristics of a 

strong relationship or coupling between the person and the 

environment, such that subtle changes in constraints bring 

about changes in the underlying dynamics of the movement.  

Additionally, the results are similar to those obtained by 

Balasubramaniam and colleagues (2000) where participants 

increased their overall movement in dimensions where more 

freedom was present, but that in turn this spontaneous 

increase in movement was more deterministic in nature. 

However, studies in different tasks, such as tapping or 

walking to a metronome have found the opposite results in 

which stricter control results in more random variability (for 

a review see Van Orden et. al., 2009 and Kloos & Van 

Orden, 2010). One idea that has been supported by the data 

available so far is that people’s movement variability is a 

result of the balancing between involuntary control (overly 

random) and voluntary control (overly deterministic) that 

arises during a specific task in a specific context (Van 

Orden et. al., 2009; Kloos & Van Orden, 2010). If this is 

indeed the case, the results of the present study would 

suggest that participants impose further voluntary control to 

counteract the increase in spontaneous movement, so that 

they are able to successfully stay inside the target boundary. 

However, further research is needed to better understand the 

mutual influence that task constraints and participants’ 

ability play on the production of a certain behavior.  
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In general, the results of the present study bring into 

question the standard belief in cognitive science of behavior 

being the result of participants’ voluntary and cognitive 

control alone. Instead, it points to a more embodied or 

interaction-dominant approach in which participants and 

their physical environment interact and mutually influence 

each other. It is therefore objectionable to try to study 

behaviors by only looking at the participant and ignoring the 

environment. Instead the focus of research should be the 

coupling or relationship between the person and its physical 

environment. 
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