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Abstract

The current experiment investigated the effects of target size
and symmetry on the dynamics of precision aiming.
Participants were asked to sit on a chair and point at the
center of four different targets (a small and big square target,
and a horizontal and vertical rectangular target). The aiming
movements were assessed using linear (root mean square) and
non-linear fractal statistics (DFA and MFDFA). We found
that participants spontaneously exhibited more movement in
target dimensions with less spatial constraint (i.e., larger
target dimensions). These larger movements, however, were
more deterministic than the movements accompanying the
smaller targets, indicating that more variation in aiming does
not necessarily mean more random. Finally, even though
participants’ movements were multifractal, the different
manipulations and task constraints had no effect on the width
of the multifractal spectrum. These results suggest that human
performance emerges from the complex relationship and
interactions that exist between the perception and action
capabilities of the human body and the physical environment.

Keywords: Cognitive science, psychology, action, motor
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Introduction

Accuracy in tasks such as pistol shooting and archery
depends on a person’s ability to precisely aim at intended
targets, which requires meticulous and refined control of the
body and its relationship to the environment around it.
Scholz, Schoner and Latash (2000) showed that expert
shooters arrange the different components in their body into
a motor synergy, coupling certain components to each other
and therefore minimizing the necessary movements in order
to be more precise. Complimentary research efforts have
studied how different task constraints or elements of the
physical environment affect how people move their bodies
in order to aim precisely, such as target size (Ramenzoni et

al., 2011) or distance (Balasubramaniam, Riley & Turvey,
2000). However, the effect that such environmental factors
have on how people organize their bodies to achieve
precision aiming has not yet been revealed in full detail.

Psychologists have traditionally evaluated the impact of
task constraints on precision aiming (e.g., target size) using
linear statistical tools, such as summarizing effects in means
and standard deviations. Recently, statistical technigques
allowing researchers to examine more complex aspects of
such behavior have come to the fore, most notably,
techniques that allow researchers to uncover the fractal
structure in movement and behavioral variability (Gilden,
2001; Ihlen, 2012; Deligniéres & Marmelat, 2013). Fractal
or 1/f scaling refers to patterns in the variability of behavior
that are long-term correlated such that deviations early in a
recorded behavior are correlated with deviations that occur
much later in the behavior. This kind of structure in
variability is often referred to as “pink noise”, denoting its
difference from the highly irregular or random fluctuations
of “white noise” and the highly regular or deterministic
fluctuations of “brown noise” (see Figure 1). The degree to
which a behavioral measurement series exhibits fractal
scaling can be summarized by the Hurst exponent. The
Hurst exponent (H) for white noise is 0.5 and for brown
noise is 1.5, with pink noise in-between (H = 1) (lhlen,
2012). Pink noise has been associated with signs of healthy
functioning (for a review, Van Orden, Kloos & Wallot,
2009) in different human movement tasks, such as tapping
(Kello et al., 2007; Deligniéres, Torre & Lemoine, 2008;
Torre, Balasubramaniam & Delignieres, 2010), stimulus-
response tasks (Holden, Choi, Amazeen & Van Orden,
2010), postural sway (Schmit, Regis & Riley, 2005; Schmit
et. al., 2006), walking (Hausdorff, 2007) and eye-movement
behavior (Coey et al., 2012).

3309



a White

Pink

Brown

Time

It is becoming increasingly apparent, however, that
human behavior may in fact exhibit even more complex
patterns of fluctuation than those that can be ascertained
from standard fractal analysis. In these cases, the patterns
cannot be captured by a single H, as the fractal scaling in the
behavior might change over time during the course of
measurement, or might be different at different scales of
variability (Kantelhardt et al., 2002). Such “multifractal”
patterns must, therefore, be characterized by their
“multifractal spectrum”; a range of H values that
collectively capture the complex structure inherent in a
behavioral time series (e.g., Kuznetsov & Wallot, 2011;
Kuznetsov et al., 2012). This spectrum of H can either be
time-dependent or independent. When it is time-dependent
it shows a pattern of long-range correlation where sections
of rapid fluctuation are interspersed with sections of slow
fluctuation and it is associated with intermittent processes
(Kuznetsov & Wallot, 2011). Multifractal spectrums can
also be time-independent due to the behavior being sampled
having a frequency distribution with a long tail (Kantelhardt
et. al., 2002).

These statistical properties are of interest to cognitive
scientists primarily because they reveal something more
about the underlying causal structure of human performance
than do means and standard deviations (Gilden, 2001;
Hausdorff, 2007; Kello et. al., 2007; Holden et. al., 2010;
Kuznetsov & Wallot, 2011). For instance, the presence of
monofractal or multifractal structure in human performance
can provide insight about the degree to which a behavioral
process is self-organized or emerges from interaction-
dominant dynamics (Kuznetsov & Wallot, 2011; Van Orden
et. al., 2009). Traditional linear statistical tools assume
behavior to be static and self-contained, while monofractal
and multifractal analyses reveal the strong relationship or
coupling between people and their environment (Holden et.
al., 2010).
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Figure 1: (a) sample time series of white noise depicting
highly irregular or random fluctuations; brown noise, with
highly regular or deterministic variability; and pink noise,
located somewhere between random and deterministic
fluctuations. (b) Plots obtained from a detrended
fluctuations analysis (DFA) where the mean root mean
square (RMS) is plotted against the window size both in log
coordinates. The slope of the best fit line gives us the Hurst
(H) exponent.

It is for these reasons that the variation in human
performance is seen as a balance between task constraints
and a person’s ability or between involuntary and voluntary
control (Van Orden et. al., 2009; Kloos & Van Orden,
2010). The embedded nature of human behavior can also be
revealed by changes in monofractal or multifractal structure
that result from subtle and sometimes non-obvious changes
in environmental context or constraints (Chen et al., 2001;
Balasubramaniam et. al., 2000; Ramenzoni et. al., 2011;
Holden et. al., 2010). Depending on the nature of the task
and the different constraints, the variability in behavior can
go from overly random to more deterministic, or from
overly deterministic to more random (Van Orden et. al.,
2009; Kloos & Van Orden, 2010). However, the specific
direction of change in variability is not yet fully understood
and further study is needed.

The current study investigates the effect that subtle
changes in the shape and symmetry of targets have on the
dynamics of a participant’s precision aiming movements.
Participants were instructed to complete the same precision
aiming task, with the exact same instructions (i.e., point at
the center of the target) over repeated trials. On any given
trail, however, the shape and symmetry of the target was
subtly changed to investigate how small changes in
environmental task  constraints can  spontaneously
reorganize the structure and variability of human behavior.
In addition to performing a standard linear variability
analysis (i.e., examined the RMS of movement), we
conducted both a monofractal and multifractal analysis to
better understand the effects that different targets had on the
aiming movements  of participants, and whether their
movements became more deterministic or more random as
constraints changed.
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Materials and Method

Participants

Ten undergraduate students from the University of
Cincinnati participated in the study for partial course credit.

Task, Materials and Procedures

Participants in this experiment were asked to point at targets
presented on a display screen. There were four different
grey colored targets: a big symmetric (6 cm x 6 cm), a small
symmetric (3 cm x 3 cm), a vertical (3 cm x 6 cm), and a
horizontal (6 cm x 3 cm). Asymmetric targets matched the
dimensions of the small symmetric in the strictly
constrained dimension and the big symmetric in the loosely
constrained dimension (see Figure 2b), therefore the visual
angle for both the big symmetric and the vertical targets was
3.12° and for the small symmetric and horizontal targets
1.56°. Additionally, the pointer had a visual angle of 0.93°
When participants arrived they were greeted and then
informed that for this experiment, a sensor would be
attached to their index finger which would control the
location of a small red square (1.8 cm x 1.8 cm) presented
directly in front of them on a display screen. This sensor
was part of a wired Polhemus magnetic motion tracking
system (Polhemus Ltd, VT) and tracked and recorded the
movements of the participants at 120 Hz. Once the sensor
was attached, participants were seated on a chair located
110 cm away from the TV (Figure 2a).

There were a total of 16 trials; these were completed in
blocks of four trials, such that each of the four targets was
viewed in each block. The target viewed on any given trial
in a four trial block was randomized. The participants were
informed that their goal for the experiment was to hold the
red square they controlled with the motion sensor in the
center of the presented target for the 45 second length of
each trial. For each trial, the participant was asked to start
pointing at the center of the target, and then the trial started
with the Polhemus system being calibrated and the
recording of their movement. Participants were instructed to
keep their left hand in their lap. After the participants were
informed of the number of trials they were to complete, they
were given about 25 seconds of practice controlling the red
square with the large square target presented on the screen.
Once the participant felt comfortable with the procedure, all
16 trials were completed with long breaks given if needed
between every block of four trials, between each trial the
participant was allowed to lower their hand and place it on
their lap. Once the experiment was completed, participants
were thanked for their time and debriefed.

Signal Processing and Measures

To examine the impact the different targets had on the
participants’ pointing movements, the first 4096 data points
of the X (frontal, side-side movement) and Y (sagittal, up-
down movement) position time series were extracted for
analysis. The Z (back-and-forth) dimension of movement

had little to no effect on task performance and was therefore
not analyzed. Each dimension was analyzed separately to
better understand the effect that the different target
constraints posed on each of the degrees of freedom used by
the participants.

Movement Variability. The root mean square (RMS) was
calculated of both the X and Y position time series to
examine the effects of the target manipulations on the
stability of a participant's pointing movements.
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Figure 2: (a) Experiment set-up and (b) the four different
targets used in the experiment

Fractal Analysis. Detrended fluctuations analysis (DFA)
was employed to calculate the monofractal dimension of the
X and Y positional time series for each trial. Detailed
explanations of this method can be found in several articles
(Deligniéres et. al., 2006; Ihlen, 2012; Deligniéres &
Marmelat, 2013). Essentially, the time series is divided into
windows of a particular size and the average variation (i.e.,
RMS) around a linear trend is calculated within each
window. This procedure is then repeated for windows of
different sizes. These averaged RMS are then plotted against
the associated window size on log-coordinates. The slope of
the best-fit line in this log-log plot represents the scaling
relation and corresponds to the Hurst Exponent (H) of the
time series (see Figure 1). For the current data we employed
50% overlapping window sizes from 16 to 1024 points.
Additionally, surrogate time series were created for each
time series by randomly shuffling the data points and then a
DFA analysis was done to determine whether the fractal
dimension observed was time-dependent and therefore a
characteristic of long-range correlation.
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Multifractal Analysis. Multifractal detrended fluctuation
analysis (MFDFA) was used to determine the multifractal
dimension present in each time series. This method follows
the same steps as DFA, but does so with a scaling parameter
(g) that allows for a calculation of H at different scales of
variation in the time series. The final outcome of this
procedure is the “width” of all the different H exponents
present in the time series. If this width is equal to 0, then the
monofractal dimension is enough to completely describe the
behavior. For the current data we employed 50%
overlapping window sizes from 16 to 1024 points and
examined q’s from -3.0 to +3.0 in .5 steps. The surrogate
time series created were also analyzed through MFDFA to
determine whether the spectrum observed was due to time-
dependent fluctuations, or due to the frequency distribution
of the behavior being sampled having a long tail.

Statistical Analyses. One way analyses of variance were
computed for each measure in order to understand the effect
that the different targets had on participants’ behavior. If
there was a significant difference, Tukey HSD post-hoc tests
were performed.

Results
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Figure 3: Mean root mean square of movement in the (a)
X dimension (side-to-side) and in the (b) Y dimension (up-
down) depending on target type. The error bars represent
standard error of the mean.

RMS

Target type had a significant impact on the amount of side-
to-side movement, F (3, 156) = 3.96, p = .009, np2 = .07.
Post-hoc tests revealed that there was significantly more
movement for the horizontal target (M = .071) compared to
the small symmetric target (M = .051, p = .003), and the
vertical target (M = .052, p = .006; see Figure 3a), indicating
that participants naturally exhibited more movement in the
direction of less constraint.

Type of target also had a significant influence on the root
mean square value of movement in the up-down direction,
F(3, 156) = 10.43, p < .001, n,” = .167. Post-hoc tests
showed that there was significantly more up-and-down
movement for the big symmetrical target (M = .069)
compared to the small symmetric (M = .051, p = .03) and
the horizontal targets (M = .05, p = .03). There was also
significantly more up-down movement for the vertical target
(M =.097) compared to the small symmetric (p <.001) and
the horizontal targets (p < .001; see Figure 3b). Again,
participants’ movements seemed to spontaneously increase
in the Y plane when the target was loosely constrained in
this dimension as well. Thus, consistent with the result for
the X dimension of movement, increases in participant
movement variability appear to be a natural and
spontaneous effect of the target size and shape.
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Figure 4: Mean Hurst, H, of (a) side-to-side movement
and (b) up-down movement depending on target type. The
error bars represent standard error of the mean.
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Fractal Analysis

The analysis of the monofractal dimension, H, calculated
using DFA, revealed that target type had a significant
influence on the fractal structure of the participants’ side-to-
side movement, F(3,156) = 17.20, p < .001, np2 = .25. Post
hoc tests revealed that side-to-side movement in the big
symmetric target was significantly “browner” (H = 1.26)
than for the small symmetric target (H = 1.19; p < .001) and
vertical target (H = 1.21; p = .003). Furthermore, the side-
to-side movement of participants was significantly browner
when pointing at the horizontal target (H = 1.28) than when
pointing at the small symmetric target (p < .001) and
vertical target (p < .001; see Figure 4a). This mirrors the
results for RMS above, with participants’ movement being
browner in the targets where the X plane was loosely
constrained and suggests that their movements became more
deterministic when more freedom was allowed in the task.
In other words, the participants moved more, but this
increase in movement was also an increase in the level of
determinism.

The fractal structure of the up-down movement of
participants was significantly affected by the type of target
they had to point at, F(3,156) = 38.47, p < .001, n,” = .43.
Post hoc tests revealed that participants’ up-down
movements were significantly browner when pointing at the
vertical target (H = 1.31) than the big symmetric target (H =
1.25; p = .01), the horizontal target (H = 1.15; p < .001) or
the small symmetric target (H = 1.16; p < .001; see Figure
4b). Consistent with the fractal analysis of X and the RMS
for Y above, participants’ movements were pinker in
structure when the target was more constrained in the
intended plane. This suggests that participants’ movements
became less correlated in time with increases in task
constraint.

The DFA analysis of the surrogate time series resulted in
white noise (H = .5) for every trial wiping out any
correlation present in the collected data. This indicates that
the above monofractal analysis performed on the recorded
data is time-dependent and not an analysis artifact.

Multifractal Analysis

Participants” movements were found to be multifractal, with
a one-sample t-tests demonstrating that the multifactal
spectrum width for each movement dimension and for each
target types were significantly different from zero (all t(39)
> 24.16, p < .001). Although there was no effect of target
type on multi-fractal width for participants’ side-to-side
movement, (F(3,156) = .76, p = .518), an effect of target
type on multi-fractal width was found for the participants’
up-down movement (F(3,156) = 3.07, p = .03, npz = .06).
Pot-hoc analyses, however, revealed that the only
significant difference was that participants’ movement while
pointing at the small symmetric target had a significantly
wider Hurst spectrum (H width = .57) than while pointing at
the vertical target (H width = .50, p = .04). Therefore, even
though precision aiming shows multifractal spectrum

characteristics, this measure does not capture the effects that
size and symmetry of target have on the behavior as well as
RMS and monofractal analyses do.

The surrogate time series also had a multifractal spectrum
(H width = .42) which suggests that the multifractal
spectrum present in the data is not time-dependent, but
rather is the result of the behavior having a long-tailed
frequency distribution (Kantelhardt et. al., 2002).

Discussion

Our data indicate that changing some task constraints, while
leaving the rest of the experiment the same, does change
human performance behavior. In general, even though the
participants in the current study were always told to point at
the center of the target, they moved around more if more
target space was available. In other words, looser constraints
brought about more spontaneous movement variability.
Additionally, this increase in movement variability brought
about a more deterministic behavior, where looser
constraints in a certain dimension resulted in a structure of
variability closer to brown noise. This deterministic
behavior was also shown to be the result of time-dependent
long-range correlations. Finally, a multifractal analysis
showed that the behavior was even more complex and that it
could be represented by a multifractal spectrum, however,
this multifractal spectrum did not characterize the influence
of the different task constraints. Furthermore, the
multifractal spectrum did not show a time-dependent
pattern, it was instead due to the frequency distribution of
the fluctuations of participants’ movements.

These results support the idea that participants’ behavior
in the precision aiming task exhibit the characteristics of a
strong relationship or coupling between the person and the
environment, such that subtle changes in constraints bring
about changes in the underlying dynamics of the movement.
Additionally, the results are similar to those obtained by
Balasubramaniam and colleagues (2000) where participants
increased their overall movement in dimensions where more
freedom was present, but that in turn this spontaneous
increase in movement was more deterministic in nature.
However, studies in different tasks, such as tapping or
walking to a metronome have found the opposite results in
which stricter control results in more random variability (for
a review see Van Orden et. al., 2009 and Kloos & Van
Orden, 2010). One idea that has been supported by the data
available so far is that people’s movement variability is a
result of the balancing between involuntary control (overly
random) and voluntary control (overly deterministic) that
arises during a specific task in a specific context (Van
Orden et. al., 2009; Kloos & Van Orden, 2010). If this is
indeed the case, the results of the present study would
suggest that participants impose further voluntary control to
counteract the increase in spontaneous movement, so that
they are able to successfully stay inside the target boundary.
However, further research is needed to better understand the
mutual influence that task constraints and participants’
ability play on the production of a certain behavior.
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In general, the results of the present study bring into
question the standard belief in cognitive science of behavior
being the result of participants’ voluntary and cognitive
control alone. Instead, it points to a more embodied or
interaction-dominant approach in which participants and
their physical environment interact and mutually influence
each other. It is therefore objectionable to try to study
behaviors by only looking at the participant and ignoring the
environment. Instead the focus of research should be the
coupling or relationship between the person and its physical
environment.
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