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Abstract 

The artificial neural network class of self-organizing maps 
(SOMs) is a powerful and promising cognitive modeling tool 
in the study of the brain and its disorders. Under this premise, 
this paper proposes a novel modification of the standard SOM 
algorithm in the form of an oscillating Topological 
Neighborhood (TN) width function. Existing research in 
neuroscience indicates that SOMs with oscillating TN width 
could exhibit higher biological plausibility than standard TN 
width SOMs. In this paper, two neuro-developmental 
disorders, autism and schizophrenia, are modeled, based on 
existing neurocomputational theories, using both SOM 
approaches. The simulation results demonstrate that there is 
significant equivalence between standard and oscillating TN 
width SOM modeling in terms of map formation behavior, 
output and structure. The theoretical and computational 
arguments presented validate the proposed SOM modification 
within a cognitive modeling framework. 

Keywords: Self-Organizing Maps, Cognitive Modeling, 
Cortical Maps, Autism, Delusions, Schizophrenia. 

Introduction 
Computational modeling offers a powerful way to study 
cognition and behavior. It has been applied to numerous 
areas of psychology and provides a more promising 
framework than those based on verbal models in terms of 
methodological diversity and applicability potential (Sun, 
Coward & Zenzen, 2005). An ever-increasing number of 
computational modeling studies are dedicated to the 
modeling of cognitive and developmental phenomena using 
artificial neural networks (Thomas & Karmiloff-Smith, 
2003; Polk & Seifert, 2002; Parks, Levine & Long, 1998). 

Shultz (2003) provides a comparative evaluation of the 
different computational neural network systems used to 
model cognitive developmental phenomena. An important 
class of such modeling networks is the self-organizing 
feature map; it is based on a Hebbian-type (Hebb, 1949) 
unsupervised neural learning mechanism and uniquely 
resembles topographic cortical maps in the brain to which 
has directly comparable structure and output characteristics 
(Spitzer, 1995b; Livingstone & Hubel, 1988; Blasdel & 
Salama, 1986; Merzenich & Kaas, 1980). Willshaw and von 
der Malsburg (1976) originally proposed the self-organizing 
neural network to account for the retinotopic mapping 
problem. Kohonen’s version (2001) -commonly abbreviated 
to ‘SOM’-, however, possesses significant computational 

characteristics and a range of powerful properties, 
particularly relevant to understanding and modeling of 
cortical brain maps, including approximation of the input 
space, topological ordering, density matching, and feature 
selection (Haykin, 1999). 

This study investigates cognitive modeling aspects of 
modeling neuro-developmental disorders using SOM neural 
networks. The first section presents the SOM modeling 
framework used in this work, and introduces a novel 
modification in the SOM formation algorithm with 
significant cognitive modeling implications. In the 
subsequent two sections, core biological and behavioral 
characteristics of two mental disorders, autism and 
schizophrenia, respectively, are modeled using a prototype 
SOM model. The last section provides a discussion of the 
computational and theoretical parameters of the SOM 
modeling employed in the paper. 

The SOM Modeling Framework 

Aspects of SOM Neural Networks 
A SOM is a non-linear unsupervised-learning computational 
neural network consisting of two layers. It has the capacity 
to map an input ‘environmental’ layer, consisting of patterns 
of fixed but arbitrary dimension, onto a (usually) one or two 
dimensional lattice ‘representational’ layer. The 
representation of environmental input in the output layer 
(called the map) is performed in a topologically ordered 
fashion, maintaining the non-linear input data distribution, 
and involves dimensionality reduction. Figure 1 shows an 
abstract depiction of a two-dimensional SOM; each input 
layer pattern vector connects fully with the map neurons. 

 
 
 
 
 
 
 
 
 
 

Figure 1: A two-dimensional SOM. 
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The SOM neural network formation (training) process has 
four parts (as described in Haykin (1999)): synaptic weight 
initialization of the output lattice; neuron competition; 
neuron cooperation; and synaptic adaptation. The last three 
are sequenced within a loop for a finite number of ‘epochs’, 
in which input patterns are presented and weights adjusted 
until the weights converge. 

During the competition phase, a winning neuron for the 
current input pattern is determined, based on a Euclidean 
distance metric. In the cooperation phase the winning 
neuron becomes the center of a cooperative process 
extending around an area according to a topological 
neighborhood (TN) function. In the synaptic adaptation 
phase, the weights of the map neurons within the TN of the 
winning neuron are updated ‘towards’ the current input 
pattern at an intensity determined by their lateral distance to 
the winning neuron as well as an exponentially decaying 
learning rate function. 

From a cognitive modeling perspective, it is of particular 
interest to examine the neurobiological relevance of the 
SOM formation process at the implementation level of the 
neuron lateral interaction and inhibition mechanism. The 
standard SOM algorithm (Haykin, 1999) employs a 
translation invariant Gaussian TN function with an 
exponentially decreasing width, as illustrated in Figure 2. 

 
 
 
 

 
 

 
Figure 2: Decreasing TN width around a winning neuron 

(dark grey neuron) in a two-dimensional SOM. 
 
The TN width function can be expressed by the formula 

€ 

σ (n) =σ 0 ⋅ exp(−
n
τ1
) ,     n = 1, 2, …, t 

where σ0 is the initial TN width, τ1 is a time constant, t is 
the number of epochs, and n is the current epoch. 

The fact that only neurons close to the winning neuron 
have their weights changed significantly (implemented at 
the biological neural network level by a mixture of 
excitation and lateral inhibition) has a measurable impact on 
the representational structure of the SOM. A number of 
SOM cognitive models of brain disorders center around the 
key role of TN width and its exegetic biological significance 
(Gustafsson, 1997; Spitzer, 1999). 

Oscillating TN width SOM 
The SOM cooperative phase involves local neuronal 
interactions via group Hebbian activation regulated by 
lateral inhibition. In general, neural synchrony and 
communication at the local and long-range level is an 
important aspect of brain functioning; neural oscillation, 

particularly correlated to inhibitory neural activity, is 
increasingly considered to be of paramount importance to 
neural information processing and central to a number of 
studies of mental disorders including schizophrenia and 
autism (Schnitzler & Gross, 2005; Wang, 2010). Neuronal 
group oscillatory synchrony is linked to inhibitory 
interneuron rhythmic modulation of the firing rate of 
excitatory neurons, at the local interaction neuronal level 
(Cardin, Carlen, Meletis, Knoblich, Zhang, Deisseroth, Tsai 
& Moore 2009). Last, synchronous oscillatory activity of 
neighboring inhibitory interneurons may be supported by 
sub-threshold oscillatory behavior (Llinas, 1988). 

In line with the relevant research on neural oscillation 
outlined above, this paper introduces a modification with 
increased biological plausibility in the SOM cooperative 
phase, as previously reported in a preliminary study 
(Revithis, 2011). Specifically, the original TN width 
function, part of the overall TN function, is replaced by a 
new TN width function that exhibits local exponential 
decrease instead of global. In this way the TN width 
oscillates continuously throughout the SOM formation 
process. Oscillation is necessary in a biologically plausible 
model, otherwise learning would cease when the TN 
approached zero. The oscillation consists of a concatenation 
of exponentially decreasing original TN width -temporally 
shortened- ‘function instances’; thus, in the same number of 
epochs (i.e., one SOM training session) multiple function 
instances will fit, as shown in Figure 3. 

 
 
 
 
 
 
 
 

Figure 3: SOM oscillating TN width. 
 
The new function can be expressed as 

€ 

σ ' (n) =σ 0 ⋅exp(−
(n +1)mod t'

τ '1
) ,     n = 0, 1, 2, …, t-1 

where σ0 is the initial TN width, τ'1 is a time constant, and 
n is the current epoch. The constant t' = t / c, where c is the 
oscillation constant determining how many times the TN 
width will reset to σ0 and start decreasing again. 

IPSOM 
IPSOM (Interlocking Puzzle SOM) is a complex-weight-
encoding prototype SOM spatial behavioral model of how 
humans complete interlocking puzzles (Revithis, Wilson & 
Marcus, 2006). When trained, using a representative sample 
of puzzle completion sessions, it forms a behavioral SOM of 
the statistically dominant patterns (strategies) of puzzle 
completion. A 6x6 IPSOM has been evaluated for the case 
of 4x5 puzzles against a simulated group of people. Each 
‘virtual’ person used one of four predetermined puzzle 
completion strategies, illustrated in Figure 4. 
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Each radar-graph in Figure 4 depicts the order of puzzle 
completion for each pattern (H, V, PH, PV). The radial axis 
shows the encoded numerical position values on the puzzle 
board (i.e., which puzzle piece), and the angular axis shows 
the discrete completion sequence numbers (i.e., which piece 
is first, second, etc.) By connecting the points on the graph, 
a distinct visual pattern is formed. Attached to each graph, a 
puzzle board contains the puzzle completion order 
conventionally. The design principles behind the selected 
strategies were the generation of a small number of 
straightforward, real-life-based patterns, the utilization of 
topological clustering, and emphasizing the basic strategy of 
determining the board periphery during the puzzle 
completion. IPSOM was conclusively found to be efficient 
in modeling the behavioral domain. 
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Figure 4: IPSOM training set patterns (strategies). 
 
In this paper, IPSOM is employed as a modeling test-bed 

for cortical map spatial perception. The working hypothesis 
is that IPSOM is not only a behavioral model but also a 
cognitive model of how humans perceive puzzle completion 
strategies when presented with puzzle completion examples. 
It is assumed that an average person would form an internal 
representation of the dominant strategies; a cortical map 
would retain the domain specific knowledge, modeled by a 
trained SOM. IPSOM is expected to represent the training 
patterns in a topologically ordered fashion, where 
neighboring patterns are also visually similar (Figure 5). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: An abstract illustration of a trained 6x6 IPSOM. 
 

Modeling Aspects of Autism using IPSOM 

Α Neural Circuit Theory of Autism 
Autism, a pervasive developmental disorder, has been 
studied for over 50 years by an expanding interdisciplinary 
research community. The current diagnostic tools (DSM-IV 
and ICD-10) dictate a socio-psychological behavioral 
approach that does not inform of the causes of autism; 
nevertheless, it is considered to be neurobiological in nature 
(Coleman & Gillberg 2012). 

Autism is associated with atypical perception and its 
internal representation. Sensory input often fails to integrate 
into existing memory due to abstraction impairment; there is 
difficulty in detecting the important features among the non-
essential details; elaborating on internal representations is 
also problematic, where it appears that central executive 
control is required  (Frith, 2003). 

Gustafsson’s (1997) neural circuit theory of autism is 
based on these empirically based concepts of autistic 
perception and proposes a neural-level explanation for the 
lack of drive for central coherence, a key element in autistic 
behavior (Frith, 2003). Neurological deficiencies in the 
formation of brain cortical maps give rise to autistic 
attributes. This leads to problematic feature extraction since 
“autistic raw data memory” operates in place of “feature 
memory” due to “inadequate cortical feature maps”. Raw 
data memory is intrinsically linked at the behavioral level to 
the diagnostic criteria for autism (Gustafsson, 1997). 
Autistic maps lack feature distinction and preservation, and 
fail to provide an internal representation of salient 
perceptual data leading to raw data memory that lacks 
sophisticated representations. 

According to Gustafsson (1997), SOMs provide a 
biologically plausible way to model characteristics of 
‘autistic’ cortical maps. A SOM can represent input features 
just as a cortical map in the brain retains salient perceptual 
stimuli, and can exhibit similar deficiencies to an autistic 
cortical map if its formation mechanism is impaired. 

The Autistic IPSOM 
The modeling premise of the SOM autistic impairment is 
suggested not by the biological map, but by its model. 
Gustafsson (1997) argued that a biologically plausible cause 
of impairment in a SOM is the application of excessive 
lateral feedback inhibitory synaptic strengths. The latter can 
degrade the map’s generalization and feature representation 
capacity, resulting in high sensory discrimination and 
feature specificity, even to the point of instability, leading to 
the formation of inadequate or even undeveloped maps. 

This modeling premise can be expressed as a TN 
premature narrowing during SOM training; TN can be 
regarded as the “source of power” (Sun & Ling, 1997) in the 
autistic model. The initial TN width (σ0) in the TN width 
function affects the map’s representational capacity in a 
directly applicable way to Gustafsson’s theory (Revithis & 
Tagalakis, 2012). A non-autistic cortical map is expected to 
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represent all the dominant puzzle completion strategies with 
smooth transition between them. This can be modeled using 
IPSOM in its original parameter configuration. 

After the incorporation of TN parameter modifications on 
IPSOM, an evaluation was performed. A series of groups of 
controlled simulations were executed with the initial width 
of the TN function set to a typical value of σ0=3 (i.e., equal 
to the network’s radius, as suggested by Haykin (1999)) for 
one group, and reduced to σ0=1.15 for another group. Both 
groups were executed twice, using a standard TN width 
function, in one simulation series, and an oscillating TN 
width function in a second one. The results (discussed next) 
from over 150 simulations confirm that, for large σ0, the 
resulting IPSOM exhibits efficient representation of the 
input space, whereas IPSOM training, using a small σ0, 
forms a map with autistic structural characteristics. The 
results also support the hypothesis that the oscillating TN 
width IPSOM is equivalent to the standard TN width 
IPSOM in modeling autistic traits. 

 

 
Figure 6: Standard TN width IPSOM map characteristics. 
 
Figure 6 depicts IPSOM neurons after training, using a 

standard TN width function, for σ0=3 (top) and σ0=1.15 
(bottom). The leftmost 3D graphs, and the 2D graphs in the 
middle, depict the Euclidean distance of pattern H to each 
neuron in the map. The darker and closer to the horizontal 
3D base-plane (map) areas signify smaller distance and, 
thus, higher representational accuracy for pattern H. A σ0=3 
facilitates a smoother transition from pattern H to other 
patterns in the map, whereas a σ0=1.15 results in steeper 
increase of the Euclidean distance indicating transitional 
pattern impairment. The rightmost combined-concentric 
radar graphs depict five neighboring IPSOM neurons for 
σ0=3 (top) and σ0=1.15 (bottom). A σ0=3 facilitates 
smoother transition from Pattern H to V, whereas for 
σ0=1.15 neurons are tightly grouped in two patterns (H and 
V) with impaired transition and generalization capacity. 

Figure 7 depicts IPSOM neurons after training, using an 
oscillating TN width function, for σ0=3 (top) and σ0=1.15 
(bottom). The observations that can be made are identical to 
the ones of Figure 6. 

 

 
Figure 7: Oscillating TN width IPSOM map characteristics. 

 
The illustrated example-simulation-results of Figures 6 

and 7 are representative of the totality of simulation results 
obtained in terms of the observed characteristics. Patterns H 
and V, which were used for the rightmost concentric radar 
graphs, were selected to better demonstrate IPSOM’s 
transitional behavior due to their relatively low correlation 
significance amongst IPSOM training set patterns (Table 1). 

 
Table 1: Correlation between IPSOM training patterns. 
 

Spearman's ρ (N=20)  H V PH PV 
Correlation Coefficient H 1 .429 .523* .507* 

Sig. (2-tailed) H . .059 .018 .023 
Correlation Coefficient V  1 .388 .420 

Sig. (2-tailed) V  . .091 .066 
Correlation Coefficient PH   1 .974# 

Sig. (2-tailed) PH   . .000 
Correlation Coefficient PV    1 

Sig. (2-tailed) PV    . 
Correlation is significant at the 0.05 level (*) and at the 0.01 level (#). 

Using IPSOM to Model Delusions 

Acute and Chronic Delusions in Schizophrenia 
Modern studies on schizophrenia span approximately a 
century. There has been a continuous evolution of the 
understanding of this mental disorder and currently it is 
widely considered to be a progressive neuro-developmental 
disorder. Amongst its common positive psychotic symptoms 
are delusions (Green, 2001). 

Spitzer has argued (1995a, 1995b, 1999) that SOM neural 
networks can provide a model of brain cortical function, and 
implement lateral inhibition, an essential feature of cortical 
maps. Furthermore, he proposed a neurocomputational 
exegetic framework for delusions based on the concepts of 
neuromodulation and neuroplasticity in relation to formation 
and operation of sensory and higher-order computational 
maps in the cortex. 
Specifically, according to this approach, neuromodulator 
activity in the brain is associated with the signal-to-noise 

σ0=3 

σ0=1.15 

σ0=3 

σ0=1.15 
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ratio at the neuronal level, from an information-theoretic 
perspective. High neuromodulator activity can lead to an 
increase of focusing in neuronal activation and is associated 
with acute delusional states; such focusing can be modeled 
via excessive SOM lateral inhibition. Chronic delusions can 
then be regarded as the result of the establishment of 
entrenched cortical maps via sustained acute delusional 
states due to brain neuroplasticity. 

IPSOM Modeling of Delusions 
According to Spitzer (1995a), a decisive factor in the 
clinical phenomenon of acute delusions is the level of 
cortical neuromodulator activity; this affects modulation of 
signal-to-noise ratio. In a SOM model of delusions it is 
possible to regulate the level of neuronal activation focusing 
associated with the signal-to-noise ratio by controlling SOM 
lateral inhibition. This can be achieved by controlling the 
width of TN during SOM formation. TN can be regarded as 
the “source of power” (Sun & Ling, 1997) in this model. 

Similar to the autistic model, the working hypothesis is 
that the initial TN width (σ0) in the TN width function 
affects the map’s behavior in a way applicable to Spitzer’s 
theory. Inducing acute delusions in IPSOM can be realized 
via modifying the cooperation phase of the SOM algorithm 
in the model to employ a significant TN narrowing. 

A series of groups of controlled simulations were 
executed with the initial width of the TN function set to a 
typical value of σ0=3 for one group, and reduced to σ0=1.15 
for another group, as in the autistic model. Both groups 
were executed twice, using a standard TN width function, in 
one simulation series, and an oscillating TN width function 
in a second one. The results (discussed next) from over 150 
simulations confirm that, for large σ0, the resulting IPSOM 
exhibits typical representation of the input space; when a 
small σ0 is used, however, the map’s formation behavior is 
atypical and retains structures corresponding to chronic 
delusions. The results also support the hypothesis that the 
oscillating TN width IPSOM is equivalent to the standard 
TN width IPSOM in modeling delusions. 

Entrenched SOM structures that could give rise to chronic 
delusions can be identified by comparing ‘suspected’ 
formed IPSOM maps with their untrained (initial) state. A 
‘delusional’ structure can plausibly be seen as a number of 
trained neurons representing neither a transitional pattern 
nor an input space pattern, or, excessively representing an 
input space pattern (the latter can be regarded as 
compromising the SOM density matching property (Haykin, 
1999)). Furthermore, representational resistance to change 
can also be interpreted as a characteristic of established 
(chronic) delusional structures (Spitzer, 1995a). 

Figure 8 depicts four snapshot graphs of the same part of 
the IPSOM map for different initial parameters. In graph A 
we see the situation before training - essentially random 
patterns, and the remaining three depict the map’s area after 
training for different σ0 value and TN width function 
configurations. By comparing IPSOM’s untrained graph 
with its standard TN width trained counterpart (graph C) we 

immediately observe the perseverance of a number of initial 
‘blank’ patterns. A number of IPSOM neurons represent 
either the original initial ‘blank’ pattern or a distorted 
version of it. In the oscillating TN width case (graph B) 
there is also an excessive representation of the V pattern (cf. 
Figure 4). The observed ‘delusional’ flags, especially the 
resistance to environmental change, are prominent in the 
IPSOM trained graph using a very small σ0 (graph D). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: Induced delusional structure on IPSOM. 

Discussion 
The significance of TN in SOM cognitive modeling has 
theoretical and practical implications. In this paper, a 
modified TN width function with increased biological 
plausibility (paramount to modeling) was introduced and 
simulation results, based on the IPSOM prototype, on two 
models of neuro-developmental disorders were presented. 

The modeling significance of the oscillating TN width 
function is associated not only with the initial TN width (σ0) 
parameter but, primarily, with the TN width ‘area’ covered 
throughout the SOM training. What is considered ‘narrow’ 
or ‘wide’ TN during SOM formation is -from a different 
perspective- a function of the TN width area covered. 

 
 

 

 
Figure 9: Standard and Oscillating TN width areas. 

 

TN
 W

id
th

 

σ0 

Epoch 

σ0 

Epoch 

σ'0 

A. Untrained B. Oscillating TN width σ0=1.15 

D. Oscillating TN width σ0=0.7 C. Standard TN width σ0=1.15 

3291



In Figure 9, both the standard and the oscillating TN 
width functions are overlaid in both graphs. The TN width 
area has as an upper bound the corresponding TN width 
function and as a lower bound the epoch (horizontal) axis. 

Mathematically, the TN width area is expressed as 

σ(x) area =

€ 

σ 0∫ ⋅e
(− x

τ
)
dx =σ 0 ⋅ (−τ ) ⋅e

(− x
τ
)
 + C, σ0, τ ∈ R. 

To calculate the area for a given TN width function, σ0, 
and number of epochs t, the following formula was used: 

σ(x) area =

€ 

σ 0 ⋅e
(− x

τ
)
dx

0

t∫  

In the standard & oscillating TN width IPSOM simulation 
results, the calculated σ(x) area (for the same σ0) remained 
unchanged irrespective of the TN width function used. This 
verifies the output equivalence between the two modeling 
approaches. Furthermore, when, in the oscillating TN width 
function simulations, the σ0 value was reduced to σ'0, the 
calculated σ(x) area was significantly smaller (Figure 9, 
right graph) and resulted in an IPSOM map with more 
pronounced delusional structures (Figure 8, graph D). This 
demonstrates the computational and cognitive modeling 
significance of the TN width area. 

In conclusion, it is important to note that making a link 
between the biological and computational levels, in such 
modeling studies, often requires a sequence of finely drawn 
associations across disparate disciplines. However indirect 
and interdisciplinary such a link may be, the methodology 
and tools to construct it have long been available, and an 
effort was made in this study to illustrate it. 
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