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Abstract

The artificial neural network class of self-organizing maps
(SOMs) is a powerful and promising cognitive modeling tool
in the study of the brain and its disorders. Under this premise,
this paper proposes a novel modification of the standard SOM
algorithm in the form of an oscillating Topological
Neighborhood (TN) width function. Existing research in
neuroscience indicates that SOMs with oscillating TN width
could exhibit higher biological plausibility than standard TN
width SOMs. In this paper, two neuro-developmental
disorders, autism and schizophrenia, are modeled, based on
existing neurocomputational theories, using both SOM
approaches. The simulation results demonstrate that there is
significant equivalence between standard and oscillating TN
width SOM modeling in terms of map formation behavior,
output and structure. The theoretical and computational
arguments presented validate the proposed SOM modification
within a cognitive modeling framework.

Keywords: Self-Organizing Maps, Cognitive Modeling,
Cortical Maps, Autism, Delusions, Schizophrenia.

Introduction

Computational modeling offers a powerful way to study
cognition and behavior. It has been applied to numerous
areas of psychology and provides a more promising
framework than those based on verbal models in terms of
methodological diversity and applicability potential (Sun,
Coward & Zenzen, 2005). An ever-increasing number of
computational modeling studies are dedicated to the
modeling of cognitive and developmental phenomena using
artificial neural networks (Thomas & Karmiloff-Smith,
2003; Polk & Seifert, 2002; Parks, Levine & Long, 1998).
Shultz (2003) provides a comparative evaluation of the
different computational neural network systems used to
model cognitive developmental phenomena. An important
class of such modeling networks is the self-organizing
feature map; it is based on a Hebbian-type (Hebb, 1949)
unsupervised neural learning mechanism and uniquely
resembles topographic cortical maps in the brain to which
has directly comparable structure and output characteristics
(Spitzer, 1995b; Livingstone & Hubel, 1988; Blasdel &
Salama, 1986; Merzenich & Kaas, 1980). Willshaw and von
der Malsburg (1976) originally proposed the self-organizing
neural network to account for the retinotopic mapping
problem. Kohonen’s version (2001) -commonly abbreviated
to ‘SOM’-, however, possesses significant computational

characteristics and a range of powerful properties,
particularly relevant to understanding and modeling of
cortical brain maps, including approximation of the input
space, topological ordering, density matching, and feature
selection (Haykin, 1999).

This study investigates cognitive modeling aspects of
modeling neuro-developmental disorders using SOM neural
networks. The first section presents the SOM modeling
framework used in this work, and introduces a novel
modification in the SOM formation algorithm with
significant cognitive modeling implications. In the
subsequent two sections, core biological and behavioral
characteristics of two mental disorders, autism and
schizophrenia, respectively, are modeled using a prototype
SOM model. The last section provides a discussion of the
computational and theoretical parameters of the SOM
modeling employed in the paper.

The SOM Modeling Framework

Aspects of SOM Neural Networks

A SOM is a non-linear unsupervised-learning computational
neural network consisting of two layers. It has the capacity
to map an input ‘environmental’ layer, consisting of patterns
of fixed but arbitrary dimension, onto a (usually) one or two
dimensional lattice  ‘representational’  layer. = The
representation of environmental input in the output layer
(called the map) is performed in a topologically ordered
fashion, maintaining the non-linear input data distribution,
and involves dimensionality reduction. Figure 1 shows an
abstract depiction of a two-dimensional SOM; each input
layer pattern vector connects fully with the map neurons.
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Figure 1: A two-dimensional SOM.
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The SOM neural network formation (training) process has
four parts (as described in Haykin (1999)): synaptic weight
initialization of the output lattice; neuron competition;
neuron cooperation; and synaptic adaptation. The last three
are sequenced within a loop for a finite number of ‘epochs’,
in which input patterns are presented and weights adjusted
until the weights converge.

During the competition phase, a winning neuron for the
current input pattern is determined, based on a Euclidean
distance metric. In the cooperation phase the winning
neuron becomes the center of a cooperative process
extending around an area according to a topological
neighborhood (TN) function. In the synaptic adaptation
phase, the weights of the map neurons within the TN of the
winning neuron are updated ‘towards’ the current input
pattern at an intensity determined by their lateral distance to
the winning neuron as well as an exponentially decaying
learning rate function.

From a cognitive modeling perspective, it is of particular
interest to examine the neurobiological relevance of the
SOM formation process at the implementation level of the
neuron lateral interaction and inhibition mechanism. The
standard SOM algorithm (Haykin, 1999) employs a
translation invariant Gaussian TN function with an
exponentially decreasing width, as illustrated in Figure 2.
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Figure 2: Decreasing TN width around a winning neuron
(dark grey neuron) in a two-dimensional SOM.

The TN width function can be expressed by the formula

o) =0y -exp(-—), n=1,2,...,t
T

where oy is the initial TN width, 7; is a time constant, 7 is
the number of epochs, and # is the current epoch.

The fact that only neurons close to the winning neuron
have their weights changed significantly (implemented at
the biological neural network level by a mixture of
excitation and lateral inhibition) has a measurable impact on
the representational structure of the SOM. A number of
SOM cognitive models of brain disorders center around the
key role of TN width and its exegetic biological significance
(Gustafsson, 1997; Spitzer, 1999).

Oscillating TN width SOM

The SOM cooperative phase involves local neuronal
interactions via group Hebbian activation regulated by
lateral inhibition. In general, neural synchrony and
communication at the local and long-range level is an
important aspect of brain functioning; neural oscillation,

particularly correlated to inhibitory neural activity, is
increasingly considered to be of paramount importance to
neural information processing and central to a number of
studies of mental disorders including schizophrenia and
autism (Schnitzler & Gross, 2005; Wang, 2010). Neuronal
group oscillatory synchrony is linked to inhibitory
interneuron rhythmic modulation of the firing rate of
excitatory neurons, at the local interaction neuronal level
(Cardin, Carlen, Meletis, Knoblich, Zhang, Deisseroth, Tsai
& Moore 2009). Last, synchronous oscillatory activity of
neighboring inhibitory interneurons may be supported by
sub-threshold oscillatory behavior (Llinas, 1988).

In line with the relevant research on neural oscillation
outlined above, this paper introduces a modification with
increased biological plausibility in the SOM cooperative
phase, as previously reported in a preliminary study
(Revithis, 2011). Specifically, the original TN width
function, part of the overall TN function, is replaced by a
new TN width function that exhibits local exponential
decrease instead of global. In this way the TN width
oscillates continuously throughout the SOM formation
process. Oscillation is necessary in a biologically plausible
model, otherwise learning would cease when the TN
approached zero. The oscillation consists of a concatenation
of exponentially decreasing original TN width -temporally
shortened- ‘function instances’; thus, in the same number of
epochs (i.e., one SOM training session) multiple function
instances will fit, as shown in Figure 3.
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Figure 3: SOM oscillating TN width.

The new function can be expressed as
(n+hmodfy =y 0, 1,2, ..., 1

!
1

where oy is the initial TN width, z'; is a time constant, and
n is the current epoch. The constant ¢’ =t/ ¢, where c is the
oscillation constant determining how many times the TN
width will reset to gy and start decreasing again.

o'(n) =0, exp(-

IPSOM

IPSOM (Interlocking Puzzle SOM) is a complex-weight-
encoding prototype SOM spatial behavioral model of how
humans complete interlocking puzzles (Revithis, Wilson &
Marcus, 2006). When trained, using a representative sample
of puzzle completion sessions, it forms a behavioral SOM of
the statistically dominant patterns (strategies) of puzzle
completion. A 6x6 IPSOM has been evaluated for the case
of 4x5 puzzles against a simulated group of people. Each
‘virtual” person used one of four predetermined puzzle
completion strategies, illustrated in Figure 4.
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Each radar-graph in Figure 4 depicts the order of puzzle
completion for each pattern (H, V, PH, PV). The radial axis
shows the encoded numerical position values on the puzzle
board (i.e., which puzzle piece), and the angular axis shows
the discrete completion sequence numbers (i.e., which piece
is first, second, etc.) By connecting the points on the graph,
a distinct visual pattern is formed. Attached to each graph, a
puzzle board contains the puzzle completion order
conventionally. The design principles behind the selected
strategies were the generation of a small number of
straightforward, real-life-based patterns, the utilization of
topological clustering, and emphasizing the basic strategy of
determining the board periphery during the puzzle
completion. IPSOM was conclusively found to be efficient
in modeling the behavioral domain.
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Figure 4: IPSOM training set patterns (strategies).

In this paper, IPSOM is employed as a modeling test-bed
for cortical map spatial perception. The working hypothesis
is that IPSOM is not only a behavioral model but also a
cognitive model of how humans perceive puzzle completion
strategies when presented with puzzle completion examples.
It is assumed that an average person would form an internal
representation of the dominant strategies; a cortical map
would retain the domain specific knowledge, modeled by a
trained SOM. IPSOM is expected to represent the training
patterns in a topologically ordered fashion, where
neighboring patterns are also visually similar (Figure 5).
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Figure 5: An abstract illustration of a trained 6x6 IPSOM.

Modeling Aspects of Autism using IPSOM

A Neural Circuit Theory of Autism

Autism, a pervasive developmental disorder, has been
studied for over 50 years by an expanding interdisciplinary
research community. The current diagnostic tools (DSM-IV
and ICD-10) dictate a socio-psychological behavioral
approach that does not inform of the causes of autism;
nevertheless, it is considered to be neurobiological in nature
(Coleman & Gillberg 2012).

Autism is associated with atypical perception and its
internal representation. Sensory input often fails to integrate
into existing memory due to abstraction impairment; there is
difficulty in detecting the important features among the non-
essential details; elaborating on internal representations is
also problematic, where it appears that central executive
control is required (Frith, 2003).

Gustafsson’s (1997) neural circuit theory of autism is
based on these empirically based concepts of autistic
perception and proposes a neural-level explanation for the
lack of drive for central coherence, a key element in autistic
behavior (Frith, 2003). Neurological deficiencies in the
formation of brain cortical maps give rise to autistic
attributes. This leads to problematic feature extraction since
“autistic raw data memory” operates in place of “feature
memory” due to “inadequate cortical feature maps”. Raw
data memory is intrinsically linked at the behavioral level to
the diagnostic criteria for autism (Gustafsson, 1997).
Autistic maps lack feature distinction and preservation, and
fail to provide an internal representation of salient
perceptual data leading to raw data memory that lacks
sophisticated representations.

According to Gustafsson (1997), SOMs provide a
biologically plausible way to model characteristics of
‘autistic’ cortical maps. A SOM can represent input features
just as a cortical map in the brain retains salient perceptual
stimuli, and can exhibit similar deficiencies to an autistic
cortical map if its formation mechanism is impaired.

The Autistic IPSOM

The modeling premise of the SOM autistic impairment is
suggested not by the biological map, but by its model.
Gustafsson (1997) argued that a biologically plausible cause
of impairment in a SOM is the application of excessive
lateral feedback inhibitory synaptic strengths. The latter can
degrade the map’s generalization and feature representation
capacity, resulting in high sensory discrimination and
feature specificity, even to the point of instability, leading to
the formation of inadequate or even undeveloped maps.

This modeling premise can be expressed as a TN
premature narrowing during SOM training; TN can be
regarded as the “source of power” (Sun & Ling, 1997) in the
autistic model. The initial TN width (op) in the TN width
function affects the map’s representational capacity in a
directly applicable way to Gustafsson’s theory (Revithis &
Tagalakis, 2012). A non-autistic cortical map is expected to
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represent all the dominant puzzle completion strategies with
smooth transition between them. This can be modeled using
IPSOM in its original parameter configuration.

After the incorporation of TN parameter modifications on
IPSOM, an evaluation was performed. A series of groups of
controlled simulations were executed with the initial width
of the TN function set to a typical value of p=3 (i.e., equal
to the network’s radius, as suggested by Haykin (1999)) for
one group, and reduced to gp=1.15 for another group. Both
groups were executed twice, using a standard TN width
function, in one simulation series, and an oscillating TN
width function in a second one. The results (discussed next)
from over 150 simulations confirm that, for large oy, the
resulting IPSOM exhibits efficient representation of the
input space, whereas IPSOM training, using a small oy,
forms a map with autistic structural characteristics. The
results also support the hypothesis that the oscillating TN
width IPSOM is equivalent to the standard TN width
IPSOM in modeling autistic traits.

Figure 6: Standard TN width IPSOM map characteristics.

Figure 6 depicts IPSOM neurons after training, using a
standard TN width function, for oy=3 (top) and oy=1.15
(bottom). The leftmost 3D graphs, and the 2D graphs in the
middle, depict the Euclidean distance of pattern H to each
neuron in the map. The darker and closer to the horizontal
3D base-plane (map) areas signify smaller distance and,
thus, higher representational accuracy for pattern H. A ¢p=3
facilitates a smoother transition from pattern H to other
patterns in the map, whereas a gp=1.15 results in steeper
increase of the Euclidean distance indicating transitional
pattern impairment. The rightmost combined-concentric
radar graphs depict five neighboring IPSOM neurons for
00=3 (top) and oy=1.15 (bottom). A o,=3 facilitates
smoother transition from Pattern H to V, whereas for
o0=1.15 neurons are tightly grouped in two patterns (H and
V) with impaired transition and generalization capacity.

Figure 7 depicts IPSOM neurons after training, using an
oscillating TN width function, for ¢p=3 (top) and o,=1.15
(bottom). The observations that can be made are identical to
the ones of Figure 6.

Figure 7: Oscillating TN width IPSOM map characteristics.

The illustrated example-simulation-results of Figures 6
and 7 are representative of the totality of simulation results
obtained in terms of the observed characteristics. Patterns H
and V, which were used for the rightmost concentric radar
graphs, were selected to better demonstrate IPSOM’s
transitional behavior due to their relatively low correlation
significance amongst IPSOM training set patterns (Table 1).

Table 1: Correlation between IPSOM training patterns.

Spearman's p (N=20) H V PH PV

1 429 5237 507
059 .018 .023

Correlation Coefficient
Sig. (2-tailed)

H
H
Correlation Coefficient v 1 .388 .420
Sig. (2-tailed) \ . .091 .066
Correlation Coefficient PH 1 974"
Sig. (2-tailed) PH . .000
Correlation Coefficient PV 1
Sig. (2-tailed) PV .

Correlation is significant at the 0.05 level (*) and at the 0.01 level (#).

Using IPSOM to Model Delusions

Acute and Chronic Delusions in Schizophrenia

Modern studies on schizophrenia span approximately a
century. There has been a continuous evolution of the
understanding of this mental disorder and currently it is
widely considered to be a progressive neuro-developmental
disorder. Amongst its common positive psychotic symptoms
are delusions (Green, 2001).

Spitzer has argued (1995a, 1995b, 1999) that SOM neural
networks can provide a model of brain cortical function, and
implement lateral inhibition, an essential feature of cortical
maps. Furthermore, he proposed a neurocomputational
exegetic framework for delusions based on the concepts of
neuromodulation and neuroplasticity in relation to formation
and operation of sensory and higher-order computational
maps in the cortex.

Specifically, according to this approach, neuromodulator
activity in the brain is associated with the signal-to-noise
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ratio at the neuronal level, from an information-theoretic
perspective. High neuromodulator activity can lead to an
increase of focusing in neuronal activation and is associated
with acute delusional states; such focusing can be modeled
via excessive SOM lateral inhibition. Chronic delusions can
then be regarded as the result of the establishment of
entrenched cortical maps via sustained acute delusional
states due to brain neuroplasticity.

IPSOM Modeling of Delusions

According to Spitzer (1995a), a decisive factor in the
clinical phenomenon of acute delusions is the level of
cortical neuromodulator activity; this affects modulation of
signal-to-noise ratio. In a SOM model of delusions it is
possible to regulate the level of neuronal activation focusing
associated with the signal-to-noise ratio by controlling SOM
lateral inhibition. This can be achieved by controlling the
width of TN during SOM formation. TN can be regarded as
the “source of power” (Sun & Ling, 1997) in this model.

Similar to the autistic model, the working hypothesis is
that the initial TN width (op) in the TN width function
affects the map’s behavior in a way applicable to Spitzer’s
theory. Inducing acute delusions in IPSOM can be realized
via modifying the cooperation phase of the SOM algorithm
in the model to employ a significant TN narrowing.

A series of groups of controlled simulations were
executed with the initial width of the TN function set to a
typical value of 6p=3 for one group, and reduced to g=1.15
for another group, as in the autistic model. Both groups
were executed twice, using a standard TN width function, in
one simulation series, and an oscillating TN width function
in a second one. The results (discussed next) from over 150
simulations confirm that, for large oy, the resulting IPSOM
exhibits typical representation of the input space; when a
small o is used, however, the map’s formation behavior is
atypical and retains structures corresponding to chronic
delusions. The results also support the hypothesis that the
oscillating TN width IPSOM is equivalent to the standard
TN width IPSOM in modeling delusions.

Entrenched SOM structures that could give rise to chronic
delusions can be identified by comparing ‘suspected’
formed IPSOM maps with their untrained (initial) state. A
‘delusional’ structure can plausibly be seen as a number of
trained neurons representing neither a transitional pattern
nor an input space pattern, or, excessively representing an
input space pattern (the latter can be regarded as
compromising the SOM density matching property (Haykin,
1999)). Furthermore, representational resistance to change
can also be interpreted as a characteristic of established
(chronic) delusional structures (Spitzer, 1995a).

Figure 8 depicts four snapshot graphs of the same part of
the IPSOM map for different initial parameters. In graph A
we see the situation before training - essentially random
patterns, and the remaining three depict the map’s area after
training for different o, value and TN width function
configurations. By comparing IPSOM’s untrained graph
with its standard TN width trained counterpart (graph C) we

immediately observe the perseverance of a number of initial
‘blank’ patterns. A number of IPSOM neurons represent
either the original initial ‘blank’ pattern or a distorted
version of it. In the oscillating TN width case (graph B)
there is also an excessive representation of the V pattern (cf.
Figure 4). The observed ‘delusional’ flags, especially the
resistance to environmental change, are prominent in the
IPSOM trained graph using a very small oy (graph D).
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C. Standard TN width g,=1.15
Figure 8: Induced delusional structure on IPSOM.

Discussion

The significance of TN in SOM cognitive modeling has
theoretical and practical implications. In this paper, a
modified TN width function with increased biological
plausibility (paramount to modeling) was introduced and
simulation results, based on the IPSOM prototype, on two
models of neuro-developmental disorders were presented.
The modeling significance of the oscillating TN width
function is associated not only with the initial TN width (o)
parameter but, primarily, with the TN width ‘area’ covered
throughout the SOM training. What is considered ‘narrow’
or ‘wide’ TN during SOM formation is -from a different
perspective- a function of the TN width area covered.

S
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Figure 9: Standard and Oscillating TN width areas.
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In Figure 9, both the standard and the oscillating TN
width functions are overlaid in both graphs. The TN width
area has as an upper bound the corresponding TN width
function and as a lower bound the epoch (horizontal) axis.

Mathematically, the TN width area is expressed as

X

_x (=)
o(x) area :fao ‘e Tdx=0,(-1)'e T +C,00,TER.
To calculate the area for a given TN width function, o,

and number of epochs ¢, the following formula was used:

o(x) area = f( )too P

In the standard & oscillating TN width IPSOM simulation
results, the calculated a(x) area (for the same o() remained
unchanged irrespective of the TN width function used. This
verifies the output equivalence between the two modeling
approaches. Furthermore, when, in the oscillating TN width
function simulations, the g, value was reduced to ¢, the
calculated o(x) area was significantly smaller (Figure 9,
right graph) and resulted in an [IPSOM map with more
pronounced delusional structures (Figure 8, graph D). This
demonstrates the computational and cognitive modeling
significance of the TN width area.

In conclusion, it is important to note that making a link
between the biological and computational levels, in such
modeling studies, often requires a sequence of finely drawn
associations across disparate disciplines. However indirect
and interdisciplinary such a link may be, the methodology
and tools to construct it have long been available, and an
effort was made in this study to illustrate it.
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