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Abstract

Models of risky choice have attracted much attention in
behavioural economics. Previous research has repeatedly
demonstrated that individuals’ choices are not well explained
by expected utility theory, and a number of alternative mod-
els have been examined using carefully selected sets of choice
alternatives. The model performance however, can depend on
which choice alternatives are being tested. Here we develop
a non-parametric method for estimating the utility map over
the wide range of choice alternatives. The estimated maps are
compared against the three of the most well-known models
of risky choice: expected utility theory, cumulative prospect
theory, and the transfer of attention exchange model. Model
comparison indicates that cumulative prospect theory provides
a better prediction of individuals’ choices, but the estimated
maps show that the overall shape of utility map is different
from what the model predicts.

Keywords: decision making; risky choice; utility; MCMC
with People; expected utility; cumulative prospect theory;
transfer of attention exchange

Background

Understanding how people trade off risk and reward is a fun-
damental goal of behavioural economics. The most common
approach to modelling how people make decisions between
risky alternatives is based on the idea of utility: individuals
integrate the probability of reward with the utility of the re-
ward to produce an expected utility that describes how well
the alternative is preferred. The alternative with the highest
utility is most often chosen.

The normative calculation of utility that maximizes long-
term gain is to multiply the probability with the utility of the
associated outcome and to derive the expected utility. For
an illustration, suppose an individual is considering a choice
alternative with three possible outcomes: £20, £10, and £0.
This particular alternative has a 20% probability for £20,
40% for £10, and 40% for £0. Then, the expected utility is
20% x u(£20) 4+40% x u(£10) +40% x u(£0), where u is the
function to map the monetary value to the utility.

However, previous research has demonstrated that an in-
dividual’s choice frequently deviates from the predictions of
expected utility theory (for review, Schoemaker, 1982). To
explain the deviations, descriptive models of how risk and re-
ward are integrated have been developed (for review, Starmer,
2000). A common and useful way to visualize the predictions
of these models is to look at the indifference lines, which con-
nect choice alternatives of equal utility, over a Marschak—
Machina probability triangle (Marschak, 1950; Machina,
1982). The probability triangle is a two-dimensional space
which maps alternatives with varying probabilities for the
same set of three potential outcomes. Throughout this pa-

per, we use £20, £10, and £0 as the potential outcomes from
a choice alternative.

Figure 1 displays the predicted utility maps from three of
the most well-known models of risky choice: expected util-
ity theory, cumulative prospect theory (Tversky & Kahne-
man, 1992) and transfer of attention exchange (TAX) model
(Birnbaum, 2008). In the probability triangle, the probabil-
ity of attaining the best outcome (£20) is represented in the
vertical axis, and the probability of the worst outcome (£0)
is represented in the horizontal axis. The probability for the
other outcome (£10) is represented as the distance from the
diagonal boundary along the horizontal axis. The diagonal
boundary ensures that the sum of the probabilities for £20,
£10 and £0 does not exceed 1.

The red area in the triangles indicates the area of high util-
ity, and the blue area is the area of low utility. Also, the
coloured lines connect the alternatives of equal utility. These
indifference lines highlight the differences between expected
utility theory and the two descriptive models. Expected utility
theory predicts indifference lines that are parallel and straight.
Both cumulative prospect theory and the TAX model predict
concave lines in the top corner of the triangle but convex lines
in the lower right corner.

The usual experimental practice is to investigate choices
in the regions of the triangle where models most differ from
each other (e.g., Wu & Gonzalez, 1998). When the mod-
els are tested in this way, the “best” model may not predict
choices away from the diagnostic regions well. For instance,
Harless (1992) suggests that cumulative prospect theory out-
performs expected utility theory only at the edges of the tri-
angle. Thus, the model comparison could benefit from being
tested on the whole area of triangle. One way is to estimate
the utility map over the whole triangle and compare the esti-
mated map against the model prediction. However to the best
of our knowledge, the available estimation methods impose
an assumption on how subjective value and probabilities are
integrated (e.g., Abdellaoui, 2000), which could favour the
model with the identical assumption.

To this end, we develop a non-parametric method to esti-
mate entire utility maps, an extension of Markov chain Monte
Carlo (MCMC) with People (Sanborn, Griffiths, & Shiffrin,
2010). We have modified MCMC with People to investigate
the regions of the probability triangle where the choice al-
ternatives are less preferred. The new method is tested in a
simulation to show that it can deliver useful results within a
reasonable number of trials. We then estimate utility maps
from human. Finally, we discuss the results and future appli-
cations for this approach.
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Figure 1: Theoretical predictions

Markov chain Monte Carlo with People

Markov chain Monte Carlo (MCMC) is a common method
for drawing samples from a distribution. It has been widely
used to perform probabilistic inference especially when solv-
ing the exact function of interest is computationally difficult
(Neal, 1993).

MCMC begins in a start state z. A sample 7’ is first drawn
from the proposal distribution ¢, and then 7’ is evaluated with
the function of interest, T, to determine whether to accept 7/
as a new state or discard it and retain the current state z. The
sequence of accepted samples forms a Markov chain, and af-
ter this Markov chain converges, accepted samples can be re-
garded as samples from the 7 distribution. To ensure that the
Markov chain converges to T, it is sufficient to satisfy detailed
balance (as well as ergodicity):

7(z)q(7|2)A(Z,2) = () q(z|7) A(z,7), (D

where g(Z'|z) is the probability of drawing 7’ when the current
state is z and A(Z,z) is the probability of accepting proposal
7' over the current state z.

Throughout the paper, we assume a symmetric distribution
for ¢, q('|z) = q(z|’), so Equation 1 becomes

n(2)A(Z,2) = (7)) A(z, 7). )

Detailed balance can be satisfied by carefully designing the
acceptance function A. The most commonly used function is
the Metropolis acceptance function (Metropolis, Rosenbluth,
Rosenbluth, Teller, & Teller, 1953), but the Boltzmann accep-

tance function (Flinn & McManus, 1961) is of interest here:

()

A7) = —2—
(2.2) n(z) +m(Z).

If an individual is asked to make a choice between alter-
natives 7’ and z, then the Boltzmann acceptance function can

model that individual’s choice. This is because the Boltz-
mann function is equivalent to Luce’s choice rule (Luce,
1959), which has been frequently used to model risky choice
(e.g., Blavatskyy & Pogrebna, 2010). As a result, by sequen-
tially presenting pairs of choice alternatives to an individual
(where the new alternative 7’ is selected by the computer), the
collection of choice alternatives chosen by the individual can
be treated as samples from the probability distribution whose
density is proportional to the individual’s utility (Sanborn et
al., 2010).

Extending MCMC with People

However, sampling from the individual’s utility distribution
does not necessarily serve to estimate the shape of the util-
ity map: pilot work confirms that all of the samples will be
concentrated around the most favourable alternative (100%
probability of £20 in the triangle), and that it would take a
very large number of trials to explore the rest of the utility
map. To enable the reasonable estimation of the utility map,
the stationary distribution needs to be more diffused, so that
the Markov chain travels better around the triangular space.

For this purpose, we implement a latent agent in the experi-
mental program. This agent makes an independent choice be-
tween the same alternatives as the participant, and only when
the agent and the participant both select the new choice alter-
native does the new alternative become the new state. Other-
wise, the current state remains the same and another alterna-
tive is generated from the proposal distribution.

When the agent is implemented in this way, the acceptance
function becomes a joint function of the participant’s and the
agent’s choices. Specifically, the acceptance function is de-
fined as

f(&) g(?)
f2)+£(Z) g(z) +2(2),

where f is the utility function for the participant and g is the

A*<Z/7Z) _
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agent’s utility function. Here, both the participant and the
agent follow the Boltzmann acceptance function. Then Equa-
tion 2 becomes

f(2)g(x)A*(Z,2) = f(2) g() A" (2, 7).

With the implementation of the agent, the trajectory of
the Markov states depends on both the participant’s and the
agent’s choices. If the agent’s utility is the lowest at the top
corner of the triangle, the Markov chain would be pushed
away from that region. With this extended method, the sta-
tionary distribution of the Markov chain is the joint utility
function of the participant and the agent, fg. The partici-
pant’s utility map can subsequently be recovered by dividing
the joint utility by the latent agent’s known utility, g.

Simulation

To demonstrate that the developed method can estimate a par-
ticipant’s utility map within a reasonable number of trials, we
conducted a simulation.

Method

The simulation used two of the utility functions in Figure 1:
the latent agent’s utility function, g, was set to the inverse of
expected utility theory, and the simulated participant’s func-
tion, f, was cumulative prospect theory:

1
" 20 % p(£20) + 10 x p(£10)’

8

and

£ =20%x w(p(£20)) + 10% x (w(p(£20) + p(£10)) — w(£20)),

where p(£20) is the probability of attaining £20, and w(p) =
pY

(Pr+(1—py)t/T

and 0.52, respectively. The proposal distribution, ¢, was uni-

form over the triangular space. The possible outcomes were
fixed to be £20, £10 and £0, and hence, the agent and the sim-
ulated participant repeatedly made choices between two alter-
natives with varying probabilities for fixed outcomes: e.g., a
choice between an alternative with a 30% probability for £20,
40% for £10 and 30% for £0, and another alternative with a
10% probability for £20, 60% for £10 and 30% for £0.

With the above specifications, a choice trial was simulated
as follows. First, the agent used the g function to evaluate
each alternative and used the Boltzmann acceptance function
to select between the current state and the proposed alterna-
tive. If the agent preferred the current state over the pro-
posed alternative, another alternative was sampled from the
proposal distribution. If the agent chose the new alternative
over the current state, the simulated participant used the f
function to make a choice between the same two alternatives.

Although the agent and the simulated participant could
have made a choice at the same time over the same two al-
ternatives, we had the agent decide first: if the agent does not
select the new alternative, the previous state remains the state

The parameter values for o and ¥ were 0.88

regardless of the choice the participant makes. This reduces
the number of choices the participant must make.

Each simulation consisted of three chains: one chain
started with the Markov state of 60% of £20, 20% of £10
and 20% of £0. Another chain started with the state of 20%
of £20, 60% of £10 and 20% of £0. The final chain started
with 20% of £20, 20% of £10 and 60% of £0.

Results and Discussion

The first 100 trials were considered to be trials before con-
vergence of the Markov chain (burn-in period) and were dis-
carded from each chain. The remaining samples from the
three chains were pooled and smoothed by kernel density esti-
mation. Because of the triangular boundary of the estimation
space, it is actually quite difficult to produce unbiased indif-
ference lines. We chose to use a Dirichlet kernel, an exten-
sion of the Beta kernel (Chen, 1999) to the triangular space,
because it produced less bias than the other alternatives we
investigated. The Dirichlet kernel is defined as

fx)g(x) = ZDi"(Zi\OH,OLz,O%L

1

where z; is the ith state in the Markov chain, x is a vector of
probabilities for three outcomes, and o is x;/min(h, x;, 1 —
x;j). The kernel width / was set to 0.09. This smoothed joint
distribution is then divided by g to derive the estimation f.

To assess the similarity between f and f, we computed
Kullback-Leibler (KL; denoted as KL(f]|f)) divergence
(Kullback & Leibler, 1951), which measures how much in-
formation is lost in the estimation process.

The KL divergences for different sample sizes are plotted
in the left panel of Figure 3. This figure illustrates that the es-
timation shows the increasingly smaller divergence within the
first few hundred trials. The estimation becomes reasonably
accurate on average after 700-800 trials.

The middle and right panels of Figure 3 display the esti-
mations after 1,000 trials. The estimation with the smallest
KL divergence among the 10 simulation runs is in the middle
panel, and the right panel show the estimation with the largest
KL divergence. Both panels show the key property of cumu-
lative prospect theory: the indifference lines show fanning-
out property from the lower left corner toward the diagonal
boundary.

Thus, the simulation demonstrated that the proposed
method with the Dirichlet kernel density estimation can re-
cover the key characteristic of the utility map using a reason-
able number of samples.

Experiment
Method

Participant Ten participants were recruited through the
subject panel at the University of Warwick. One participant
did not complete the experiment, leaving nine (five male and
four female) participants. Their age ranged from 19 to 30
with a mean of 22.9.
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Figure 2: The KL divergences between f
and f for various numbers of trials. The
solid line represents the mean measure-
ment of the 10 simulation runs, and the
dotted lines are maximum and minimum
values archived in the simulations.

Procedure The experimental procedure closely followed
that of the simulation. The agent’s utility function, g, was set
to the inverse of expected utility theory raised to the power of
8, and the proposal distribution, ¢, was uniform over the trian-
gular space. The possible outcomes were fixed to be £20, £10
and £0, and hence, the agent and the participant repeatedly
made choices between two alternatives with varying proba-
bilities for fixed outcomes.

In each trial, the agent made a decision first, and a new al-
ternative was drawn until the agent chose the new alternative.
Three chains with the same start states as the simulation were
run interleaved until participants had made 1,000 choices per
chain. In addition, 50 catch trials were inserted into the ex-
periment, so that we could assess whether participants were
engaged in the task. In each catch trial, one alternative had
larger probabilities for both £20 and £10. If a participant was
not engaged with the task and randomly making choices, it
is expected that he or she would occasionally not select the
non-dominant alternative.

The experiment presented a choice alternative as a pie chart
with three slices. Each slice represented one possible out-
come, and the size of the slice was proportional to the prob-
ability of the outcome. Participants were forced to log out
from the online experiment and take a break after spending
one hour on it. After the minimum break of three hours, par-
ticipants were allowed to log in again and resume the experi-
ment.

The choices participant made were incentivized: we in-
vited participants to the lab when participants completed the
experiment. At the lab, we randomly selected one trial from
the experiment and played the selected alternative for real.
Participants were paid what they earned from the play.

Probability of £0

(A) The estimatior} with the smallest KL di-
vergence (KL(f||f) = 0.002)

Probability of £0

(B) The estimation with the largest KL di-
vergence (KL(f]|f) =0.007)

Figure 3: Estimation of cumulative prospect theory with 1,000 trials

Results and Discussion

All the nine participants selected the dominant alternative in
all of the catch trials, which was evidence that all participants
understood and were engaged in the task.

Utility maps were estimated as in the simulation study. All
participants show a sharp peak at the top corner of the trian-
gle in the estimated maps. The sharp peak makes it difficult
to see the shape of the map, and thus for illustration purposes,
we spaced out the indifference lines by taking the natural log-
arithm of the estimation. As a result, differences in small util-
ities are exaggerated, but the shapes of the indifference lines
are not affected. The resulting maps are displayed in Figure 4.
Each panel in the figure corresponds to one participant’s map.

The estimated maps show the steep indifference lines, es-
pecially where the probability of £0 is small. The steep lines
indicate aversion to the worst outcome (c.f., Tversky & Kah-
neman, 1992; Birnbaum, 2008), where the increment in prob-
ability for the worst outcome needs to be compensated with
a larger increment in probability for the most desirable out-
come. The steepness tends to be lessened near the lower right
corner of the triangle. As a result, for Participants A, D and
H in particular, the indifference lines show the fanning-out
property. The fanning-out suggests that participants more
willingly accept an increment in probability for the worst out-
come when the probability is already large. The fanning-out
is consistent with the prediction from cumulative prospect
theory and the transfer of attention exchange (TAX) model.

The estimated maps also show the convex indifference
lines throughout the triangle. The convexity makes the esti-
mated maps appear rather different from the predicted utility
maps from cumulative prospect theory and the TAX model,
which expect the concavity toward the top corner of the trian-
gle (Figure 1).

To quantitatively assess the model performance, we fit the
models to the individuals’ choices by maximizing the likeli-
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Figure 4: In(f)

hoods. When fitting the model, we used the power law utility The value for this exponent parameter is restricted to be non-
function for expected utility theory: u(s) = s*. The range of  negative.
parameter values are restricted to be between 0 and 1 for all

the parameters. Also, each model included one additional pa- Bayesian information criteria (BIC) indicates that the
rameter to raise the predicted utility. This exponent controls ~ choices are best predicted by cumulative prospect theory for
how steep the peak is toward the most favourable alternative. ~ seven out of nine participants (Panels A through G). The TAX

model achieves smallest BIC for one of the remaining partic-
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ipants (Panel H), and the expected utility theory has smallest
BIC for the other participant (Panel I).

General Discussion

Previous research has demonstrated that individuals’ choices
deviate predictions from expected utility theory, and variety
of descriptive models have been proposed. However, the
deviation from expected utility theory has often been stud-
ied with relatively limited range of choice alternatives. The
present study developed the non-parametric method to esti-
mate utility maps over the whole probability triangle.

The curvature of the indifference lines in the estimated
maps implies differences to the predictions from the exist-
ing models: The lines tend to be convex where concavity
is expected. Even though cumulative prospect theory (CPT)
does not predict this curvature, CPT provides a better fit to
the choice data than expected utility theory or the attention
exchange model does for the majority of participants. Thus,
a new model could explain the choices better than CPT, if
the new model produces a utility map similar to the estimated
maps.

In developing such a model, it is useful to identify choice
alternatives where the CPT prediction differs from the indi-
viduals’ choice behaviour. To this end, the estimation method
that we have developed can be further extended. As the de-
veloped method lets the MCMC chain converge to the joint
distribution of the individual’s and the agent’s utility, manip-
ulation of agent’s utility function can reveal interesting joint
distributions. For instance, by setting the latent agent’s util-
ity to the inverse of the CPT prediction, the MCMC chain
converges to the distribution whose density is proportional to
the individual’s utility divided by the CPT prediction. The
condensed area in this joint utility distribution is where the
CPT prediction is smaller than the individual’s utility (i.e., the
area where CPT underpredicts the utility), and the thin area is
where the CPT prediction is larger than the individual’s utility
(i.e., the area where CPT overpredicts the utility).

To conclude, we have developed the method for estimating
the utility map. The developed method can be further lever-
aged in future study.
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