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Abstract

Experiment 1 demonstrates that problem solving knowledge
can be applied while a move is in progress in certain Tower
of London (ToL) problems. A two-stage move process is
often delayed in the second stage when participants have been
misled by similarity to a previous problem. We suggest this
is indicative of misgivings about the chosen move caused by
on-going analysis of the move that is being made. Experiment
2 swapped the stages of the two-stage process and again
reported more hesitancy in the second stage when participants
had been misled. We conclude that it is desirable for models
of problem solving to evolve so that they can apply the same
learned problem solving knowledge both before a move is
selected and while the move is being made. We then describe
a model of ToL problem solving that fulfills these criteria and
has been computationally-implemented within an embodied
cognitive architecture.
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Introduction

The current paper tries to distinguish between two
accounts of how a move (or action) is selected and executed
during solving a problem. The first account holds that
knowledge about how to solve a problem is used to decide
the move and then this move is simply executed. A
description of the problem acts as input to the problem
solving process (here we term this a situation-only decision
process). On this basis an action is selected and then
executed. The second account suggests that problem
solving occurs after the move has been selected as well as
beforehand. 1In this account problem solving also occurs
after an action is selected, immediately prior to and during
the execution of said action. The input to this problem
solving processes is not only a description of the problem
but also a description of the intended action (we term this a
situation-action decision process).

Problem solving after a move has been selected is rare in
current psychological theories, for example this does not
typically occur in ACT-r models (see Anderson, 2007).
While theories of problem solving based solely on situation-
only problem solving have the advantage of simplicity, they
lack the power to use existing problem solving knowledge
to evaluate ongoing or imminent actions. Theories featuring
situation-action problem solving must necessarily feature
some situation-only problem solving in order to derive an
action for consideration. However, this situation-only
problem solving does not necessarily have to be complex —
indeed an algorithm that simply picks an action at random

that hasn’t been considered before might be sufficient.
Some recent theories, particularly those exploring embodied
problem solving, favour a combination of simple situation-
only problem solving prior to action selection followed by
more complex situation-action problem solving afterward
(e.g. Miles, 2009, 2011; Schuboltz, 2007), the latter is often
based on the mental simulation of the results of the action.

The differences between the two accounts are important
because each implies a different form for knowledge about
solving problems. Situation-action problem solving
representations potentially could replace much of the need
for situation-only problem solving representations. A key
element of situation-action problem solving knowledge is
that it typically either encourages or discourages an already
selected action. By contrast situation-only problem solving
knowledge is concerned with suggesting an action. Once
situation-action problem solving knowledge is added to a
theory of problem solving then there is less emphasis on the
need to select the correct action first. An unsuitable action
can be selected then rejected using situation-action
knowledge. Indeed, a situation-action account suggests that
people often cycle through a series of possible actions at any
given stage of solving a problem, allowing situation-action
knowledge to confirm or deny each action.

Hence the two accounts of problem solving are
fundamentally different. The traditional model suggests a
single decision point, followed by action. The situation-
action position suggests a series of tentative decisions
regarding possible actions followed by evidence gathering
while that action is held in mind. It is notable that the
second position is much more temporally scalable than the
first. For example it is awkward to model speed-accuracy-
tradeoffs in the first style of problem solving, while the
ability to vary the amount of time spent gathering evidence
is implicit in the second proposal.

Empirical Support for Situation-Action Knowledge

Currently there is only indirect empirical support for the
existence of situation-action knowledge. A necessary pre-
condition of this knowledge is the ability to represent an
action without necessarily executing that action.

Neuroscience  has  provided evidence of a
representational role for parts of the brain associated with
action, for example the premotor cortex (e.g. Decety et al.,
1994). The existence of mirror neurons that are activated
both by performing an action and observing an action
(Gallese, Fadiga, Fogasse, & Rizzolatti, 1996) suggests that
the motor areas of the brain are involved in thinking as well
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as doing. Over the last 15 years a large body of work has
pointed to the conclusion that motor areas of the brain are
used for representational roles as well as for executing
actions (see Barsalou, 2009, p. 1285, for a brief review).

If representations in the motor areas of the brain are
available to other areas of the brain, then logically these
other areas will be able to make use of these representations
when deciding what to do. It is exactly this logic that
supports the existence of situation-action knowledge.
Simply the problem solving parts of the brain are aware of
the situation, they are also aware of the action that has been
represented in the premotor cortex and related areas. It
makes sense for the problem solving areas of the brain to
make use of this knowledge regarding the conjunction of
situation and action to either spur the motor areas into that
action or pull them back from the brink of making an error.

The paper begins by reporting two Experiments that
looked for evidence of continuing problem solving in the
final stages of move selection in the Tower of London
(variant) problem. We then show how these data can be
computationally modeled using situation-action knowledge.

Experiment 1

The paradigm used in both Experiments reported here
works by biasing the selection of a first move in a given
Tower of London problem. The bias occurs because
participants have earlier solved a problem that is either
superficially similar or the same as the target problem. In
the repeat condition the bias supports the correct first move
(of two possible moves), while in the false-analogy
condition the bias supports the incorrect first move (again of
two possible moves). These conditions are contrasted with
problems where there is no bias.

Method

Design: The Experiment was presented in two blocks,
firstly of 3-disk problems then of 4-disk problems. Each
block featured two training problems, a one minute pause,
then two target problems. Each target problem had an
inverse version, which although superficially similar has a
different optimal first move. In each block one of the target
problems was the same as one of the training problems
(repeat condition) and one target problem was the inverse of
the other training problem (false-analogy condition).
Comparisons were planned between these conditions and
the unbiased performance on the final training problem
(novel condition).

Participants: Twenty-eight undergraduates participated
in Experiment 1, each received either 30 minutes course
credit or £2.

Materials and apparatus: The ToL problems were
presented on a desktop computer. Participants responded
using a mouse. To move a disk the participants had to click
on the disk they wanted to move and then click on the peg
they wished to move it to. At the top of the screen the goal
state was shown while the current state was interacted with
in the main area of the screen. Disks were shown in

different colours and each was labeled with a different
letter.

Procedure: At the beginning of each of the two blocks
participants were first presented with an orientation task.
The orientation task required six moves from a flat start
state, with no goal displayed. Instructions were then
displayed on the screen for a minimum of 30 seconds.

For 10 seconds prior to all training and target problems,
the goal state for the problem was presented, on top of, and
obscuring, the initial configuration for the problem. During
this period a miniature representation of the start state was
shown near the top of the screen, but all the disks in this
representation were blocked grey, preventing participants
from beginning a solution to the problem. This part of the
procedure was designed to act as a cue to the related training
problem. This display was then removed revealing the
interface.

During the training phase problems the participant was
only allowed the number of moves in the optimal solution to
a problem. Once they had made this number of moves (and
the goal state was not reached) a panel appeared (for 3
seconds) obscuring the problem, with “Try Again!”
displayed in large letters. The problem was then reset to its
original start state. This restriction was critical in ensuring
all participants learned the same correct solution for each
training problem (each problem had only one optimal
solution path).

Timed lockouts were used between problems and between
blocks. Participants were locked out for 30 seconds
between all consecutive problems. The pause between
training and target phases was one minute. There was also a
minute lockout between blocks.

Prior to each target problem in a block a hint was given
during the last 15 seconds of the lockout time. In the 3-disk
block it was phrased as follows “The next problem will be
the same as one you have already done.” while in the 4-disk
block it was “Note: You will have already solved the next
problem”. This change of phrasing was designed to increase
the salience of the hint in the 4-disk block.

Results

All latency data were log transformed for analysis; the
raw data are summarised in Table 1. Comparisons were
made between i) false-analogy condition and the repeat
condition, ii) false-analogy condition and the final training
problem (novel condition). The later comparison is subject
to order effects, but the order effects (one would expect
improved performance with practice) run counter to the
predicted effects of condition (false-analogy < novel).

The 3-disk problems

No significant effects of condition were found in
measures of 3-disk problem solving. Most participants were
still learning the basic methods needed to solve the ToL
during this block, and this may have disrupted performance
on the experimental conditions.
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Table 1: Number of optimal first moves (from 28), first
click latency (secs), and second click latency (secs) in
Experiment 1

Condition No. of 1° Click 2" Click
Optimal 1% latency (SD)  Latency (SD)
moves
Repeat 28 5.18(1.66) 1.33(1.57)
Novel 26 6.22(1.66) 1.39(1.54)
False Analog. 12 7.35(1.83) 1.94(1.84)

The 4-disk problems

Significantly more optimal moves were made under the
repeat condition than the false-analogy condition, 28/28 vs.
12/28, p < .001. A within-participant T-test found no
significant differences between the false-analogy and repeat
conditions on measures of the time taken to initiate the first
move (t < 1). However participants took less time to
complete a move in the repeat condition than they did in the
false-analogy condition, t(27) = 5.86, p <.001.

In the novel condition participants succeeding 26 times on
28 first attempts at the final training problem, this compares
to 12 times from 28 attempts of false-analogy target
problems, p < .001. There was no significant difference
between the novel condition and the false-analogy condition
selection on time taken to initiate the first move by clicking
a disk (t < 1) but it took longer for participants to click on
the location the disk was to go to in the false-analogy
condition, t(27) = 2.99, p < .01.

Of the 28 participants, two made an error in the ‘novel’
condition. The remaining 26 were split into those that made
an error on the subsequent false-analogy condition and those
that did not; groups error (N=14) and correct (N=12). These
data were analysed in 2 x 2 mixed design ANOVA on disk
destination click latency, with condition (false-analogy Vs.
novel) as a within participant factor and error group (error
Vs. correct) as a between participant factor. There were no
interactions with, or main effects of group (all F < 1). This
analysis suggests that hesitancy over the move being made
was present both in those who did make the correct move
those who didn’t.

These results are consistent with the hypothesis that
participants were engaged in problem solving during the
final stages of completing the move. The hesitancy seen in
the final stages of the move in the false-analogy condition is
best explained as second thoughts about a move that has
previously been decided upon. Despite these second
thoughts, the original move is at least sometimes completed,
but sometimes an alternative move is chosen (as indicated
by the lack of differences in hesitancy between those who
made errors and those that made the correct move in the
false-analogy condition).  This suggests that problem
solving knowledge is being used after the first move has
been decided upon and initiated.

Our theoretical account assumes that the participants have
decided on the move they want to make prior to clicking the
disk. Certainly the relative distribution of latency between

first click and second click supports this idea. However to
demonstrate that the move has been decided upon prior to
the first click, Experiment 2 reversed the order of actions
needed to make the move, with the destination selected first
and the disk selected second. In the second stage of the
move only one disk (the top disk) could be selected, the
decision about where to move it having already been made.

Experiment 2

As well as changing the order in which the actions needed
to complete a move were carried out, Experiment 2
attempted to improve on several elements of the design of
Experiment 1. Crucially, only the comparison between the
novel condition and the false-analogy condition was
explored. It was felt that this comparison best captured the
impact of the false-analogy manipulation.

Though the novel condition replaced the repeat condition,
Experiment 2 used the same basic design as Experiment 1,
with the exception that the two Experimental blocks now
used 4-disk and 5-disk problems. Prior to this, participants
completed a training block of 3-disk problems that
facilitated the learning of the main principles of solving
Tower of London problems. While the order of actions
needed to move a disk were changed, other aspects of the
interface remained unchanged.

Method

Participants: Sixty-four undergraduates took part in the
Experiment, each received 30 minutes credit toward their
course requirement.

Apparatus: The apparatus and software was the same as
it had been in Experiment 1. In all stages of the Experiment
the method for moving the disks was altered. Now the
participant had to click on the location they wanted the disk
to go to. When this was done the peg they had pointed to
was highlighted (turned from black to yellow). At this stage
the participant then clicked on the disk they wanted to move
to this peg. If the next click was not on a disk that could be
legally moved to the highlighted peg then the highlighting
on the chosen peg was removed, thus allowing participants
to change their mind on the desired move.

A set of 5-disk problems was introduced for Experiment
2. It was reasoned that these would be sensitive to our
Experimental manipulations in the same way as the 4-disk
problems were in Experiment 1 (and the ‘too simple’ 3-disk
problems were not). Each problem again had an inverse
counterpart that was used in the false-analogy condition.
The use of different problems was balanced across the
Experimental conditions for both 4-disk and 5-disk
problems.

Procedure: Many elements of the procedure were the
same as they were in Experiment 1, though the block
structure of the experiment was altered. Initially participants
completed a block of four 3-disk problems. Following this
block the two Experimental blocks were presented. The
first used 4-disk problems in the same basic structure as was
used in Experiment 1 (orientation task — two training
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problems — pause — orientation task — target problems). In
each Experimental block one of the target problems was
Novel and one a false-analogy to a training problem (order
of conditions was counterbalanced). A 5-disk block
followed the 4-disk block, using the same structure.

Table 2: Number of optimal first moves (from 128), first
click latency (secs), and second click latency (secs) in
Experiment 2

Condition No. of 1° Click 2" Click
Optimal 1 latency (SD)  Latency (SD)
moves
Novel 104 5.35(1.71) 1.17(1.66)
False analog. 86 4.73(1.77) 1.34(1.85)

Results and Discussion

Descriptive data for Experiment 2 are shown in Table 2.
We combined data from the two Experimental blocks with
latency data log transformed. There were significantly fewer
correct first moves in the false-analogy condition in
comparison to the novel condition (proportionally .67 vs.
.81 respectively), p < .05. Comparisons on latency
measures were made using a data set reduced by two, as two
of the data points in the 5-disk block showed zero values for
first-click latency (126 paired comparisons remained). This
was due to participants clicking prior to the interface
becoming active causing a zero to be recorded for first click
latency. The effects on the counter-balancing of the
Experiment were thought to be minimal. The expected
simple effect, i.e. false-analogy slower, was found in the
second stage latency, i.e. disk-selection, t(125) = 2.00, p <
.05. There was no significant difference in the time taken to
initiate the move.

The data confirm that problem solving knowledge is
being applied after a move has been decided upon in the
Tower of London. We argue in the next section that these
data and those from Experiment 1 are best accommodated
by a cognitive architecture that primarily uses situation-
action knowledge to solve problems.

Modeling Problem Solving Following Action
Selection

Problem solving knowledge has often been modeled in
production system architectures, a tradition with its origins
in Newell & Simon’s (1972) seminal book Human Problem
Solving. Recently the ACT-r cognitive architecture has
been used to produce production system accounts of
problem solving. In traditional problem solving accounts,
situation-only knowledge is represented in the following
format: IF situation THEN action.

The model presented (TOL-GLAM) here is coded in the
Glamorgan Problem Solver (GLAM-PS) architecture. This
is notable because it doesn’t use amodal representation and
doesn’t have a dedicated mechanism for processing goals
(see Miles, 2011). TOL-GLAM is thus an example of an

embodied account of problem solving in the Tower of
London, with emphasis placed on representation in the
motor and perceptual systems used to complete the task. In
terms of the representation of knowledge about solving the
ToL, much of what TOL-GLAM knows is stored in the
format: IF situation AND action THEN inhibit/activate
action. This knowledge verifies the appropriateness of an
already selected action, rather than specifying what action
should be taken in a particular situation.

The TOL-GLAM Model

In the GLAM-PS architecture there are modules dedicated
to visual perception, ocular movement and motor actions.
There are also modules dealing with other functions, for
example auditory perception, speech production and bodily
movement. Each module has its own production memory,
working memory and production matching bottleneck.

Executive control within a GLAM-PS model emerges
from the interaction of distributed subsystems (a similar
idea was explored by Barnard, 1991). This control is based
on each module’s ability to see what is happening in all the
other modules. So a production in the motor action module
can match to working memory representations in other
modules as well as working memory representations in the
motor module itself.

Situation-Only Problem Solving in TOL-GLAM

There are examples of situation-only and situation-action
problem solving knowledge in TOL-GLAM. In the two
Experiments the first move is restricted to two possibilities.
The disk that is to be moved is always known (as it is on top
of all the other disks in a tower configuration), the only
question is the disks destination.

The situation-only algorithm used by TOL-GLAM begins
by generating an action plan for moving a disk. This action
plan is represented in the motor module, within a
hierarchical structure. An example is given below (with
only key attributes shown):

Action_planl
Type
First_element
Last element

Action_plan
disk_clickl
destination_clickl

Disk_clickl
Type click_on_object
Location diskA_location
Super _element Action_planl
Previous_element none

Next _element  destination clickl

Destination_clickl
Type click_on_object
Location Peg?2 location
Super_element Action_planl
Previous_elementDisk clickl

Next _element  none
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This initial action plan will often not involve the
movement of the top disk. Typically TOL-GLAM, will first
represent the movement of the bottom disk in the tower to
its goal location. This reflects a means-ends analysis of the
ToL problem where the bottom disk is prioritized as the
biggest difference between the start state and goal state.
While the GLAM-PS architecture doesn’t feature explicit
goal representation, what is happening is that TOL-GLAM
is effectively ‘subgoaling’ the bottom disk. The model then
represents a move of the top disk (the first blocking disk) to
the peg where the ‘subgoaled’ disk is not going (in order to
remove the block).

An exception to this process occurs when TOL-GLAM
recalls a previous problem that was apparently the same as
the current problem. In this case the first move that was
made successfully in the previous problem is used to
determine where the top disk should go.

TOL-GLAM will now have a representation of a potential
first move in its motor module. It is at this point that
situation-action knowledge is used to determine the
appropriateness of the action, either increasing its activation
till it is executed, or blocking its execution.

Situation-Action Problem Solving in TOL-GLAM

The situation-action algorithm used in TOL-GLAM is
based upon forward search, and makes wuse of
representational simulation of the results of the move that is
being considered.

The process begins after a potential move of the top disk
has been represented in the motor module. At this point
productions in the visual module are able to match to this
motor module representation and simulate the result of this
action. In Miles (2011) visually simulated interim stages
were utilized in a model of offline algebra problem solving,
what the TOL-GLAM model does is very similar,
essentially looking ahead to see what the results of the
action that is being considered will be.

Simulation of the results of the move involves the
creation of a projected representation of the disk being
moved in its new location, and the inhibition of the
representation of the disk in its current location. Once the
move has been simulated in the visual module, the motor
module is now able to consider the next move that will be
made after the current one. The productions that do this
match both to simulated and actual visual representations.

At this stage an action plan will be generated for the
second move and typically, any conflict with the first move
will often become apparent to TOL-GLAM. This is
particularly the case if the first move blocks the ideal second
move. A production looks for incompatibilities between the
two moves being considered. On the other hand if the first
move doesn’t block the ideal second move then it is taken as
providing evidence that the first move is a good one.

Executing an Action in TOL-GLAM

Key features of the GLAM-PS architecture determine the
process of action execution in TOL-GLAM. One of these is
the Action-Execution Threshold (AET), a level of activation
that must be reached before an action or action plan will be
executed. The AET is an important element of GLAM-PS
because it allows actions to be represented without
necessarily being executed (Miles, 2009). Within the TOL-
GLAM model it allows a move to be represented and then
evidence gathered about the suitability of the move. There
is no limit in GLAM-PS to the number of productions that
can match if those productions change an existing
representations activation level. This means that in TOL-
GLAM the representation of a move can be simultaneously
inhibited and activated by competing productions. It is the
relative strength of the competing productions that will
determine whether the action representation will continue to
increase in activation until it surpasses the AET, or be
inhibited.

Simulating the Results of Experiment 1 and 2 in
TOL-GLAM

To simulate the results of Experiments 1 and 2 TOL-
GLAM was setup with productions that represented
knowledge gained from previous training problems, which
were added to the productions that model normal problem
solving in the ToL.

The additional productions, modeling knowledge from
specific previous problems, trigger when TOL-GLAM is
faced with a problem that has the same initial configuration
and goal configuration as the previous problem in terms of
number of disks on each peg in each configuration (so an
exact match wasn’t necessary). The identity of the first disk
to be moved must also match. These encodings of solutions
from previous problems result in the first move used in the
previous problem first being represented in the motor
module and subsequently quickly gaining activation.

The performance of the model was tested on simulation
runs of the 84 problems from which data were taken for
Experiment 1 (28 each in the repeat, novel and false-
analogy conditions) and the 256 problems from Experiment
2 (128 novel, 128 false-analogy).

In GLAM-PS each production has a strength value, this
strength modifies the impact of the production — so a strong
production will increase the activation of an action
representation more than a weak one. The strength of the
productions modeling knowledge from the previous
problem was systematically varied through a single
parameter beta, which multiplied the strength of productions
activating a representation of the action used previously.
The beta values used conformed to a Gaussian distribution,
meaning that in some case the influence of previous
problems was strong, but in others the influence was
weaker. A second parameter theta modified the strength of
productions that solved the problems, this was a free
parameter with a single value across all simulations runs
used to maximize the match between model and data.
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Another free parameter was AET, the level of activation at
which an action was executed in the motor module.
Additional parameters included the time taken to initiate
problem solving and the time taken to execute a mouse
click.

A comparison of the models performance to the latency

and accuracy data showed relatively strong fits, Xz =.72 and

%> = .83 respectively. The matches of model to data do
show some differences with the model making fewer errors
than participants did in Experiment 1, but more errors than
seen in Experiment 2. The timing of the mouse clicks was
simulated more closely, partially reflecting the availability
of parameters that varied the timing of the models
performance.

A key purpose of the model was to simulate the
differences in latency seen in the false-analogy condition (as
compared to Repeat and Novel problems). In this respect
the model is very successful, showing the same differences
as participants.

General Discussion

Experiments 1 and 2 provide evidence of problem solving
occurring after move-selection in the Tower of London
(ToL). The TOL-GLAM model accounts for this data
through a mechanism based around situation-action
knowledge. This knowledge is encoded in TOL-GLAM as
production rules that increase or decrease the activation of a

particular motor action, depending on the apparent
suitability of this action. The delays seen in move
completion during the false-analogy condition in

Experiment 1 and 2 are explained as TOL-GLAM having
‘second thoughts’ about the suitability of an already selected
move. Our findings are similar to those of Walsh and
Anderson (2009) who demonstrated how participants
adaptively ‘changed their minds’ about the best strategy to
solve a multiplication problem after a quick initial choice.
The way problem solving knowledge is structured in
TOL-GLAM is noteworthy, relatively simple situation-only
productions suggest a possible action, while more complex
situation-action productions contain much of the knowledge
that TOL-GLAM possess of how to solve ToL problems.
The notion that actions are selected and then evaluated is
found in other theories. However in most existing theories
this evaluation occurs in a single cycle of the system, and is
only necessary if there is a conflict between two or more
possible actions. For example in SOAR (Newell, 1990)
preference rules are used for conflict resolution, while in
ACT-r (Anderson, 2007) the relative utility of actions is
considered. In TOL-GLAM, and more generally in the
GLAM-PS architecture, the evaluation of an action is a
protracted process, typically involving the evaluation of a
single action, rather than multiple competing actions.
Although the current research focuses on a simple
knowledge-lean domain (ToL), the issue explored is
fundamental to understanding human thought. Current
accounts (e.g. ACT-r, SOAR) appear to suggest that we
think about situations, reason about them and only then

select an action. The suggestion here is that much of human
thought begins with a possible action, and is followed by
reasoning about the suitability of this action for the current
situation.
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