Modeling a reaction time variant of the Perruchet effect in humans

Amy McAndrew (am375@exeter.ac.uk)

Fayme Yeates

Frederick Verbruggen Ian P.L. McLaren

School of Psychology, College of Life and Environmental Sciences, University of Exeter, UK.

Abstract

This paper presents a reaction time (RT) experiment that follows
on from the work of Perruchet, Cleeremans, and Destrebeceqz
(2006), investigating the extent to which reaction times (RTs)
are governed by the conscious expectancy of a particular
response. In this experiment, participants were presented with a
single stimulus (which we will call the conditioned stimulus;
CS) followed by one of two outcomes (which we will call
unconditioned stimuli; USs); to which participants had to make
an appropriate instrumental response. On every trial we recorded
the time taken to make this response and participants were asked
to rate their expectancy that one of the USs (US1) was going to
occur. We found that the expectancy rating for US1 correlated
negatively with RT on USI trials. Over successive runs of
reinforcement, when participants rated US1 as less likely to
occur they were slower to respond to US1 (lower ratings, higher
RTs). When we calculated the expectancy for US2 as the
complement of that for US1 expectancy, expectancy of US2
correlated positively with RTs. Thus, across runs of
reinforcement, participants responded more quickly to US2
when considering US2 less likely (low rating, low RT). We
argue that the requirement to make a conscious expectancy
rating results in participants attending more to US1 occurrences
than those of US2. This results in a qualitatively different
relationship between conscious expectancy and automatic
responses that cannot be reconciled by a single processing
system account. A dual processing system explanation of
learning is proposed to explain these results. In support of this
position, we successfully modeled our US2 RT data using a
modified version of the Augmented simple recurrent network
(Yeates, Jones, Wills, McLaren, & McLaren, 2013).

Keywords: Perruchet effect; Modeling; Dual processing
systems; AugSRN; Associative learning

Introduction

Recently, there has been a lively debate on the extent to
which learning is governed by a single processing system or
dual processing systems (e.g. McLaren, Green, &
Mackintosh, 1994). A single processing system view
advocates one conscious reasoning process (e.g. Lovibond,
& Shanks, 2002). From this viewpoint, conditioned
responding (CR) obtained in an instrumental conditioning
paradigm is driven by contingency knowledge that develops
during the course of conditioning between a conditioned
stimulus (CS) and unconditioned stimulus (US). Within a
dual processing system framework, associative automatic
processes can be responsible for the CR without explicit
contingency knowledge. Based on this account, an
associative link forms between a representation of the CS
and representation of the US. Presentation of the CS
activates the link between the CS and US, which activates
the US representation, which then produces a CR.

One of the most convincing sources of evidence
(Mitchell, De Houwer, & Lovibond, 2009; Shanks, & St
John, 1994) for dual processing systems is the Perruchet
effect (Perruchet, 1985). In the reaction time (RT) version of
this experiment employed by Perruchet, Cleeremans, and
Destrebeceqz (2006), participants hear an auditory tone (the
CS) on every trial. Half the time the CS is followed by a
visual US to which participants have to make a keypress
response. On the other half of the trials there is no US and
participants are not required to make a response.
Participants make an online expectancy rating on every trial
regarding the extent to which they think the US is going to
appear on that trial.

Across successive CS-US (reinforced) trials, expectancy
ratings that the US will occur decrease. However, after
experiencing runs of nonreinforced, CS-noUS, trials
participants’ ratings indicate they think it more likely that
the US will occur; and thus, that a response is more likely to
be required. This is consistent with the gambler’s fallacy
phenomenon (Burns, & Corpus, 2004). In contrast, the CR
(the instrumental response to the US measured by RT) gets
faster (improves) with successive reinforcement. This means
consecutive CS-US trials result in shorter RTs, whereas runs
involving an absence of the US result in slower responding.
This pattern of responding is hard to reconcile with the
gambler’s fallacy, as participants become quicker to respond
to the US at the same time as their expectancy of the US
(and thus their expectancy that they are required to make a
response) decreases. An associative account can, however,
explain the change in RT with reinforcement history, as
over successively reinforced trials the associative link
between the CS representation and the US representation
becomes stronger, leading to faster RTs. This link is
extinguished and weakened by the absence of the US on the
CS-noUS trials, leading to slower RTs. Thus, a dual
processing systems account is required to explain both the
conscious processes underlying expectancy along with the
RT pattern that captures our automatic, associative learning
about CS-US relationships (McLaren, Green, &
Mackintosh, 1994).

The experiment presented here aims to further investigate
the effects observed in a RT version of the Perruchet
paradigm, and to provide support for a dual processing
systems account of learning. To build on the original
experiments, we presented participants with two USs in
order to obtain RT data on every trial and to keep the
demands of each trial consistent. We were therefore able to
take a measure of CR for the two USs separately and
compare these to expectancy of each US. If RT and
expectancy of the US are found to follow different trends
this would imply that a single processing system
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explanation of learning would be unable to explain the
results and that a dual processing systems account would be
more appropriate. If our assumptions regarding the nature of
the processes underlying RT performance are correct, we
should be able to model these associatively. Therefore, to
assess this claim, we used a model of human learning (the
revised augmented simple recurrent network: RASRN;
Yeates, Jones, Wills, McLaren, & McLaren, 2013) in an
attempt to simulate the instrumental responding of
participants in this experiment.

Method
Participants
64 University of Exeter students (13 men and 51 women)
were recruited for course credit to participate in this
experiment. Their ages ranged from 18 to 49 years, with a
mean age of 21.

Design and Stimuli

The CS was visually presented to participants as a brown
cylinder (11 x 7 cm) in the centre of a white screen. The
words “Peanut Butter” and “Brown Sugar” were the two
USs that followed the presentation of the CS. Both USs
were presented to and counterbalanced across each
participant as US1 and US2. Each of the USs was presented
half the time after the CS, forming a partial reinforcement
schedule where the occurrence of each US was equally
likely.

In a typical Perruchet design, we are interested in runs of
reinforced and non-reinforced trials, therefore a repeated-
measures factor of run length (the number of a given trial
type that occur consecutively in a row) was constructed.
There were 8 levels of this factor; -4, -3, -2, -1, +1, +2, +3,
and +4. When analyzing the sequence of trials given to each
participant in this experiment, we can examine repetitions of
the same US (D, different trials) or repetitions of the
opposing US (S, same trials) as equivalents of these positive
and negative runs of trials, respectively. A CR measurement
is taken on the trial after the run itself, thus when
considering US1 trials, a +2 trial would have involved two
consecutive CS-US1 trials prior to this, whereas a -3 trial
would have been preceded by a run of three CS-US2 trials
(see Table 1 for an example of how runs are labeled within
the sequence).

Table 1. An example of a sequence of CS-US pairings and
the corresponding run lengths of these trials. These are
labeled both in terms of classic Perruchet positive and
negative runs; and in terms of same (S) and different (D)
runs. Trial type indicates whether US1 or US2 is paired with
the CS (which occurs on each trial).

distribution as shown in Table 2. However, the original
Perruchet experiments only comprised of one CS and one
US, while the current experiment involves two USs. As each
run has to end in the opposite trial type (e.g. a US1 run
would have to end in a US2 trial), two ‘different’ runs of
length five are included in each block. These are a
requirement for the sequence, are counterbalanced across
the US type across blocks and excluded from the analysis;
and so are not discussed further.

Table 2. The binomial distribution of run lengths.

Run -4 -3 -2 -1 41 42 43 4

length D4 D3 D2 DI S1 S2 S3 sS4

Number 4 8 16 16 8 4 2
of runs

fyr;ael USI USI US2 US2 US2 USI US2
Run 1 2+ 42 3 1
length SI D2 SI S2 D3 DI

We aimed to compile sequences of US1 and US2 trials
that involved these same (S/positive) and different
(D/negative) runs from 1 to 4, following a binominal

In this experiment, each participant experienced two
blocks of 57 trials, which comprised of unique, randomized
sequences of run lengths. These sequences were constructed
using MatLab. We measured both expectancy and RT as our
dependent variables and compared them across run length
for both USs separately.

Procedure

A cover story was given to participants, who were told
they were playing the role of a doctor seeing a number of
patients with both diabetes and a nut allergy. Participants
were exposed to the CS for 5 seconds on each trial and were
told that this brown cylinder could represent either peanut
butter or brown sugar. During this time, participants had to
make a rating on a scale of 1 to 9 regarding the extent they
thought this trial would be a US1 trial. For half of the
participants, peanut butter was USI; for the other half,
brown sugar was US1. If US1 was peanut butter, they were
told that a rating of 1 would indicate: "I definitely do not
think the patient will need adrenaline"; up to a rating of 9: "I
definitely think the patient will need adrenaline". Adrenaline
was replaced by insulin when brown sugar was USI.
Participants were told that half the time “peanut butter”
would appear after the CS and on the other half of trials
“brown sugar” would appear. One of these stimuli (the US)
was then presented immediately after the CS. Participants
were instructed to respond as quickly as possible to the
stimuli to administer adrenaline to “peanut butter” and
insulin to “brown sugar” with left Ctrl and left Alt keys
(counterbalanced) to avoid anaphylactic shock or
hyperglycemia, respectively. The US remained onscreen
until a response was made, followed by a variable ITI of 2
to 5 seconds before the next trial commenced. Participants
were allowed a short break between the two blocks to allow
them to rest.

Results
Both RT and expectancy data were collected using
MatLab and PsychToolbox (Brainard, 1997). RTs for US1
and US2 were recorded on each trial in milliseconds (ms).
Any RTs over 1 second were excluded from the analyses.
The mean RT for each run length for US1 and US2 can be
seen in Fig. 1 top panel. In terms of expectancy, participants
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were required to make ratings based on the extent they
thought US1 was going to occur. Therefore, we divided the
data into average expectancy for US1 on USI trials and
average expectancy for US1 on US2 trials for each
participant on each run length, see Fig. 1 bottom panel.
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Figure 1. The top panel displays the RT data for US1 and
US2 across run length. The bottom panel displays the
expectancy for US1 on US1 and US2 trials across run
length.

A two-way repeated-measures analysis of variance
(ANOVA) was run on the RT data using the factors US
(US1 versus US2) and run length (-4, -3, -2, -1, +1, +2, +3,
+4). A significant interaction between US and run length
was found, F(7,238) = 2.58, MSE = 0.025, p = .029, as well
as a significant linear trend interaction, F(1,34) = 8.84, MSE
= 0.085, p = .005. This indicates that there is a significant
difference in US1 and US2 RTs across run length. From
Fig. 1 top panel, it can be seen that US1 RTs appear to
increase after a run of USI trials (i.e. RT increases when run
length increases), whilst US2 RTs decrease after a run of
US2 trials (i.e. RT decreases when run length increases).

One-way repeated-measures ANOVAs were then used to
analyze the US1 and US2 RT data separately. There is a
highly significant main effect of run length for the US2 RTs,
F(7,336) = 6.21, MSE = 0.07, p <.001. There was also a
significant linear trend decreasing from -4 to +4 across run
length, F(1,48) = 16.86, MSE = 0.27, p < .001. With regards
to US1 RTs, however, the numerically increasing linear
trend from -4 to +4 was not significant.

A two-way repeated-measures ANOVA was also run on
the US1 expectancy data, again with the factors US and run
length. A significant interaction between US and run length
was found, F(7,371) = 3.39, MSE = 22.42, p = .017, as well

as a significant linear trend interaction, F(1,53) = 4.43, MSE
=48.92, p = .040. This indicates expectancy of USI on USI
differs significantly from expectancy of US1 on US2 trials
across run length. From Fig. 1 bottom panel, it appears that
expectancy for US1 on USI trials decreases across run
length whilst expectancy of US1 on US2 trials increases
across run length.

One-way repeated-measures ANOVAs were then used to
analyze expectancy on US1 and US2 trials separately. There
is a significant main effect of expectancy of US1 on US2
trials across run length, F(7,399) = 2.51, MSE = 9.78, p =
.041, and a significant linear trend increasing from -4 to +4,
F(1,57) = 5.38, MSE = 33.78, p = .024. With regards to
expectancy of US1 on USI trials, a marginally significant
main effect of run length was found, (7,392) = 2.44, MSE
=11.26, p = .051. However, the decreasing numerical linear
trend was not reliable.

Discussion

Regarding the expectancy measure (Fig. 1, bottom panel),
we should make it clear from the start that both lines on the
graph reflect US1 expectancy, however we have split this by
whether the rating was taken on a US1 or US2 trial.
Expectancy for US1 on US1 and US2 trials can be
explained by the gambler’s fallacy phenomenon (Burns &
Corpus, 2004). Expectancy of US1 after a run of USI trials
numerically decreases, while expectancy of US1 after a run
of US2 trials increases. Thus, after a run of USI trials the
participant thinks US2 is more likely to occur, so
expectancy of US1 declines; but after a run of US2 trials the
participant now believes it is US1s turn, so expectancy of
US| increases.

Within the RT data, participants’ responses to USI
numerically increased as a function of run length. This
indicates participants were faster to respond after successive
CS-US2 trials, and therefore were slower after successive
CS-US1 trials. We found a negative correlation between
US1 expectancy and US1 RTs, » = -.871, n = 8, p = .005.
Thus, after a run of CS-USI trials participants made lower
ratings that US1 would occur and were slower to make US1
responses. Therefore it would appear that a propositional
explanation would be sufficient to explain this result, by
simply claiming expectancy directly influenced RT.

Turning to US2, we propose that, logically, if a
participant is expecting one US to happen then they are not
expecting the other, so if a participant is expecting a USI
trial to occur then that implies they are not expecting a US2
trial. This would suggest expectancy of the two USs is
complementary such that, if expectancy of US1 is the
highest possible rating (9), then expectancy of US2 should
be the lowest possible rating (1). We can assume that these
sum (9+1=10) and thus calculate expectancy for US2 as
equal to 10 minus US1 expectancy. Based on this
assumption, we can predict participants’ expectancy of US2
on US2 trials as being the complement of their expectancy
of US1 on US2 trials, see Fig. 2. If this supposition is true,
then we have shown expectancy of US2 on US2 trials
decreases as a function of run length. Therefore, higher
ratings of US2 are made if participants have experienced a

3016



run of USI trials, and vice versa. This pattern of responding
can be attributed to the propositional, gambler’s fallacy
phenomenon discussed previously.

Expectancy on US2 trials
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Figure 2. This graph displays expectancy of US1 on US2
trials and the hypothetical expectacny of US2 on US2 trials.

In order to verify if our inference regarding expectancy of
US2 on US2 trials was correct, 32 of our participants carried
out a further two experimental blocks to those described in
the earlier method section. In these blocks, two (identical)
cylinders were presented (successively) and participants had
to make an expectancy rating to each. One cylinder
required the participants to make a “peanut butter” rating,
the other a “brown sugar” rating. Participants then had to
make the appropriate RT response as in the previous blocks.
Comparing participants expectancy of US1 on USI trials
and their expectancy of US2 on USI1 trials, there was a
highly significant negative correlation, » = -.969, n = 8§, p <
.001. This shows that on USI trials, if participants were for
example, expecting a US1 trial they were not expecting a
US2, and vice versa. Additionally, comparing expectancy of
US1 on US2 trials and expectancy of US2 on US2 trials,
there was also a highly significant negative correlation, » = -
944, n =8, p <.001. This also shows that on US2 trials, if
participants were expecting a US1 they were not expecting a
US2. Therefore, our ecarlier assumption receives
considerable empirical support from this check.

Given that expectancy of US2 on US2 trials decreases as
a function of run length, interestingly we found that US2
RTs also decreased as a function of run length (see Fig. 1).
Participants were faster to respond to US2 on a run of CS-
US2 trials, even though their expectancy that US2 would
occur had decreased. We have therefore demonstrated a
positive correlation between expectancy of US2 on US2
trials and US2 RTs, r = .833, n = 8, p = .010. For example,
after a run of CS-US2 trials, participants rate that a US1 trial
is more likely (and therefore a US2 is less likely), yet are
faster to respond to US2. It is consequently hard to reconcile
this expectancy with the RT result if we take the position
that a single propositional explanation could explain our
data. We would argue that associative, link-based processes
are required to explain the RTs for US2. One version of this
would be that when a person experiences the CS followed
by US2, a link is set up between the two representations of
these stimuli. After a run of CS-US2 trials this would
strengthen the link between these stimuli, resulting in a
stronger CR (i.e. a faster key press response) to US2.

However, after a run of CS-US1 trials, the link between CS
and US1 strengthens, but the link between the CS and US2
weakens (extinction). Hence, the more consecutive CS-US1
trials there are, the weaker the CR to US2 (i.e. the slower
the RT). The results for US2 are in agreement with previous
Perruchet RT experiments, in which a single propositional
process cannot explain both the expectancy and RT data.

In one experiment we have shown two different results,
one where expectancy and RT appear positively correlated,
and another where they are negatively correlated. We have,
as a consequence, proposed a dual processing systems
explanation of the US2 result. We would now like to pursue
this further, by speculating how associative and
propositional processes could produce both results. We
hypothesize that the difference between the two effects (for
US1 and US2) lies in where participants' attention is
focused. As participants are directed to focus on one US
(US1), to which they are making expectancy ratings, this
effectively manipulates the expression of both propositional
and associative processing systems for that US. We assume
that because participants are attending to US1, they spend
less time thinking about US2 and this would suggest
conscious reasoning processes are more focused on the
processing of US1 than US2. If US2 is not being
consciously processed (to the same extent) then changes in
US2 performance in the experiment might be driven by an
alternative processing system. By reducing attention to US2,
we believe we have created an environment conducive to
associative learning. In contrast, a large amount of cognitive
resource is being directed to processing US1, and perhaps
this has led conscious processes to play a larger role in RT
performance for this outcome, and inhibited the expression
of associative processes in this case.

Modeling

To explore how associative processes might be driving
instrumental responses to US2, we chose to simulate this
experiment using an established model of associative
learning. We chose the augmented SRN (Cleeremans, &
McClelland, 1991; as revised by Yeates, Jones, Wills,
McLaren, & McLaren, 2013), which is particularly well-
suited to this task as the simple recurrent network (SRN;
Elman, 1990) was devised to account for learning that is
observed across sequences of trials. Our aim was to
ascertain the extent to which learning is driven by the
development of associative strength between the CS and
US2, or whether the sequential structure of the experiment
(runs of US1 and US2) is what drives this result.

The model (see Fig. 3) is a connectionist network that
feeds input activation to a hidden layer, which in turn feeds
activation forward into an output layer, each employing the
logistic activation function (Rumelhart, Hinton, & Williams,
1985). The activation of the hidden layer is copied back into
a set of context units on each trial, which are then fed into
the hidden layer as input on the next trial. This recurrent
loop provides the model with a memory of the hidden
layer’s representation of the last trial. Learning occurs
through back-propagation of error correction, comparing
output activation to expected responses. Connection weight
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changes to represent both short- and long-term learning are
calculated using fast and slow learning rates, respectively.
Fast weights have a higher learning rate but decay more
rapidly, and were introduced to the model by Cleeremans
and McClelland (1991) to account for the short term
priming effects evident in their data. The slow weights
reflect more permanent learning that takes a longer time to
develop due to the lower learning rate.

Revised Augmented SRN

Current trial response

Output

units

. One-to-one feedback
Hidden connections
units

Previous trial
response

Current trial
stimuli

Copy of previous trial hidden
unit activation

Figure 3. Architecture of the revised version of the
Augmented SRN by Yeates et al. (2013)

The model in this simulation involved two output units to
represent Ctrl and Alt keypress responses to US1 and US2.
As well as the context units (copy of the previous trial
hidden unit activation) there were five additional input units.
These followed revisions to the SRN by Yeates et al. (2013,
see for further discussion) and included both a
representation of the previous response made (two units, one
for US1 and one for US2) as well as a representation of the
on-screen stimuli on the current trial (one CS unit and two
US units, one to represent each of US1 and US2). The free
parameters of the model were: 20 hidden units with the
learning rates set at 0.4 and 0.533 for slow and fast learning
rates, respectively (based on Jones, & McLaren, 2009).

The model was run 64 times with random initial weights
of between -0.5 and 0.5 to give the same n of networks as
participants in the experiment. Each of these simulations
used binary input activations representing the exact
occurrence of the CS and USs taken from the unique
sequences that each of the 64 participants were given. Mean
square error (MSE) was calculated as an index of
responding to the US on each trial from the squared
difference between output activations and the expected
activations for the two possible responses (0.1 and 0.9 for
incorrect and correct response, respectively). Trials were
analyzed according to run length and US, like the variables
of interest used in the behavioral experiment.

We analyzed the MSE for each US using one-way
repeated measure ANOVAs and thus examined the
modeling data in the same fashion as the behavioral data.
There was a main effect of run length in both US1, F(7,406)
= 1339.80, MSE = 0.67, p < .001, and US2, F(7,441) =
1546.46, MSE = 0.67, p < .001. Thus, for both US1 and US2
MSE differed according to run lengths. Furthermore, we
found that there was a highly significant linear contrast on
run length for both USs, F(1,58) = 2633.43, MSE = 4.44, p

<.001, and F(1,63) = 2908.722, MSE = 4.14, p < .001, for
US1 and US2 respectively. This is seen quite clearly in Fig.
4, which shows a decreasing linear trend for both USs
(which do not differ significantly) across run length. It can
also be seen from the graph the two functions of MSE lie
almost entirely on top of one another. Thus, responding to
both of these USs is extremely similar, both demonstrating a
reduction in error as run length increases.

Modelling data
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Figure 4. Graph of the mean square error (MSE) of the
model

When comparing the modeling data to the human data we
are using MSE as an approximation to RTs, as this is what
we consider to capture the automatic, associative
relationship between CS and US. We can see that human RT
responding to US2 has the same, decreasing function across
increasing reinforcement as is produced by the AugSRN.
This is supported by a significant positive correlation
between run length on RT and MSE results for US2, r =
.895, n =8, p =.003. Clearly then, the Augmented SRN is a
good model of human performance on US2 in our
experiment, but a poor one for USI.

Further investigation, however, reveals that the basis for
performance may not be the conventional associative
explanation offered for the Perruchet effect. There is no
doubt that transient fluctuations in the strength of CS-US
associations could explain the results observed for US2.
But, the Augmented SRN can also learn about the sequence
of events that take place, rather than just in terms of CS-US
associations; and with the parameters given in Yeates et al.,
(2013) it could be that the pattern shown in Fig. 4 is based
on this type of learning, rather than CS-US learning. This
can be investigated by running the same simulation, but
with the CS unit permanently set to zero so that no change
in CS-US associations is possible. When we did this, the
same function emerged, see Fig. 5. Thus, we would appear
to have evidence suggesting that transient changes in CS-US
associations might not be the basis of the function shown in
Fig. 4. This result is reminiscent of that reported by
Mitchell, Wardle, Lovibond, Weidemann and Chang (2010),
who were able to get a Perruchet type effect in an RT
experiment without any CSs. We have essentially the same
result in our simulation, using a model that is well known
for its ability to generate sequential effects.

But if sequential effects are the correct explanation of our
modeling result, the removal of all the input units from the
model (leaving only the hidden and output layers) should
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abolish this effect, as there would be nothing left in the
model that could produce sequential effects (no input or
copy-back from the hidden layer). However, when we did
this, we found the same decreasing function in MSE as seen
before in our previous simulations (see Fig. 5). This
demonstrates that sequential effects are not necessarily
driving our result, but rather that the associative fluctuations
between the hidden and output units are.

Further modelling
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Figure 5. Graph of the MSE for the further modelling

At the beginning of these last simulations the hidden units
have activation values of 0.5 (corresponding to zero input).
Therefore, after a reinforced trial the link between any
hidden unit and the output unit will be strengthened.
Consequently, if another reinforced trial follows the
previous one this link is again strengthened leading the
model to produce a smaller MSE. In contrast, a
nonreinforced trial weakens this link, and the MSE
increases. Therefore, there is an associative explanation for
the Perruchet effect that emerges from this model, just not
the classic explanation as it is usually cited. It is worth
emphasizing that it is an associative explanation that applies
here, and not one based on conscious, cognitive expectancy
of the US. The pattern seen for USI in our empirical data
follows that generated by the expectancy ratings given by
our participants and is quite different from both the pattern
seen for US2 and the pattern generated by our model
simulating an explanation in terms of CS-US associations,
sequential effects, or hidden to output layer connections.
The correlation between human RTs and modeling data for
USI is negative and non-significant across run length, r = -
.562, n =8, p = .148. Thus, an associative explanation will
not fit these data, and a more cognitive model is required.

General discussion

This paper presents behavioral and modeling data based
on a new RT variant of the classic RT Perruchet paradigm.
In our behavioral experiment we produced a Perruchet-type
effect whereby expectancy of US2 decreased as a function
of run length while RT responses to US2 decreased. We
have rejected a single processing system explanation of
learning in favor of a dual processing systems argument to
explain this result. The propositional, gambler’s fallacy
heuristic (Burns & Corpus, 2004) explains why expectancy
of US2 decreased as the run of CS-US2 trials increased, as
participants are deciding that it is less likely another US2
trial will happen if they have experienced a run of US2

trials. However, within the RT data, after a run of CS-US2
trials participants are faster to respond to US2 despite low
expectancy that US2 will occur. This seems paradoxical
when considered from a single systems view, but an
associative account can explain the RT result, in terms of
fluctuating hidden-output unit associations, sequential
effects or CS-US associations. Our feeling is that it would
be possible to parameterise the Augmented SRN to produce
the US2 pattern of results on the basis of any of these
potential mechanisms, though it would appear that in our
current simulations the effect is mainly carried by
fluctuating hidden-output associations. Note, however, that
in Fig. 5 the pattern is more pronounced when the input to
the model is enabled (suggesting that sequential effects can
contribute), and we have run other simulations that show
that the presence or absence of a CS representation can also
strengthen or weaken this effect indicating that CS-US
associations can also be effective in this model. More
research will be needed to determine which of these
mechanisms is the correct explanation for our data.

In conclusion, the evidence for dissociable propositional
and associative processes provided by Perruchet type RT
experiments is perhaps stronger than we thought. Explaining
these effects with reference to a single propositional system,
however, is likely to prove a difficult challenge for theorists
of that persuasion.
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