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Abstract 
The blocking effect in causal learning, once taken as a 
hallmark of associative learning, has recently been explained 
in terms of an explicit deductive reasoning process. Yet when 
the conditions necessary for deduction are removed, a small 
blocking effect is often still present. We examined the 
relationship between blocking and participants’ performance 
on analytical thinking and probabilistic reasoning measures. 
Inferential processes predict blocking or an absence of 
blocking in this situation, depending on the observer’s 
consideration of conditional probabilities. Although Bayesian 
inference predicts blocking, most individuals are not inclined 
to use this form of probabilistic reasoning explicitly, an 
observation we confirmed using a logical problem with 
similar properties to the relationships present in the blocking 
effect. Furthermore, participants who showed the greatest 
capacity for analytical reflection were less likely to show a 
blocking effect, suggesting that blocking in causal learning is 
the product of an intuitive and unreflective thought process. 

Keywords: Blocking; causal learning; inferential reasoning; 
associative learning; Bayesian inference. 

Introduction 
Many theories of causal learning assume that when 
individuals make judgments about the relationship between 
putative causes and their effects, some form of inferential 
reasoning is involved. However, theories differ substantially 
in how they place inferential reasoning amongst other 
contributing mechanisms. Some authors have argued that all 
causal judgments are necessarily the product of explicit 
inferential processes based on consciously mediated 
propositions about the relationships between events 
(Mitchell, De Houwer and Lovibond, 2009). Others assume 
that in making causal judgments about a cue, relatively 
automatic memory retrieval mechanisms based on 
associative learning play a much greater role, bringing to 
mind the events that were previously paired with that cue. 
According to this account, inferential thoughts of an 
analytical nature – for instance based on formal logic and 
reasoning – play a smaller role, in some cases perhaps only 
when strongly encouraged. 

Blocking in causal learning 
The blocking effect has become an important test bed for 

these arguments. In a typical blocking experiment, one cue 
(A) is presented and is reliably followed by a particular 
outcome. In a second stage, A is presented with another cue 
(B) and this compound of two cues is followed by the 

outcome. B is never presented by itself and its relationship 
with the outcome is thus ambiguous. When asked to give a 
rating of the extent to which each of a number of cues 
causes the outcome, participants often given a lower rating 
for B than for control cues (C and D) that were also 
presented in compound and followed by the outcome but 
were never presented on their own.  

The cues and outcomes are often presented within a 
hypothetical scenario. For instance, in the allergist task, the 
participant assumes the role of a doctor trying to determine 
the cause of a patient’s allergic reactions. The participant 
might observe that when the patient eats Fish they suffer 
from a reaction (A+), and later when the patient eats Fish 
and Rice (AB+), they suffer from the same allergic reaction. 
The patient might also suffer from an allergic reaction after 
eating Mushrooms and Pasta (CD+), but does not suffer a 
reaction after eating various other foods (e.g. E-). After 
learning to predict what will happen after certain meals, 
through a process of trial and error, the participant must then 
make an explicit judgment about the extent to which a food 
or foods cause the allergic reaction, or the likelihood that a 
reaction will occur given that certain foods have been 
consumed. 

The blocking effect is well documented in causal learning 
experiments using the allergist task and other similar 
scenarios. Its presence was originally taken as evidence that 
a similar associative learning process was responsible for 
causal learning and conditioning in humans and other 
animals because blocking in classical conditioning is widely 
replicated and well explained by associative learning 
theories (Dickinson, Shanks, and Evenden, 1984). Several 
other prominent theoretical approaches to causal reasoning 
also provide explanations of blocking (e.g. Cheng, 1997; 
Griffiths, Sobel, Tenenbaum, Gopnik, 2011; Waldmann, 
2000). Whether based on associations or statistical 
computation, many theories of causal learning share an 
assumption that causal judgments partly reflect an implicit 
sensitivity to the contingencies between observed events.  
This sensitivity allows the observer to make judgments 
about causation with little deliberate mental effort, even 
when the causal relationships between cues and outcomes 
are ambiguous and must be inferred indirectly, as in the case 
of blocking (e.g. see Sternberg and McClelland, 2011).  

Blocking and inferential reasoning 
Recently, several authors have argued for an explanation 

of blocking that relies only on inferential reasoning based 
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upon a relatively simple set of propositions (De Houwer, 
Beckers, & Glautier, 2002; Lovibond, Been, Mitchell, 
Bouton, & Frohardt, 2003). Proponents of this account point 
out that there are circumstances under which the observer 
can logically deduce that the blocked cue (B) is not a cause 
of the outcome. For instance, this position is reached if one 
assumes that the effects of the patient’s allergies are additive 
and that a more severe reaction could be observed if it were 
present. Holding these assumptions, if one does not observe 
an increase in the severity of the outcome when B is eaten at 
the same time as the allergenic food A, then one can deduce 
that B does not contribute to the allergic reaction. For 
example, if eating Fish causes an allergic reaction of 
severity 5 (on a fictitious allergy scale with a maximum of 
10) and eating Fish and Rice also causes an allergic reaction 
of severity 5, then Rice has not made the reaction worse and 
thus probably isn’t a cause of the reaction itself. Consistent 
with this inferential reasoning hypothesis, Lovibond et al. 
(2003; see also De Houwer et al., 2002; Livesey & Boakes, 
2004) observed that pretraining and explicit instructions that 
encourage this outcome additivity assumption enhance the 
blocking effect. 

Lovibond et al. (2003) also argued that if the observer 
assumes that the effects of the causal cues do not add to 
create a larger effect then this deduction is no longer valid 
and therefore there should be no blocking observed. This 
“nonadditive” assumption is encouraged by explicitly 
showing that the addition of two causes does not result in a 
stronger outcome than one cause on its own. According to 
this argument, participants with an assumption that the 
outcome is nonadditive should identify that they cannot be 
certain of the causal status of B, any more than the control 
cues C and D, and thus give each of these cues an equivalent 
causal rating that reflects that uncertainty.  

In practice, a statistically robust blocking effect is often 
observed even after explicit nonadditive pretraining, albeit 
one that is numerically smaller than after additive 
pretraining (e.g. Lovibond et al., 2003; Mitchell, Lovibond, 
Minard, & Lavis, 2006). The presence of this persistent 
blocking effect has been viewed by some as a problem for 
the inferential reasoning account of causal learning because 
blocking after nonadditive pretraining is not the result that a 
participant would generate when applying inferential 
reasoning in a rational way (Lovibond et al., 2003).  

Yet it is worth noting that, at least from the perspective of 
classical probability theory, this blocking effect is entirely 
rational. For both the blocking and control cases, the 
problem involves determining the probability of the 
hypothesis that a certain cue, X, is a reliable cause of the 
outcome, p(X+). Relevant information is gained from 
observing that X in compound with another cue does cause 
the outcome (XY+). Thus the problem becomes one of 
calculating the conditional probability that X is a cause of 
the outcome given the observation that the compound XY 
causes the outcome, p(X+ | XY+). We can use Bayes’ 
theorem to calculate this conditional probability as follows:   

 

! ! +   !" + =
! !" +   ! +   ×  !(!+)

!(!"+)
 

where  
! !" + = ! ! + + ! ! + −   ! ! + !(!+) 

 
In the case of the blocked cue, B, we can assume that 

participants are already certain that A causes the outcome 
the first time they experience AB+ trials, i.e. p(A+) = 1. In 
the case of the control cue, D, there is equal uncertainty 
about it and cue C, and thus p(C+) = p(D+). In the absence 
of any further information, these unconditional probabilities, 
as well as p(B+), are assumed to be equal to the base rate 
(the probability that the outcome will occur on any given 
trial or for any given cue). If we assume that, when a non-
additive outcome follows a compound of two cues, the 
outcome is independently caused by at least one of the cues, 
then p(XY+ | X+) = 1. This is a reasonable assumption 
unless it is explicitly shown to be false, as in the case of 
patterning discriminations (Harris & Livesey, 2008; 
Livesey, Thorwart, & Harris, 2011). The predicted blocking 
effect derived from these assumptions is a function of the 
base rate probability, as shown in Figure 1. As the base rate 
approaches zero, p(B+) approaches zero and p(D+) 
approaches 0.5. As the base rate approaches 1, p(B+) and 
p(D+) both approach 1. Importantly, for every base rate 
between 0 and 1, p(B+) is less than p(D+). Most causal 
learning experiments (including this study) present equal 
numbers of outcome and no outcome trial types, meaning 
that the base rate is around 0.5. This means that a modest 
blocking effect is predicted, is can be seen in Figure 1. 

Figure 1. Probability that a test cue (B or D) causes the 
outcome as a function of the baseline probability that any 
given cue causes the outcome. Values were calculated by 
applying Bayes’ theorem to the propositions that can be 

derived from a typical blocking design involving the 
“blocked” cue B and the control cue D (see parentheses). 
 
The solution can also be derived without the previous 

equations using a series of simple inferential steps. For ease 

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!#$" !#%" !#&" !#'" !#(" !#)" !#*" !#+" !#,"

!"
#$
%#
&'
($

&'
)(

%$
%&*

(#
'*
+
$,
&

-)%$&.)#$&!"*(#'*+$,&

-./"0"120"-3.4/4"5.6-57/"389"2"-3.4/4"5.6-57/:"
-./";"1<;"-3.4/4"5.6-57/:"

2921



of illustration, let us also assume that the probability of any 
cue shown in the experiment causing the outcome is 0.5. 
Given these assumptions, for any given compound of two 
cues A and B, there are four equally likely possibilities; i) A 
and B are both causal, ii) A only is causal, iii) B only is 
causal, or iv) neither A nor B is causal. In the case of the 
blocking cue, we know that A leads to the outcome, which 
allows us to rule out two of these possibilities (iii and iv), 
leaving possibility (i) in which B is causal, and possibility 
(ii) in which B is not causal. Thus the probability the B 
causes the outcome is 0.5. In the case of the control cues, we 
observe only that the compound causes the outcome, which 
allows us to rule out only possibilities (iv) that neither cue 
causes the outcome. The remaining three possibilities are 
still equally likely, and D causes the outcome in two of 
these three possibilities. Thus the probability that D causes 
the outcome is 0.67 (likewise for C). 

Inferences and probabilistic reasoning 
Although it may seem surprising to some that blocking 

under these circumstances is completely logical, the 
temptation to conclude that blocking is the result of an 
explicit rational inference based on classical probability 
theory needs to be tempered by an equally striking 
observation. In a host of similar situations, most participants 
are very unlikely to apply this form of reasoning. The 
rationale applied above to blocking shares formal qualities 
with other problems involving conditional probabilities, 
which most normal adults find extremely difficult (e.g. Bar-
Hillel & Falk, 1982). A prominent example is the Monty-
Hall dilemma (see Burns & Wieth, 2004), in which 
participants are so resistant to the solution derived from 
conditional probabilities that the problem is often referred to 
as a cognitive illusion. Thus, even though the blocking 
effect under nonadditive assumptions could be described as 
being rational, one should question whether participants are 
capable and inclined to explicitly use the inferential process 
that is necessary to arrive at the judgment in a rational and 
logical fashion.  

If participants do use explicit reasoning processes akin to 
Bayesian inference, and the nonadditive blocking effect is a 
consequence of this reasoning, then the participants who 
show the greatest inclination to engage critically in 
inferential reasoning will be the most likely to give ratings 
in line with the blocking effect. Alternatively, Lovibond et 
al. (2003) assume that the most prevalent rational inference 
will be one in which the blocked and control cues are treated 
as being equally ambiguous, and thus no difference in their 
causal ratings should be observed. If this assumption is 
correct then those participants who are most likely to engage 
in that rational inference will be the least likely to produce a 
blocking effect in their judgments of causality. This 
hypothesis also implies that the blocking effect that has 
previously been observed after nonadditive pretraining is the 
result of a non-rational process such as a failure to retrieve 
the outcome associated with the blocked cue (Mitchell et al., 
2006).  

The current study sought to assess exactly what types of 
reasoned inference participants were inclined to use in this 
situation and how the inferential skills of individual 
participants were related to the blocking effect. 

Blocking and critical thinking 
To test the relationship between inferential thinking and 

blocking, we coupled a typical blocking task with a test of 
cognitive reflection developed by Frederick (2005). The test 
presents three mathematical problems, each of which can be 
solved with minimal calculation. The problems were 
specifically designed to provoke an intuitive answer that is 
incorrect. Deriving the correct answer requires a modest 
amount of self-reflection and analytical thought in order to 
reject the first number that comes to mind and to then apply 
the inferences that are appropriate for the logic of the 
question at hand. Frederick’s (2005) analysis of this 
cognitive reflection test (CRT) over multiple samples of 
young American adults revealed that a substantial 
proportion scored 0 out of 3 on the test, revealing a strong 
tendency to accept and report the intuitive foil answer for 
each question. CRT performance is associated with general 
cognitive ability (Frederick, 2005). However, some studies 
have shown that performance on the test is influenced by the 
conditions under which the information is presented; for 
instance when the questions are more difficult to read they 
are more likely to be answered correctly (Alter, 
Oppenheimer, Epley, & Eyre, 2007). This suggests that 
participants’ propensity to engage in critical reflection of the 
questions fluctuates and can be manipulated. For this study, 
the CRT was administered immediately after participants 
had finished making the causal judgments and thus, we 
assumed would assess their engagement in critical reflection 
around the time when the key measures of blocking were 
taken. 

Participants were also given an additional problem 
designed to have similar logical properties to the 
contingencies in the blocking effect, in particular the 
presence of relevant conditional probabilities. Participants 
were instructed to “Imagine you are playing a game where, 
on every turn, a player tosses two normal everyday coins – a 
50-cent coin and a $1 coin – in the air. The coins are not 
biased: they are equally likely to show heads or tails. If 
either of the coins lands heads up, the player wins the 
round.” They were then given two scenarios and asked to 
provide a probability for each: 

1) “It is your turn next and you toss the coins. The $1 coin 
shows heads but the 50-cent coin falls out of sight. What is 
the probability that the 50-cent coin is showing heads?” 

2) “Your turn to toss the coins comes around again. This 
time, when you toss the coins, both coins fall out of sight. 
The other players in the game say (honestly) that you have 
won but you cannot see the coins. What is the probability 
that the 50-cent coin is showing heads?” 

The answer to the first of these questions is relatively 
straightforward. Because the $1 coin lands heads, the fact 
that the participant has won has no bearing on the 
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probability that the 50-cent coin is showing heads. Thus the 
correct answer is 0.5. The answer to the second question is 
more difficult because the information indicating that the 
participant has won is important for the probability that 
either one of the coins has landed heads. The correct answer 
is 0.67 because two of the three equally probable 
circumstances that could lead to the participant winning 
involve the 50-cent coin landing heads. We anticipated that 
most participants would say that the probability in this 
instance was also 0.5. This result would be consistent with 
the logical inference that Lovibond et al. (2003) assume is 
most likely to occur in a blocking experiment with non-
additive outcomes. 

Of most importance in this experiment was the 
relationship between CRT performance and blocking, and 
specifically whether blocking was found to be larger or 
smaller in those individuals that showed greater capacity for 
cognitive reflection. The coin-toss problem was added to 
further assess how participants engaged in inferences about 
similar uncertain events. If, as expected, many participants 
conclude that the uncertain events in each part of the coin-
toss problem are equally likely, then it shows a tendency to 
use the inferential reasoning described by Lovibond et al. 
(2003). On the other hand, if participants tend to give the 
correct answer then it suggests they are very capable of 
using conditional probabilities in this context and may do so 
to make explicit inferences in causal learning that would 
produce a blocking effect.   
 

Table 1: Design of the current Experiment. 
Pretrain Train 1 Train 2 Test 
 A+ AB+ B 
W-  CD+ C, D 
X+ E+   
Y+ G- F+ E, F, EF 
Z- GH- GH- EM, FM 
WZ- IJ+ KL- H 
XY+ L- L- L 
    

Note: Letters A-M and W-Z denote randomly allocated 
foods used as predictive cues. These cues were followed by 
either no allergic reaction (-) or an allergic reaction (+). 
Trials above the dotted line in Train 1, Train 2 and Test 
comprise the blocking contingencies. 

Method 
Participants. Forty-four introductory psychology students 
at the University of Sydney participated in the experiment in 
partial fulfillment of course requirements (32 female, mean 
age = 18.9 years). 
Apparatus and Stimuli. Participants were tested in 
individual cubicles in a quiet laboratory. The causal learning 
experiment was programmed using the Psychophysics 
toolbox for Matlab and was presented using Apple Mac 
Mini computers attached to 17 inch displays. Experimental 
stimuli included images of a banana, apple, fish, lemon, 
cheese, milk, coffee, eggs, garlic, bread, pasta, peanuts, 

avocado, meat, mushrooms, olive oil, strawberries, peas, 
and rice accompanied by written labels. The allocation of 
foods to cue (A, B, etc.) was randomized for each 
participant. The CRT and coin-toss problems were 
administered in paper and pencil format, with each test 
presented on a single side of A4 paper, printed clearly in 14 
point Times New Roman font. 
Procedure. Participants were asked to assume the role of a 
doctor whose task was to ascertain which foods were 
causing the allergic reactions of a fictitious patient, Mr X. 
Participants were given general instructions about the 
scenario and the procedure, as well as explicit instructions 
about the nonadditive nature of the outcome. The latter was 
reinforced by presenting a pretraining phase in which two 
cues (X and Y) had demonstrably nonadditive effects. Here 
trials with X, Y and the compound XY were presented, each 
with followed by an identical allergic reaction. The 
presentation of the reaction outcome was the same 
throughout the experiment and was always accompanied by 
a fictitious severity index showing the same level of severity 
for all allergic reactions. 

For each of the Pretrain, Train 1 and Train 2 phases 
shown in Table 1, each of the trial types was presented 8 
times in a randomized order. On each trial, either one or two 
foods were presented and participants predicted what 
outcome (“no allergic reaction” or “ALLERGIC 
REACTION”) occurred by clicking either option. When an 
outcome was selected the options disappeared and were 
replaced with feedback about the actual outcome.  

In the Test phase, participants were presented with a cue 
(or cues) and asked to make several judgments. First they 
were asked to judge “What is the probability that this food 
(these foods) will cause Mr X to have an allergic reaction?” 
and were required to make a rating on a linear analogue 
scale ranging from 0 to 1 with 0.1 increments marked along 
the scale. They were also asked to rate “How confident are 
you that your first rating is correct?” and “How severe will 
the reaction most likely be?” on additional linear analogue 
scales. The order of presentation of trials within the test 
phase was randomized, with each trial type presented only 
once. The critical cues in this phase for assessing blocking 
were cues B, C and D. 

On completion of the allergist task, participants were 
given the CRT and conditional probability coin-toss 
problem in paper and pencil form. Participants were told to 
take as much time as they needed to finish these questions. 
Two versions of the coin-toss problem were used 
(counterbalanced between participants), one with the 
“neither coin visible” question first, the other with the “$1 
coin visible” question first. Above the response line for each 
question, participants were reminded that “A. If EITHER of 
the coins shows heads, you win the round” and “B. You 
know that you have won this round.” 

Results 
Learning during the pretraining and training phases of the 
causal judgment task was generally very rapid. In the final 
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block of pretraining, phase 1 and phase 2 training, mean 
accuracy exceeded 0.95 for every cue-outcome contingency. 
All participants performed well above chance. Statistical 
analyses focused on the critical test data only. All analyses 
were performed with an alpha level of 0.05. 
 
Test Ratings. Of greatest importance was the probability 
rating for cue B (M = 0.52) compared to the mean 
probability rating for C and D (M = 0.65). The difference 
between these ratings was statistically significant, t(43) = 
2.83, p = .007), indicating a reliable blocking effect overall.  
 
CRT scores. Performance on the CRT was generally poor. 
Participants made on average just 0.70 correct responses out 
of a maximum of 3. The vast majority (84.1%) of errors 
resulted from reporting of the intuitive foil answers to each 
item (for further details, see Frederick, 2005). Table 2 
shows the number of participants who scored 0-3 on the 
CRT test, and the mean blocking score for participants with 
each score. 

 
Table 2: Frequency of CRT scores and blocking score. 

CRT score N Blocking 
/3 Participants Mean SEM 
0 26 .207 .059 
1 7 .019 .115 
2 9 .005 .086 
3 2 -.001 0 

total 44 .13 .047 
Note: “Blocking” refers to the difference in probability 
rating given for the control cues C/D and the target cue B.  
 

Of greatest interest was whether the number correct was 
related to blocking (as indicated by the difference in 
probability ratings for B and C/D). The correlation between 
CRT score and blocking was negative and significant, r = -
0.304, p = .045. As can be seen in Table 2, this was mainly 
due to a large blocking effect in those that scored 0 on the 
CRT, with little variance in blocking scores amongst 
participants with CRT scores of 1 to 3. Participants who 
scored 0 on the CRT showed significantly more blocking 
than those who scored more than 0, t(42) = 2.27, p = .028. 
This is illustrated in Figure 2. 
 
Coin-toss problem. Of the 44 participants, 29 responded 
0.5 for the answer to both questions. Just two participants 
gave the correct responses, answering 0.67 for the scenario 
where neither coin is visible and 0.5 for the scenario where 
one coin is visibly showing heads (both scored 2 out of 3 on 
the CRT task and both exhibited a blocking effect). The 
remaining 13 participants did not systematically assign a 
higher probability to the “neither coin visible” scenario (M 
= .52) than to the “one coin visible” scenario (M = .54). As 
can be seen in Figure 3, participants who gave the same 
response to both questions (i.e. 0.5/0.5) produced equivalent 
blocking scores to those that produced different answers to 
the coin-toss problem, t(42) = 0.15, p = .88. 

 
Figure 2. Mean causal probability judgments for the 

blocked cue B and control cues (mean of C and D), as a 
function of CRT performance. Left: Mean ratings for 

participants who failed to correctly answer a single question 
on the Cognitive Reflection Test. Right: Mean ratings for 
participants who scored at least 1 on the CRT. Error bars 
show SEM of the difference between B and C/D ratings. 

 
Figure 3. Mean causal probability judgments for the 

blocked cue B and control cues C and D, as a function of 
answers to the coin-toss problem. Left: Mean ratings for 

participants who answered 0.5 for both items. Right: Mean 
ratings for participants who gave other answers (including 

two who gave the correct answers). Error bars show SEM of 
the difference between B and C/D ratings. 

Discussion 
Overall, participants showed a modest but statistically 
reliable blocking effect. This observation is typical of many 
studies in causal learning, including several that involve 
non-additive pretraining to discourage participants from 
deducing that cue B is not causal (e.g. Lovibond et al., 2003; 
Mitchell et al., 2006).  

More importantly, the size of the blocking effect was 
significantly related to participants’ CRT performance. In 
particular, participants who scored zero on this test showed 
a substantial blocking effect whereas those that answered at 
least one of the three questions correctly gave comparable 
judgments for cue B and the control cues. The participants 
that scored zero on the CRT demonstrated the weakest 
ability to reflect critically on the questions in order to reject 
the most obvious answer and derive the correct one.  These 
results are consistent with Lovibond et al.’s (2003) assertion 
that participants who reason carefully about the cues in a 
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blocking task involving nonadditive outcomes will judge the 
blocked and control cues to be equally likely to cause the 
outcome rather than adopting a Bayesian inference that 
appropriately accounts for conditional probabilities and is 
actually best aligned with the blocking effect itself.  

Thinking about cause and effect under uncertainty is a 
difficult task and people do not readily adopt the approach 
typified by classical probability theory. The final probability 
question we used in this study is an example – with formal 
qualities similar to the blocking contingencies – where only 
two participants out of 44 gave the correct answer. Most (29 
out of 44) gave the same answer, p = 0.5, to both problems, 
suggesting that they assumed the status of the unseen coin 
was unaffected by information about the outcome (i.e. 
winning the round) in both of the examples. This logic is 
very similar to Lovibond et al.’s (2003) argument about 
reduced blocking with a nonadditive outcome. They argued 
that participants will conclude that no information is known 
about cue B and, likewise, no information is known about 
either of the cues C or D and, therefore, all three should be 
given the same rating. However, unlike the coin toss 
scenario, the conservative logic expressed in this inference 
was not as prevalent in the causal ratings for the cues B, C 
and D. Furthermore, participants who gave the 0.5/0.5 
response to the coin-toss problem, and thus should not show 
blocking based on Lovibond et al.’s inference, were just as 
likely to show a blocking effect in their causal ratings as 
those who gave different answers to the coin-toss problem. 
These results suggest that, although the logic described by 
Lovibond et al. is prevalent in decisions involving uncertain 
causal relationships, the application of the inference is not 
necessarily consistent across different scenarios.  

This result is correlational and should be interpreted 
cautiously. Blocking may arise from other forms of explicit 
inference, such as deductive reasoning, which is encouraged 
by additive outcome assumptions (Lovibond et al., 2003). 
Thus the key relationship observed in this study should only 
arise if the assumptions that participants bring into the 
experiment are tightly constrained to prevent deduction. 

 
Conclusion. Although the blocking effect is arguably 
rational, even when assuming that the outcome is non-
additive, it is nonetheless associated with an uncritical mode 
of causal judgment. Only the minority of participants 
displaying some critical analytical ability on the CRT gave 
equivalent ratings to the blocked and control cues, 
consistent with the type of inferential reasoning outlined by 
Lovibond et al. (2003). The results are consistent with an 
account of causal learning that assumes that judgments are 
based on both explicit inferences and some form of 
associative learning or other automatic psychological 
operation that approximates Bayesian inference. 
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