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Abstract

The blocking effect in causal learning, once taken as a
hallmark of associative learning, has recently been explained
in terms of an explicit deductive reasoning process. Yet when
the conditions necessary for deduction are removed, a small
blocking effect is often still present. We examined the
relationship between blocking and participants’ performance
on analytical thinking and probabilistic reasoning measures.
Inferential processes predict blocking or an absence of
blocking in this situation, depending on the observer’s
consideration of conditional probabilities. Although Bayesian
inference predicts blocking, most individuals are not inclined
to use this form of probabilistic reasoning explicitly, an
observation we confirmed using a logical problem with
similar properties to the relationships present in the blocking
effect. Furthermore, participants who showed the greatest
capacity for analytical reflection were less likely to show a
blocking effect, suggesting that blocking in causal learning is
the product of an intuitive and unreflective thought process.

Keywords: Blocking; causal learning; inferential reasoning;
associative learning; Bayesian inference.

Introduction

Many theories of causal learning assume that when
individuals make judgments about the relationship between
putative causes and their effects, some form of inferential
reasoning is involved. However, theories differ substantially
in how they place inferential reasoning amongst other
contributing mechanisms. Some authors have argued that all
causal judgments are necessarily the product of explicit
inferential processes based on consciously mediated
propositions about the relationships between events
(Mitchell, De Houwer and Lovibond, 2009). Others assume
that in making causal judgments about a cue, relatively
automatic memory retrieval mechanisms based on
associative learning play a much greater role, bringing to
mind the events that were previously paired with that cue.
According to this account, inferential thoughts of an
analytical nature — for instance based on formal logic and
reasoning — play a smaller role, in some cases perhaps only
when strongly encouraged.

Blocking in causal learning

The blocking effect has become an important test bed for
these arguments. In a typical blocking experiment, one cue
(A) is presented and is reliably followed by a particular
outcome. In a second stage, A is presented with another cue
(B) and this compound of two cues is followed by the

outcome. B is never presented by itself and its relationship
with the outcome is thus ambiguous. When asked to give a
rating of the extent to which each of a number of cues
causes the outcome, participants often given a lower rating
for B than for control cues (C and D) that were also
presented in compound and followed by the outcome but
were never presented on their own.

The cues and outcomes are often presented within a
hypothetical scenario. For instance, in the allergist task, the
participant assumes the role of a doctor trying to determine
the cause of a patient’s allergic reactions. The participant
might observe that when the patient eats Fish they suffer
from a reaction (A+), and later when the patient eats Fish
and Rice (AB+), they suffer from the same allergic reaction.
The patient might also suffer from an allergic reaction after
eating Mushrooms and Pasta (CD+), but does not suffer a
reaction after eating various other foods (e.g. E-). After
learning to predict what will happen after certain meals,
through a process of trial and error, the participant must then
make an explicit judgment about the extent to which a food
or foods cause the allergic reaction, or the likelihood that a
reaction will occur given that certain foods have been
consumed.

The blocking effect is well documented in causal learning
experiments using the allergist task and other similar
scenarios. Its presence was originally taken as evidence that
a similar associative learning process was responsible for
causal learning and conditioning in humans and other
animals because blocking in classical conditioning is widely
replicated and well explained by associative learning
theories (Dickinson, Shanks, and Evenden, 1984). Several
other prominent theoretical approaches to causal reasoning
also provide explanations of blocking (e.g. Cheng, 1997;
Griffiths, Sobel, Tenenbaum, Gopnik, 2011; Waldmann,
2000). Whether based on associations or statistical
computation, many theories of causal learning share an
assumption that causal judgments partly reflect an implicit
sensitivity to the contingencies between observed events.
This sensitivity allows the observer to make judgments
about causation with little deliberate mental effort, even
when the causal relationships between cues and outcomes
are ambiguous and must be inferred indirectly, as in the case
of blocking (e.g. see Sternberg and McClelland, 2011).

Blocking and inferential reasoning

Recently, several authors have argued for an explanation
of blocking that relies only on inferential reasoning based
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upon a relatively simple set of propositions (De Houwer,
Beckers, & Glautier, 2002; Lovibond, Been, Mitchell,
Bouton, & Frohardt, 2003). Proponents of this account point
out that there are circumstances under which the observer
can logically deduce that the blocked cue (B) is not a cause
of the outcome. For instance, this position is reached if one
assumes that the effects of the patient’s allergies are additive
and that a more severe reaction could be observed if it were
present. Holding these assumptions, if one does not observe
an increase in the severity of the outcome when B is eaten at
the same time as the allergenic food A, then one can deduce
that B does not contribute to the allergic reaction. For
example, if eating Fish causes an allergic reaction of
severity 5 (on a fictitious allergy scale with a maximum of
10) and eating Fish and Rice also causes an allergic reaction
of severity 5, then Rice has not made the reaction worse and
thus probably isn’t a cause of the reaction itself. Consistent
with this inferential reasoning hypothesis, Lovibond et al.
(2003; see also De Houwer et al., 2002; Livesey & Boakes,
2004) observed that pretraining and explicit instructions that
encourage this outcome additivity assumption enhance the
blocking effect.

Lovibond et al. (2003) also argued that if the observer
assumes that the effects of the causal cues do not add to
create a larger effect then this deduction is no longer valid
and therefore there should be no blocking observed. This
“nonadditive” assumption is encouraged by explicitly
showing that the addition of two causes does not result in a
stronger outcome than one cause on its own. According to
this argument, participants with an assumption that the
outcome is nonadditive should identify that they cannot be
certain of the causal status of B, any more than the control
cues C and D, and thus give each of these cues an equivalent
causal rating that reflects that uncertainty.

In practice, a statistically robust blocking effect is often
observed even after explicit nonadditive pretraining, albeit
one that is numerically smaller than after additive
pretraining (e.g. Lovibond et al., 2003; Mitchell, Lovibond,
Minard, & Lavis, 2006). The presence of this persistent
blocking effect has been viewed by some as a problem for
the inferential reasoning account of causal learning because
blocking after nonadditive pretraining is not the result that a
participant would generate when applying inferential
reasoning in a rational way (Lovibond et al., 2003).

Yet it is worth noting that, at least from the perspective of
classical probability theory, this blocking effect is entirely
rational. For both the blocking and control cases, the
problem involves determining the probability of the
hypothesis that a certain cue, X, is a reliable cause of the
outcome, p(X+). Relevant information is gained from
observing that X in compound with another cue does cause
the outcome (XY+). Thus the problem becomes one of
calculating the conditional probability that X is a cause of
the outcome given the observation that the compound XY
causes the outcome, p(X+ | XY+). We can use Bayes’
theorem to calculate this conditional probability as follows:

p(XY +| X +) xp(X+)
p(XY+)

pX +|XY +) =

where
pXY +)=pX +) +p(Y +) — p(X H)p(Y+)

In the case of the blocked cue, B, we can assume that
participants are already certain that A causes the outcome
the first time they experience AB+ trials, i.e. p(A+) = 1. In
the case of the control cue, D, there is equal uncertainty
about it and cue C, and thus p(C+) = p(D+). In the absence
of any further information, these unconditional probabilities,
as well as p(B+), are assumed to be equal to the base rate
(the probability that the outcome will occur on any given
trial or for any given cue). If we assume that, when a non-
additive outcome follows a compound of two cues, the
outcome is independently caused by at least one of the cues,
then p(XY+ | X+) = 1. This is a reasonable assumption
unless it is explicitly shown to be false, as in the case of
patterning discriminations (Harris & Livesey, 2008;
Livesey, Thorwart, & Harris, 2011). The predicted blocking
effect derived from these assumptions is a function of the
base rate probability, as shown in Figure 1. As the base rate
approaches zero, p(B+) approaches zero and p(D+)
approaches 0.5. As the base rate approaches 1, p(B+) and
p(D+) both approach 1. Importantly, for every base rate
between 0 and 1, p(B+) is less than p(D+). Most causal
learning experiments (including this study) present equal
numbers of outcome and no outcome trial types, meaning
that the base rate is around 0.5. This means that a modest
blocking effect is predicted, is can be seen in Figure 1.
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Figure 1. Probability that a test cue (B or D) causes the
outcome as a function of the baseline probability that any
given cue causes the outcome. Values were calculated by

applying Bayes’ theorem to the propositions that can be
derived from a typical blocking design involving the
“blocked” cue B and the control cue D (see parentheses).

The solution can also be derived without the previous
equations using a series of simple inferential steps. For ease
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of illustration, let us also assume that the probability of any
cue shown in the experiment causing the outcome is 0.5.
Given these assumptions, for any given compound of two
cues A and B, there are four equally likely possibilities; i) A
and B are both causal, ii) A only is causal, iii) B only is
causal, or iv) neither A nor B is causal. In the case of the
blocking cue, we know that A leads to the outcome, which
allows us to rule out two of these possibilities (iii and iv),
leaving possibility (i) in which B is causal, and possibility
(i) in which B is not causal. Thus the probability the B
causes the outcome is 0.5. In the case of the control cues, we
observe only that the compound causes the outcome, which
allows us to rule out only possibilities (iv) that neither cue
causes the outcome. The remaining three possibilities are
still equally likely, and D causes the outcome in two of
these three possibilities. Thus the probability that D causes
the outcome is 0.67 (likewise for C).

Inferences and probabilistic reasoning

Although it may seem surprising to some that blocking
under these circumstances is completely logical, the
temptation to conclude that blocking is the result of an
explicit rational inference based on classical probability
theory needs to be tempered by an equally striking
observation. In a host of similar situations, most participants
are very unlikely to apply this form of reasoning. The
rationale applied above to blocking shares formal qualities
with other problems involving conditional probabilities,
which most normal adults find extremely difficult (e.g. Bar-
Hillel & Falk, 1982). A prominent example is the Monty-
Hall dilemma (see Burns & Wieth, 2004), in which
participants are so resistant to the solution derived from
conditional probabilities that the problem is often referred to
as a cognitive illusion. Thus, even though the blocking
effect under nonadditive assumptions could be described as
being rational, one should question whether participants are
capable and inclined to explicitly use the inferential process
that is necessary to arrive at the judgment in a rational and
logical fashion.

If participants do use explicit reasoning processes akin to
Bayesian inference, and the nonadditive blocking effect is a
consequence of this reasoning, then the participants who
show the greatest inclination to engage critically in
inferential reasoning will be the most likely to give ratings
in line with the blocking effect. Alternatively, Lovibond et
al. (2003) assume that the most prevalent rational inference
will be one in which the blocked and control cues are treated
as being equally ambiguous, and thus no difference in their
causal ratings should be observed. If this assumption is
correct then those participants who are most likely to engage
in that rational inference will be the least likely to produce a
blocking effect in their judgments of causality. This
hypothesis also implies that the blocking effect that has
previously been observed after nonadditive pretraining is the
result of a non-rational process such as a failure to retrieve
the outcome associated with the blocked cue (Mitchell et al.,
2000).

The current study sought to assess exactly what types of
reasoned inference participants were inclined to use in this
situation and how the inferential skills of individual
participants were related to the blocking effect.

Blocking and critical thinking

To test the relationship between inferential thinking and
blocking, we coupled a typical blocking task with a test of
cognitive reflection developed by Frederick (2005). The test
presents three mathematical problems, each of which can be
solved with minimal calculation. The problems were
specifically designed to provoke an intuitive answer that is
incorrect. Deriving the correct answer requires a modest
amount of self-reflection and analytical thought in order to
reject the first number that comes to mind and to then apply
the inferences that are appropriate for the logic of the
question at hand. Frederick’s (2005) analysis of this
cognitive reflection test (CRT) over multiple samples of
young American adults revealed that a substantial
proportion scored 0 out of 3 on the test, revealing a strong
tendency to accept and report the intuitive foil answer for
each question. CRT performance is associated with general
cognitive ability (Frederick, 2005). However, some studies
have shown that performance on the test is influenced by the
conditions under which the information is presented; for
instance when the questions are more difficult to read they
are more likely to be answered correctly (Alter,
Oppenheimer, Epley, & Eyre, 2007). This suggests that
participants’ propensity to engage in critical reflection of the
questions fluctuates and can be manipulated. For this study,
the CRT was administered immediately after participants
had finished making the causal judgments and thus, we
assumed would assess their engagement in critical reflection
around the time when the key measures of blocking were
taken.

Participants were also given an additional problem
designed to have similar logical properties to the
contingencies in the blocking effect, in particular the
presence of relevant conditional probabilities. Participants
were instructed to “Imagine you are playing a game where,
on every turn, a player tosses two normal everyday coins — a
50-cent coin and a $1 coin — in the air. The coins are not
biased: they are equally likely to show heads or tails. If
either of the coins lands heads up, the player wins the
round.” They were then given two scenarios and asked to
provide a probability for each:

1) “It is your turn next and you toss the coins. The $1 coin
shows heads but the 50-cent coin falls out of sight. What is
the probability that the 50-cent coin is showing heads?”

2) “Your turn to toss the coins comes around again. This
time, when you toss the coins, both coins fall out of sight.
The other players in the game say (honestly) that you have
won but you cannot see the coins. What is the probability
that the 50-cent coin is showing heads?”

The answer to the first of these questions is relatively
straightforward. Because the $1 coin lands heads, the fact
that the participant has won has no bearing on the
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probability that the 50-cent coin is showing heads. Thus the
correct answer is 0.5. The answer to the second question is
more difficult because the information indicating that the
participant has won is important for the probability that
either one of the coins has landed heads. The correct answer
is 0.67 because two of the three equally probable
circumstances that could lead to the participant winning
involve the 50-cent coin landing heads. We anticipated that
most participants would say that the probability in this
instance was also 0.5. This result would be consistent with
the logical inference that Lovibond et al. (2003) assume is
most likely to occur in a blocking experiment with non-
additive outcomes.

Of most importance in this experiment was the
relationship between CRT performance and blocking, and
specifically whether blocking was found to be larger or
smaller in those individuals that showed greater capacity for
cognitive reflection. The coin-toss problem was added to
further assess how participants engaged in inferences about
similar uncertain events. If, as expected, many participants
conclude that the uncertain events in each part of the coin-
toss problem are equally likely, then it shows a tendency to
use the inferential reasoning described by Lovibond et al.
(2003). On the other hand, if participants tend to give the
correct answer then it suggests they are very capable of
using conditional probabilities in this context and may do so
to make explicit inferences in causal learning that would
produce a blocking effect.

Table 1: Design of the current Experiment.

Pretrain Train 1 Train 2 Test
A+ AB+ B
weoo D+ D
X+ E+
Y+ G- F+ E,F, EF
Z- GH- GH- EM, FM
WZ- 1J+ KL- H
XY+ L- L- L

Note: Letters A-M and W-Z denote randomly allocated
foods used as predictive cues. These cues were followed by
either no allergic reaction (-) or an allergic reaction (+).
Trials above the dotted line in Train 1, Train 2 and Test
comprise the blocking contingencies.

Method

Participants. Forty-four introductory psychology students
at the University of Sydney participated in the experiment in
partial fulfillment of course requirements (32 female, mean
age = 18.9 years).

Apparatus and Stimuli. Participants were tested in
individual cubicles in a quiet laboratory. The causal learning
experiment was programmed using the Psychophysics
toolbox for Matlab and was presented using Apple Mac
Mini computers attached to 17 inch displays. Experimental
stimuli included images of a banana, apple, fish, lemon,
cheese, milk, coffee, eggs, garlic, bread, pasta, peanuts,

avocado, meat, mushrooms, olive oil, strawberries, peas,
and rice accompanied by written labels. The allocation of
foods to cue (A, B, etc.) was randomized for each
participant. The CRT and coin-toss problems were
administered in paper and pencil format, with each test
presented on a single side of A4 paper, printed clearly in 14
point Times New Roman font.

Procedure. Participants were asked to assume the role of a
doctor whose task was to ascertain which foods were
causing the allergic reactions of a fictitious patient, Mr X.
Participants were given general instructions about the
scenario and the procedure, as well as explicit instructions
about the nonadditive nature of the outcome. The latter was
reinforced by presenting a pretraining phase in which two
cues (X and Y) had demonstrably nonadditive effects. Here
trials with X, Y and the compound XY were presented, each
with followed by an identical allergic reaction. The
presentation of the reaction outcome was the same
throughout the experiment and was always accompanied by
a fictitious severity index showing the same level of severity
for all allergic reactions.

For each of the Pretrain, Train 1 and Train 2 phases
shown in Table 1, each of the trial types was presented 8
times in a randomized order. On each trial, either one or two
foods were presented and participants predicted what
outcome (“no allergic reaction” or “ALLERGIC
REACTION”) occurred by clicking either option. When an
outcome was selected the options disappeared and were
replaced with feedback about the actual outcome.

In the Test phase, participants were presented with a cue
(or cues) and asked to make several judgments. First they
were asked to judge “What is the probability that this food
(these foods) will cause Mr X to have an allergic reaction?”
and were required to make a rating on a linear analogue
scale ranging from 0 to 1 with 0.1 increments marked along
the scale. They were also asked to rate “How confident are
you that your first rating is correct?” and “How severe will
the reaction most likely be?” on additional linear analogue
scales. The order of presentation of trials within the test
phase was randomized, with each trial type presented only
once. The critical cues in this phase for assessing blocking
were cues B, C and D.

On completion of the allergist task, participants were
given the CRT and conditional probability coin-toss
problem in paper and pencil form. Participants were told to
take as much time as they needed to finish these questions.
Two versions of the coin-toss problem were used
(counterbalanced between participants), one with the
“neither coin visible” question first, the other with the “$1
coin visible” question first. Above the response line for each
question, participants were reminded that “A. If EITHER of
the coins shows heads, you win the round” and “B. You
know that you have won this round.”

Results

Learning during the pretraining and training phases of the
causal judgment task was generally very rapid. In the final
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block of pretraining, phase 1 and phase 2 training, mean
accuracy exceeded 0.95 for every cue-outcome contingency.
All participants performed well above chance. Statistical
analyses focused on the critical test data only. All analyses
were performed with an alpha level of 0.05.

Test Ratings. Of greatest importance was the probability
rating for cue B (M = 0.52) compared to the mean
probability rating for C and D (M = 0.65). The difference
between these ratings was statistically significant, t(43) =
2.83, p =.007), indicating a reliable blocking effect overall.

CRT scores. Performance on the CRT was generally poor.
Participants made on average just 0.70 correct responses out
of a maximum of 3. The vast majority (84.1%) of errors
resulted from reporting of the intuitive foil answers to each
item (for further details, see Frederick, 2005). Table 2
shows the number of participants who scored 0-3 on the
CRT test, and the mean blocking score for participants with
each score.

Table 2: Frequency of CRT scores and blocking score.

CRT score N Blocking
/3 Participants Mean SEM
0 26 207 .059
1 7 .019 15
2 9 .005 .086
________ S ooz o oooooseol 0
total 44 13 .047

Note: “Blocking” refers to the difference in probability
rating given for the control cues C/D and the target cue B.

Of greatest interest was whether the number correct was
related to blocking (as indicated by the difference in
probability ratings for B and C/D). The correlation between
CRT score and blocking was negative and significant, r = -
0.304, p = .045. As can be seen in Table 2, this was mainly
due to a large blocking effect in those that scored 0 on the
CRT, with little variance in blocking scores amongst
participants with CRT scores of 1 to 3. Participants who
scored 0 on the CRT showed significantly more blocking
than those who scored more than 0, t(42) = 2.27, p = .028.
This is illustrated in Figure 2.

Coin-toss problem. Of the 44 participants, 29 responded
0.5 for the answer to both questions. Just two participants
gave the correct responses, answering 0.67 for the scenario
where neither coin is visible and 0.5 for the scenario where
one coin is visibly showing heads (both scored 2 out of 3 on
the CRT task and both exhibited a blocking effect). The
remaining 13 participants did not systematically assign a
higher probability to the “neither coin visible” scenario (M
= .52) than to the “one coin visible” scenario (M = .54). As
can be seen in Figure 3, participants who gave the same
response to both questions (i.e. 0.5/0.5) produced equivalent
blocking scores to those that produced different answers to
the coin-toss problem, t(42) = 0.15, p = .88.

0.9 mB mC/D
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0.7 I
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0.5
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CRT=0:N=26 CRT>0:N=18

Figure 2. Mean causal probability judgments for the
blocked cue B and control cues (mean of C and D), as a
function of CRT performance. Left: Mean ratings for
participants who failed to correctly answer a single question
on the Cognitive Reflection Test. Right: Mean ratings for
participants who scored at least 1 on the CRT. Error bars
show SEM of the difference between B and C/D ratings.

1
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0.5
0.4
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0.2
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0.5/0.5:N=29 other:N=15

Figure 3. Mean causal probability judgments for the
blocked cue B and control cues C and D, as a function of
answers to the coin-toss problem. Left: Mean ratings for

participants who answered 0.5 for both items. Right: Mean
ratings for participants who gave other answers (including
two who gave the correct answers). Error bars show SEM of
the difference between B and C/D ratings.

Discussion

Overall, participants showed a modest but statistically
reliable blocking effect. This observation is typical of many
studies in causal learning, including several that involve
non-additive pretraining to discourage participants from
deducing that cue B is not causal (e.g. Lovibond et al., 2003;
Mitchell et al., 2006).

More importantly, the size of the blocking effect was
significantly related to participants’ CRT performance. In
particular, participants who scored zero on this test showed
a substantial blocking effect whereas those that answered at
least one of the three questions correctly gave comparable
judgments for cue B and the control cues. The participants
that scored zero on the CRT demonstrated the weakest
ability to reflect critically on the questions in order to reject
the most obvious answer and derive the correct one. These
results are consistent with Lovibond et al.’s (2003) assertion
that participants who reason carefully about the cues in a
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blocking task involving nonadditive outcomes will judge the
blocked and control cues to be equally likely to cause the
outcome rather than adopting a Bayesian inference that
appropriately accounts for conditional probabilities and is
actually best aligned with the blocking effect itself.

Thinking about cause and effect under uncertainty is a
difficult task and people do not readily adopt the approach
typified by classical probability theory. The final probability
question we used in this study is an example — with formal
qualities similar to the blocking contingencies — where only
two participants out of 44 gave the correct answer. Most (29
out of 44) gave the same answer, p = 0.5, to both problems,
suggesting that they assumed the status of the unseen coin
was unaffected by information about the outcome (i.e.
winning the round) in both of the examples. This logic is
very similar to Lovibond et al.’s (2003) argument about
reduced blocking with a nonadditive outcome. They argued
that participants will conclude that no information is known
about cue B and, likewise, no information is known about
either of the cues C or D and, therefore, all three should be
given the same rating. However, unlike the coin toss
scenario, the conservative logic expressed in this inference
was not as prevalent in the causal ratings for the cues B, C
and D. Furthermore, participants who gave the 0.5/0.5
response to the coin-toss problem, and thus should not show
blocking based on Lovibond et al.’s inference, were just as
likely to show a blocking effect in their causal ratings as
those who gave different answers to the coin-toss problem.
These results suggest that, although the logic described by
Lovibond et al. is prevalent in decisions involving uncertain
causal relationships, the application of the inference is not
necessarily consistent across different scenarios.

This result is correlational and should be interpreted
cautiously. Blocking may arise from other forms of explicit
inference, such as deductive reasoning, which is encouraged
by additive outcome assumptions (Lovibond et al., 2003).
Thus the key relationship observed in this study should only
arise if the assumptions that participants bring into the
experiment are tightly constrained to prevent deduction.

Conclusion. Although the blocking effect is arguably
rational, even when assuming that the outcome is non-
additive, it is nonetheless associated with an uncritical mode
of causal judgment. Only the minority of participants
displaying some critical analytical ability on the CRT gave
equivalent ratings to the blocked and control cues,
consistent with the type of inferential reasoning outlined by
Lovibond et al. (2003). The results are consistent with an
account of causal learning that assumes that judgments are
based on both explicit inferences and some form of
associative learning or other automatic psychological
operation that approximates Bayesian inference.
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