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Abstract

As a ubiquitous trend in the cognitive development of
children, the ‘relational shift’ accounts for a change in
preference for absolute percepts towards a preference for
relational percepts, and is observed across a wide variety of
domains. Extensive evidence indicates that this prepotency
for relational processing is also observed in how children
process melodies. When recalling melodies, younger children
typically recall more absolute pitch properties than older
children, while the exact opposite occurs in older children.
Using DORA (Discovery Of Relations by Analogy; Doumas
et al., 2008), a domain-general symbolic-connectionist model
of relation learning, we simulated the relational shift in
melodic perception of children age 3-6 years based on an
experiment by Sergeant and Roche (1973). DORA’s
performance matched the children’s well, suggesting common
developmental and perceptual mechanisms between the
relational shift in melodic processing and the shift seen across
other domains.

Keywords: Melodic  perception; relation learning;
development; relational shift; absolute pitch; computational
modeling; DORA.

Introduction

One of the fundamental cross-domain trends in human
development is  characterized by a  qualitative
transformation, or shift, in how children process
information. Evidence from developmental psychology
overwhelmingly indicates that while children initially attend
to, recall, and reason about absolute perceptual properties,
around the age of 4-6 they begin to rely on structured
relational properties (Allport, 1924; Gentner & Rattermann,
1991; Halford, 2005; Pollack, 1969; Vernon, 1940). This
shift has been observed in areas such as language (Gentner,
1988), spatial tasks (Case & Khanna, 1981; DeLoache,
Sugarman, & Brown, 1985), number comprehension
(Gelman & Gallistel, 1978; Michie, 1985), and visual shape
perception (Abecassis, Sera, Yonas, & Schwade, 2001), to
name but a few. This phenomenon has been termed the
‘relational shift,” as the characteristic trend is towards
greater reliance on relational attributes as children mature.
Consistent with the developmental trajectory for the
relational shift in other domains, in the domain of music

children also develop from initially processing more
absolute aspects of melodies to processing more relational
aspects as they grow older. In an especially revealing study,
Sergeant and Roche (1973) trained three groups of children
from the age of three to six to reproduce melodies from
invariant recordings. When the children were required to
recall the melodies one week later, the younger group
reproduced the absolute pitches more accurately than the
older group, while the older group reproduced the relational
aspects (melodic shape, interval sizes, and tonality) more
accurately than the younger group. This perceptual shift and
exchange in proficiency levels between the recall of
absolute and relational musical aspects in younger and older
children has been replicated in many other studies as well
(Saffran, 2003; Saffran & Griepentrog, 2001; Sergeant,
1969; Sergeant & Roche, 1973; Stalinski & Schellenberg,
2010; Takeuchi & Hulse, 1993).

Given the prevalence of the relational shift across
multiple domains, it is reasonable to assert that any
comprehensive theory or model of cognitive development
must necessarily account for this phenomenon. One of the
models of higher cognition that has successfully been used
to account for the relational shift in development is DORA
(Discovery Of Relations by Analogy; Doumas, Hummel, &
Sandhofer, 2008). DORA has been used to simulate the
relational shift in visual shape perception (Doumas &
Hummel, 2010), analogical problems (Doumas, Morrison,
& Richland, 2009; Morrison, Doumas, & Richland, 2011),
categorical reasoning, spatial reasoning, general relational
reasoning, and progressive alignment (Doumas et al., 2008).

In this study, we aim to understand how the relational
shift in melodic processing occurs in children. We
hypothesize that the same processes that cause the relational
shift in other domains are also responsible for the shift in
the domain of melodic processing. Specifically, we propose
that as children learn about the world, they increasing rely
on relational invariants in the environment. This reliance is
itself a direct result of the cognitive processes that allow for
relational invariants to be detected in the first place. That is,
equipped with a cognitive architecture that allows for
intersection discovery of shared properties, the natural trend
over time (i.e., repeated exposure) is to preferentially
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perceive the world in terms of these regularly occurring
relational invariants (Doumas & Hummel, 2010; Doumas et
al., 2008).

This raises the question as to how relational invariants are
discovered in the first place. Our proposal for this
mechanism of discovery is instantiated in DORA’s
symbolic-connectionist architecture, and has been used to
account for how melodic perception occurs in infants (Lim,
Doumas, & Sinnett, 2012). Consequently, providing an
account for the relational shift in melodic processing may
also help to shed light on other issues. For instance, the
argument could be made against the existence of a musical
relational shift by citing evidence of infants’ ability to detect
relational properties from melodies (Plantinga & Trainor,
2005; Stalinski & Schellenberg, 2012; Trehub, Bull, &
Thorpe, 1984). That is, given that the relational shift
indicates that younger children preferentially process
melodies based on absolute percepts (i.e., absolute pitch),
would evidence of infants ability to process melodies based
on relative percepts (i.e., relative pitch) not be
contradictory? Since DORA has been used to simulate the
latter phenomenon (Lim et al., 2012), by using DORA to
simulate the former phenomenon (i.e., the relational shift in
musical processing), we hope to provide an answer to this
question as well.

The LISA/DORA models

LISA (Learning and Inference with Schemas and Analogies;
Hummel & Holyoak, 1997, 2003) is a symbolic-
connectionist model of analogy and relational reasoning.
DORA is an extension of LISA that learns structured (i.e.,
symbolic) representations of relations from unstructured
inputs. That is, DORA provides an account of how the
structured relational representations LISA uses to perform
relational reasoning can be learned from examples. At
present, DORA accounts for over 30 phenomena from the
literature on relational learning, and cognitive development,
and as it learns representations of relations it develops into
LISA and can simulate the additional 40+ phenomena in
relational thinking for which LISA accounts for (e.g.,
Doumas et al., 2008). In the following, we provide a very
brief description of the LISA/DORA models (for full
details, see Hummel & Holyoak, 1997, 2003; Doumas et al.,
2008)

LISAese Representations In LISA (and DORA after it has
gone through learning), relational structures are represented
by a hierarchy of distributed and localist codes (see Figure
1). At the bottom, “semantic” units (small circles in Figure
1) represent the features of objects and roles in a distributed
fashion. At the next level, these distributed representations
are connected to localist units (POs) representing individual

! Due to spatial constraints, we provide only summary

information on melodic and relational processing here, for more
background on melodic processing, including details about
absolute and relative pitch and the other features used within these
simulations, see Lim et al. (2012).

predicates (or roles) and objects (triangles and larger circles
in Figure 1). Localist role-binding units (RBs; rectangles in
Figure 1) link object and role units into specific role-filler
bindings. At the top of the hierarchy, localist P units (ovals
in Figure 1) link RBs into whole relational propositions.

P unit chase(dog,
cat)
RB unit chaser+dog chased+cat
PO unit chaser dog chased cat

semantics

Figure 1: LISA/DORA representation of the proposition,
chase (dog, cat).

Relational structures (or propositions) are divided into
two mutually exclusive sets: a driver and recipient(s). In
LISA/DORA, the sequence of firing events is controlled by
the driver. Specifically, one (or at most three) proposition(s)
in the driver become(s) active (i.e., enter working memory).
When a proposition enters working memory, role-filler
bindings must be represented dynamically on the units that
maintain role-filler independence (i.e., POs and semantic
units) to allow for reusability of units and preservation of
similarity across different bindings (Hummel & Holyoak,
1997). In LISA, binding information is carried by synchrony
of firing (with roles firing simultaneously with their fillers).
In DORA, binding information is carried by systematic
asynchrony of firing, with bound role-filler pairs firing in
direct sequence (for details, see Doumas et al., 2008).>
Relational Learning In broadest strokes, DORA learns
structured representations by comparing objects to isolate
their shared properties and to represent these shared
properties as explicit structures. More specifically, DORA
starts with simple feature-vector representations of objects
(i.e., a node connected to set of features describing that
object; large and small circles from Figure 1). When DORA
compares one object to another, corresponding elements
(i.e., shared features) of the two representations fire
simultaneously (Figure 2a). Any semantic features common
to both objects receive twice as much input and thus become
roughly twice as active as features connected to one but not
the other (Figure 2b). By recruiting a new PO unit and
learning connections between that unit and active semantics
via Hebbian learning (wherein the strength of connections is
a function of the units’ activation), DORA learns stronger
connections between the new PO unit and more active

2 Asynchrony-based binding allows role and filler to be coded
by the same pool of semantic units, which allows DORA to learn
representations of relations from representations of objects
(Doumas et al., 2008).
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semantic units (Figure 2¢). The new PO thus becomes an
explicit representation of the featural overlap of the
compared objects and can act as a single place predicate,
taking other object representations as arguments to form
role-filler pairs (Figure 2d; see also Doumas et al., 2008).
Applied iteratively, this process allows DORA to learn
structured explicit single-place predicate representations of
any properties that compared objects may share.
Comparison also allows DORA to learn representations of
multi-place relations by linking sets of constituent role-filler
pairs into relational structures (i.e., to learn the chases
relation by linking together representations of the roles
chaser and chased; see Doumas et al., 2008 for details).
Moreover, when DORA has learned representations of
whole relational structures, this intersection discovery
algorithm allows it to learn schemas by comparing sets of
structural relations to one another. For example, if after
DORA has learned about a dog chasing a cat (chase (dog,
cat)) and a boy chasing a girl (chase (boy, girl)), it can
compare these and learn a representation coding for the
intersection of the two chase relations and their arguments,
or chase (generic-objectl, generic-object2).

(@) (b)

note1

note2

A rhigher”

. higher(note2)

Figure 2: The process through which DORA learns a single-
place predicate representation of “higher” from two musical
notes.

Mapping For the purpose of analogical mapping,
LISA/DORA learns mapping connections between units
coactive of the same type in the driver and recipient (e.g.,
between PO units in the driver and PO units in the
recipient). These connections grow whenever corresponding
units in the driver and recipient are active simultaneously.
They permit LISA to learn the correspondences between
matching structures in separate analogs. They also permit
correspondences learned early in mapping to influence the
correspondences learned later.

Methods

In this section we describe the Sergeant and Roche (1973)
study, followed by the details and outcomes of DORA’s
simulations.

Task Description

In Sergeant and Roche’s (1973) cross-sectional study,
children were divided into three groups: one group with
children between 3 to 4 years, one with children of 5 years,
and one with children of 6 years. All groups received the
same training and testing procedures. They were trained to
vocally reproduce three melodies from an invariant
recording in six training sessions spread out over three
weeks. All children were given the exact same melodies at
each training session. Each melody lasted for 8 or 16 bars.

One week after training, the children were then asked to
vocally recall the melodies, which were tape recorded and
scored by two independent judges on perceptual dimension
(pitch accuracy), and conceptual dimensions (melodic
shape, intervals, and tonality).

Simulations

In the first simulation, we simulated the development of
representations of individual relations that could define
auditory sequence from experience with the world. In the
second simulation, we used the representations DORA
learned during the first simulation to simulate the behavior
of Sergeant and Roche’s (1973) subjects. Crucially, these
two simulations were interleaved, which allowed us to test
Simulation Part 1 In the first simulation we tested DORA’s
ability to learn relational concepts from examples. This
simulation proceeded like several simulations of relation
learning from our previous work (e.g., Doumas & Hummel,
2005, 2010; Doumas et al., 2008; Doumas et al., 2009). We
started DORA with representations of 100 objects
(represented as PO units) attached to random sets of features
(chosen from a pool of 100). We then defined 4 relations
(those that could be used to describe a melodic sequence,
e.g., contour (higher/lower), and interval (long-interval,
short-interval, medium-interval)).

Each relation transformation consisted of two roles each
with three semantic features (e.g., for the higher relation,
both the roles above and below were each defined by three
specific semantic units). Each of the 100 objects was
attached to the features of between 2 and 4 relational roles
chosen at random such that if an object was part of a
relation, it was attached to the features of one of the roles,
chosen at random. For example, object] might be attached
to the features for above (one role of the relation higher) and
start-long-interval (the agent role of the relation long-
interval). We presented DORA with sets of objects selected
at random, and allowed it to compare the objects and learn
from the results (as per DORA’s relation learning
algorithm). As DORA learned new representations it would
also use these representations to make subsequent
comparisons. For instance, if DORA learned an explicit
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representation of the property above by comparing two
objects both attached to the features of above, it could use
this new representation for future comparisons. On each trial
we selected between 2 and 6 representations and let DORA
compare them and learn from the results (i.e., perform
predication, and relation learning routines). We assume that
this act of inspection and comparison is similar to what
happens when children encounter objects in the world—
where objects are part of several relations—and learns from
these experiences.

We ran 600 learning trials and measured the quality of the
representations DORA had learned after each 100 trials.
Quality was calculated as the mean of connection weights to
relevant features (i.e., those defining a specific
transformation or role of a transformation) divided by the
mean of all other connection weights + 1 (1 was added to
the mean of all other connection weights to normalize the
quality measure to between O and 1). A higher quality
denoted stronger connections to the semantics defining a
specific transformation relative to all other connections (i.e.,
a more pristine representation of the transformation). Figure
3 indicates the quality of the representations DORA learned
at each level of iteration. Early in learning, DORA’s
representations are ‘dirty’ in that it’s representations of
relations and their roles are also highly connected to
extraneous features specific to the instances from which the
representations are learned. These representations are
consequently very context dependent. As learning
progresses however, DORA’s representations become
progressively more refined. By the end of learning, DORA
has learned representations of relations and their roles that
are context-independent, connected strongly to only the
features specific to the particular relational roles defining
the relation and very weakly connected to context features.
Thus, in time DORA can use these representations to reason
about instances regardless of context, like older children and
adults (see, e.g., Doumas et al., 2008).

For the analysis herein, the ‘quality’ of DORA’s
representations (how relationally clean or context dependent
they are) is considered an analogous measurement to the
vocal reproductions of the children in Sergeant and Roche’s
(1973) study. That is, more pristine representations in
DORA would be analogous to children reproducing
melodies with more conceptual (relational) dimensions,
whereas dirty presentations in DORA would be analogous
to children reproducing melodies with more perceptual
(absolute) dimensions.

Simulation Part 2 During the second simulation we
simulated Sergeant and Roche’s (1973) training and test
conditions. We created a 20 note melody represented as 20
PO units attached to features indicating absolute frequency
(between fl and 24), the note’s place in the sequence (1-
20), two semantics describing whether the note is higher
(above) or lower (below) the previous note in the sequence,
two semantics describing the relative interval from the
previous note (high-, medium-, low-interval), a semantic

describing the absolute interval from the previous note, and
four random features (from a pool of 100). The features
represent the properties that infants, children, and adults are
capable of representing about melody (Thorpe & Trehub,
1989; Trehub et al., 1984). Importantly, all of the frequency
direction (higher/lower) and frequency interval, both
absolute and relative, can be generated from raw frequency
values (i.e. sensory input) using a simple comparator circuit
described in Doumas et al. (2008) and Hummel and
Biederman (1992).

(0 to 1 normalized)
o B -
| | |
T T 1

i

&
I
T

Relative proportion relational to non-relational features

Learning iterations
Figure 3: The quality of DORA’s representations as a
function of learning iterations.

During training, we presented DORA with the note
sequence and allowed it to fire each two note sequence in
the melody (e.g., notes 1 and 2, then notes 2 and 3). During
each two note firing sequence DORA attempted to retrieve
relations from LTM describing the sequence (these
representations were the same as those DORA had learned
during part one of the simulation; see below for details). If
DORA successfully retrieved a relation from LTM, DORA
predicated the respective roles of the relation about the notes
in the sequence. For example, if a two note sequence caused
DORA to recall the higher (x, y) relation from LTM
(consisting of the roles above(x) and below(y)), DORA
would link the above PO to the note that was higher with an
RB unit, and the below PO to the note that was lower. This
process reflects our assumption that children and adults
attempt to understand melodies using representations at their
disposal. After DORA has attempted to classify the 2 note
sequences in the melody, DORA stores the resulting
representation in LTM.

Importantly, to simulate 4, 5, and 6-year olds, we used
representations that DORA had learned during the first part
of the simulation in DORA’s LTM. Specifically, to simulate
the representations of 4 year olds, we wused the
representations that DORA had learned after 200 training
iterations, to simulate 5 year olds we used the
representations DORA had learned after 400 iterations, and
to simulate 6 year-olds we used the representations DORA
had learned after 600 iterations. At each age we also
included distractor predicates describing extraneous
properties (e.g., loudness, timbre, etc.) in LTM. For every
relevant relation in DORA’s LTM (i.e., relations describing

2905



higher and relative interval) we also included 2 irrelevant
relations. Our addition of distractor relations in LTM
instantiates our assumption that children learn about
multiple relations at the same time during development.

We trained DORA in this manner six times (reflecting the
six training sessions from the Sergeant & Roche (1973)
study). After the second training session, and after each
subsequent training session, DORA compared the
representation it had learned during training to the
representation it had learned during the previous training
session and learned a new representation (or a schema)
using it’s learning algorithm.

To simulate the testing phase from Sergeant and Roche’s
(1973) study, we examined the representation of the melody
DORA has learned after the six training sessions. Four-year-
old DORA'’s relational representations were quite dirty and
tied to the semantics of the objects from which they had
been learned. DORA, consequently, had difficulty retrieving
these representations from memory given the melody as a
context cue. As a result, the representation of the melody
that DORA stores is essentially the melody itself, without
much (if any) explicit relational information predicated
about it. As DORA get’s older (i.e., has its LTM populated
with representations produces by more extensive learning
during simulation part 1), it becomes more likely to retrieve
and thus predicate relations about the two note sequences in
the melody during training. More precisely, 4-year old
DORA retrieved predicates about only 18% of the 2 note
sequences it thought about, 5 year-old DORA retrieved
predicates about 63% of the two note sequences it thought
about, and 6 year-old DORA about 91% of the instances it
though about. Importantly, the predicates in DORA’s LTM
that it could retrieve varied in their refinement across ages
(as described above). We used the representations that
DORA had learned after the six training session as a proxy
for what it would recall as melody production during the test
session of the Sergeant and Roche study. We evaluated
these final representations for the presence of relational
properties with the assumption that increases in relational
properties indicate increased reliance and accuracy on the
conceptual dimensions of melodic shape and relative
interval. Just as the children in Sergeant and Roche (1973),
early in development DORA’s ratio of relational/categorical
features to absolute features was low, but as DORA learned
the ratio increased strongly. At age 4, the ratio value was
0.85. This value increased to 1.1 at age 5 and 1.6 at age 6.
This progression very closely mirrors the change in reliance
on absolute to relational properties observed in children.

Discussion

The purpose of this study was to 1) test our hypothesis that a
common mechanism could potentially underly both the
relational shift in melodic perception and the relational shift
observed in other domains, and to 2) instantiate this
mechanism within a computational model. To this end, our
hypotheses were supported by DORA’s simulations, which
matched the behavioral data from children in Sergeant and

Roche’s (1973) study. To our awareness this is the first time
the relational shift in melodic processing has been modeled
using 1) a neurally plausible architecture, 2) a domain-
general model of cognition, and 3) the first run of
simulations without any parameter fittings.

Consequently, DORA’s success in simulating both the
relational shift in children’s melodic processing in this
study, and in simulating infants’ ability to detect relational
properties of melodies (Lim et al., 2012), provides insights
into a misunderstood (what we view as nonexistent)
contradiction. Specifically, the argument has been made
(e.g., Stalinski & Schellenberg, 2012) that the evidence for a
relational shift in melodic processing may be contradicted
by findings that infants can process relational properties of
melodies (for a review, see Trehub, 2001). We argue that
these two findings are not contradictory, as evidence of a
relational shift does not indicate that younger children
cannot process relations, only that they show a preference
for absolute pitch percepts. As they grow older this
preference shifts towards relational melodic features
(Takeuchi & Hulse, 1993). Our theory posits that detection
of relational features in melodies by infants (and humans of
all ages for that matter) is facilitated by the temporal nature
of melodies (each note in the melody sequentially occurs
over time), and the corresponding temporality through
which our brain encodes and recalls each note (i.e., binding
through asynchrony).’

We propose that cognitive systems (e.g., DORA) that use
temporality as a binding mechanism between the individual
units (notes) of a perceptual group (melodies), is inherently
equipped to detect relational invariants within the group
(Lim et al., 2012). Through development, learning (i.e.,
repeated exposure to the environment) occurs and the
system inevitably detects more relational invariants,
develops cleaner representations that are closer to these
invariants (Simulation 1), and learns that this type of
information is valuable and predictive. As a result, the
system comes to prefer these types of percepts, as observed
in the relational shift and predicted by DORA.

It has been proposed that the ability to detect relational
properties in melodies may have a common ontogenetic
origin as the ability to process vocal speech patterns, where
our ability to detect relational melodic features may be a by
product of our ability to detect invariants in speech
(Terhardt, 1974). Additionally, our model lends support to
the notion that absolute (i.e., perfect) pitch—the ability to
recount specific note names or frequencies of auditory
stimuli—may be a common ability in all humans that is
robust in early childhood and subsequently diminishes
through development, specifically as the relational shift
occurs (Sergeant, 1969; for a review on aboslute pitch, see
Takeuchi & Hulse, 1993). We speculate that the high
correlation of musical training during childhood with

? Although we propose for time as a binding mechanism, we
agnostically acknowledge that other mechanisms could serve a
similar function. For a detailed algorithmic level account of
DORA’s mechanisms, see Doumas et al., 2008.
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absolute pitch abilities (that subsequently endures into
adulthood) may be due to increased exposure to pitch
relevant stimuli as young children, and hope to examine
such questions in future research.
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