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Abstract

In prior work, we have demonstrated that attention to the
neural implementation of cognitive function is critical in
creating models capable of simulating the physiological
traces of those functions (e.g., Event-Related Potentials;
ERPs). Here, we extend our Parallel Distributed
Processing (PDP) model of ERP data elicited during the
reading of single word forms to the simplest more
temporally extended phenomenon: the ERP repetition
effect. Simulations demonstrate that reproducing the
dynamics of the ERP repetition effect can be
accomplished by imposing the temporal envelope of
post-synaptic potentials on individual units in the model.

Keywords:  Parallel Distributed Processing; Event-
Related Potentials; N400; Visual Word Recognition;
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Introduction

When PDP models were first introduced in the 1980s,
part of the reason for their popularity was that they
allowed the simulation of cognitive function with a
computational architecture that was thematically similar
to that employed by real neurons. In particular, the
activation of a computational unit in a PDP model is
determined by weighted summation of excitatory and
inhibitory input-- similar to the manner in which the
potential of a neuron is determined. However,
especially in the domain of word reading, the neural
metaphor introduced in the 1980s has made relatively
little progress since that time. Instead of focusing on
improving the neural metaphor, work has largely
focused on increasing the number and sophistication of
cognitive tasks that can be reproduced (e.g., Harm &
Seidenberg, 2004; Perry, Ziegler, & Zorzi, 2007).

This situation is unfortunate for several reasons, two
of which are particularly relevant to the present
research. First, the incorporation of neural constraints
in PDP models, in domains besides reading, has
inspired significant theoretical progress. As a
representative example, consider the manner in which
models implementing the details of impaired
dopaminergic gating in schizophrenia have been
important in outlining a unified account of the

widespread cognitive impairments observed in that
dysfunction (e.g., Braver, Barch, & Cohen, 1999). As
we attempt to demonstrate here, similar improvements
in understanding could potentially be made in the
domain of visual word recognition through models
implementing relevant features of neural computation.

Second, though there is substantial disagreement
between modeling groups about fundamental theoretical
constructs (e.g., distributed versus local representation,
importance of learned behavior, importance of
computational homogeneity; see Seidenberg & Plaut,
2006, for review), there is surprising agreement from
many adherents of PDP models, dual-route models, and
even Bayesian models, that improvement could be
made to models of visual word recognition (and
cognitive models more generally) by incorporating
more neural constraint (Harm & Seidenberg, 2004;
Perry, et al., 2007; Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010). This agreement comes at a time
when there exists a similar agreement that greater
computational specificity is required in theories
introduced to unify a voluminous ERP reading literature
(e.g., Barber & Kutas, 2007; Van Berkum, 2008; Laszlo
& Federmeier, 2011).

The ERP Model

The ERP Model (Laszlo & Plaut, 2012) improves
contact between computational models of visual word
recognition and the neural implementation of cognitive
function in two principle ways. First, the ERP model’s
fundamental purpose is to simulate ERP waveforms,
which are direct measurements of the activity of cortical
neurons. This departs from traditional reading models,
which instead focus on simulation of behavioral data.
In particular, the ERP model simulates key effects on
the N400 ERP component. The N400 is thought to
represent the obligatory access of semantics in response
to the presentation of an orthographic word form (for
review, see Kutas & Federmeier, 2011). This process
has been explicitly couched in computational terms
concordant with the PDP framework, such as
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Figure 1: [Left] Architecture of the ERP model. INH
stands for “inhibitory”. [Right] Temporal dynamics of
excitatory and inhibitory units.

parallelism and distributed representation (Laszlo &
Federmeier, 2011). The ERP model has demonstrated
that PDP architecture can produce the critical effects on
the N400 that led to its being considered the product of
PDP architecture in the first place, such as a lack of
sensitivity to lexicality as compared with a much larger
effect of orthographic neighhorhood size (Laszlo &
Plaut, 2012).

Second, we have demonstrated that successful
simulation of N400 component effects requires
implementation of an important constraining

characteristic of neural computation: the separation of
excitation and inhibition (Laszlo & Plaut, 2012). In the
ERP model, individual units have excitatory or
inhibitory connections, never both. Further, inhibitory
connections in the model are range-restricted, in that
inhibitory connections are present only within a level of
representation, never between, just as inhibitory neural
projections are typically restricted to within a cortical
area (this implementation is thematically similar to that
in the TRACE model). Between-level connections in
the ERP model are always excitatory. In addition to
being range-restricted, inhibitory units in the ERP
model are out-numbered by excitatory units: only one
inhibitory unit is present at each level of representation.
Finally, in the cortex, some populations of inhibitory
units respond more quickly than others to input. In the
model, this differential time course is simulated on the
inhibitory units by means of the multi-linear “elbow”
activation function, which produces unit activations that
approximate the sum of “fast” and “slow” inhibitory

sub-populations. Figure 1 displays the architecture of
the ERP model and the activation dynamics for
excitatory and inhibitory units. Outside of the neural
constraints just described, the ERP model is a typical
PDP model that follows in the tradition of PDP word
recognition models that have preceded it (most recently
Harm & Seidenberg, 2004). That is, its task is to
associate a distributed pattern of orthographic input
with a distributed pattern of semantic output, through
non-linear (sigmoidal) transformation over several
banks of hidden units. It accomplishes this task by
acquiring connection weights over a training period of
supervised learning with the back-propagation through
time algorithm.

ERP Repetition Effects

The ERP model successfully simulates important
component effects elicited when participants read an
unconnected list of text. This type of reading material,
of course, does not resemble realistic reading material
in numerous respects. Most importantly for the current
research, realistic text comprehension pervasively relies
on context for interpretation of individual word forms.
Thus, to extend the ERP model’s relevance to the
processes involved in reading more realistic material, it
is important to extend its sensitivity to context. The
simplest type of context, and a type that produces robust
modulations of the N400, is the immediate repetition of
a word form (e.g., DOG DOG). This simple form of
context requires that the processing of word, in a
minimal fashion, be dependent on what has come
before it, and is thus a reasonable first step in making
the bridge between simulating the response to isolated
items and simulating the response to items embedded in
context.

Figure 2 displays canonical ERPs elicited when
words (DOG), acronyms (DVD), pseudowords
(GORK), and illegal strings of letters (XFQ) are
repeated. Repetition effects on the N400 are
characterized by a positivity in response to a 2nd
presentation, regardless of item type. The classic
explanation of N400 repetition effects is that when an
item is repeated in a short period of time (~10 seconds),
its semantic features are still somewhat active from the
prior presentation. Consequently, fewer-- unspecified--
resources need be devoted to activating the same
features a second time, resulting in a reduced N400.
This interpretation has been essentially unchallenged
since its formation (Rugg, 1985), but, as we will see,
the model will suggest a subtly different account.

ERP repetition effects are prevalent enough in not
only the reading literature, but also the memory and
perception literatures, that their mechanics have been
considered in computational models before (Huber,

2827



Middle Parietal Electrode

— First Presentation

3 Words Acronyms Pseudowords lllegal Strings
(]

T - N400

2 [ Effect

S

< ke b

§ =0 920 ms

=

- Second Presentation

Figure 2: Grand averaged ERPs elicited in response to first and second presentations of words, acronyms,
pseudowords, and illegal strings, over the middle parietal electrode. The classic N400O repetition effect—reduced
N400s for repeated items —is boxed. Note: negative is plotted upwards by convention.

Tian, Curran, O’Reilly, & Woroch, 2008). This work,
however, focused on early (i.e., pre-N400) repetition
effects. An implemented computational account of
N400 repetition effects, in contrast, is to our knowledge
not present in the literature, and is a goal of the present
simulations.

Unit Fatigue, Post-Synaptic Potentials, and the
Alpha Function

In the model, N400 activity is linked to mean activation
in the semantic level of representation. Thus, in order
to effect a simulated reduced N400 in response to a
repeated item, less activity must occur in semantics in
the model when an item is repeated than when it is
presented for the first time. In particular, specific units
must become less active in response to an input when
they have recently been active than when they have not;
in other words, individual units must have the capacity
to become selectively fatigued. Importantly, this
fatigue must occur at the level of individual units-- not
across the entire semantic level of representation--
because units that have NOT recently been active must
be free to activate to their maximum level (e.g., when a
new item is presented instead of a repetition).

Thus, the desired dynamic for individual units in the
model in the context of item repetition is one where an
initial activation peak (in response to the first item in a
pair) is followed by a subsequent decline in activation.
Interestingly, this dynamic profile is similar to that of
post-synaptic potentials (PSPs), as simulated in neural
computation with the alpha function:

V =ateT (1)

Where V is a measure of membrane potential, a is a
scaling parameter that determines the maximum value
of V, t is the number of time steps since the unit became
active, and T is a free parameter that determines the
time step at which V peaks (see David, Kiebel,

Harrison, Mattout, Kilner, & Friston, 2006). Figure 1
displays the shape of the alpha function.

Thus, in neural computation, PSPs are simulated with
a function that resembles that desired for simulation of
repetition effects. This is especially interesting in light
of the fact that the source of the ERP signal is cortical
post-synaptic potentials.  Independent observations
about 1) the dynamics of the function needed to
implement repetition effects and 2) the source of ERPs
thus converge to suggest a method for simulating ERP
repetition effects: constraint of unit activation in the
model with the alpha function.

As inhibitory units in the model are already
constrained with the elbow function, to allow them to
simulate the response of fast and slow inhibitory
populations, we confine application of the alpha
function to excitatory units. We aimed to determine
whether imposing this profile would enable the model
to simulate ERP repetition effects.

Simulations

The architecture of the model is displayed in Figure 1,
and is identical to that used in Laszlo & Plaut (2012),
with the exception that, now, excitatory unit activation
is constrained by the alpha function. To understand
how this is accomplished, think of the value of the
alpha function at a particular time step as a scaling
parameter. In simulations, the parameter a (see
Equation 1) was set such that the permitted values of V
fell in [0,1]. Thus, when a unit activation is multiplied
by V, that multiplication results in that unit’s activation
being scaled by V. When the alpha function is in its
peak state, at =7, V is 1, so multiplying unit activation
by V does not change the original unit activation.
However, when the alpha function is in its fatigued
state, when ¢ > T, V < 1, such that multiplying unit
activations by V reduces those activations, effecting unit
fatigue.
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Figure 3: Simulated ERPs elicited in response to repeated and non-repeated presentations of words, acronyms,
pseudowords, and illegal strings. The dashed y-axis indicates stimulus onset. All units in the model data are arbitrary.
In the simulated ERPs, as in the real ERPs, all item types produce reduced semantic activation when an item is

repeated as compared to when it is not.

In the cortex, of course, not all neurons generate
PSPs in response to all inputs. Thus, some neurons
become fatigued in response to particular inputs, and
some do not. In order to implement fatigue that mirrors
the cortical situation, units in the model progress along
the alpha function at different rates. Specifically, ¢ for
purposes of calculating V is not simply the total number
of time steps that have elapsed since the presentation of
the input. Instead, V is calculated separately for each
unit. In these by-unit calculations, ¢ is incremented not
with every time step in the model, but only when a
unit’s activation on the prior time step exceeded a
threshold. This threshold is a fixed parameter in the
model. The result of this method for determining ¢ is
that only units that respond to a particular input become
fatigued. Units that do not respond to a particular input
do not become activated above threshold, and therefore
do not become fatigued.

Training

Weights in the model were initialized to small,
random values. The orthographic autoencoder was then
trained via back-propagation through time for 20000
epochs to reproduce orthographic inputs on an identical
output layer. Then, with the weights in the autoencoder
and all inhibitory weights fixed, the remainder of the
network was trained for 15000 epochs to associate
input orthographies with output semantics. Each
training pattern was presented for 16 time steps.
Training items consisted of 62 words and 15 acronyms.
Importantly, the entire network’s activation was reset to
its initial level after each item during training, meaning
that each input during training was isolated from others.
Thus, the model received no training on repeated items.
The model’s output dynamics in response to repeated
items must therefore be an emergent characteristic of its
architecture-- newly implemented to simulate PSPs--
when extended to these novel input scenarios, not

simply the result of training it on the desired response to
repetitions.

Testing

The trained network was presented with input pairs
either of the form AA (repetitions) or AB (non-
repetitions). Each item of the pair was presented for 16
time steps, with a single time step of blank input
between each item of the pair. In testing, the network
was not re-initialized between items in a pair (but was
re-initialized between pairs). In non-repetitions, the B
item was always of the same lexical type as the A item
(i.e., words were followed by words, etc.).

In addition to trained items, the network was tested
on repetitions and non-repetitions of pseudowords (85)
and illegal strings (279)-- these comprised all possible
nonwords in the model’s orthography. The nonwords
provide a particularly hard test for the model, since they
were not presented to the model during training. When
presented with nonword pairs, in order to, correctly,
produce reduced activation on repetition but not non-
repetition trials, the model must produce dynamics it
has never been trained on in response to items it has
never been exposed to.

ERPs

Target ERPs for simulation were drawn from the single-
item ERP corpus (for details, see Laszlo & Federmeier,
2011). Briefly, it includes responses from participants
who passively read an unconnected list including 75
each of words, pseudowords, acronyms, and illegal
strings-- all of which repeated once-- while EEG was
recorded. Figure 2 displays the target phenomenon for
simulation: N400 amplitude is reduced on second
presentation for all item types.

Results
ERPs
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Figure 4: Simulated ERPs elicited in response to repeated and non-repeated items in a model in which the alpha
function is not applied. Simulated waveforms are essentially identical across presentations in these simulations,
which is why only a single wave trace is visible in the figure: the second trace is directly beneath the first. Unlike the
ERPs of the alpha function model, ERPs from this simulation do not display repetition effects for any item type.

Grand-averaged ERPs were computed over the middle
parietal electrode site for each item type (words,
pseudowords, acronyms, and illegal strings) on each
presentation (first and second). N400 peak latency was
measured from 250-450 ms; N400 mean amplitude was
then measured according to the full width at half max
(FWHM) of that peak. This resulted in quantification of
N400 mean amplitude over the 350-450 ms window.
Using FWHM to determine the window of
measurement allows for better consistency in
measurements taken from real and simulated ERPs, as
temporal units in the simulated ERPs are arbitrary (i.e.,
have no meaningful counterpart in milliseconds), but
nevertheless have a peak and a FWHM of that peak.

The impact of repetition was assessed by analyzing
the mean amplitude data for each item type using linear
mixed effect regression, with item as a random factor
and item type as a fixed factor. Markov Chain Monte
Carlo sampling was used to generate p-values. These
analyses replicated the standard finding: N400 mean
amplitudes were reduced for all item types (all ps <
0.0003).

Simulations

Simulated ERPs were generated by averaging semantic
activation for each time step in the model for the second
item in each item pair; the time series of those averages
across time steps is the simulated ERP. Figure 3
presents simulated ERPs for first and second
presentations of each item type. As is evident from the
Figure, simulated ERP amplitudes were reduced for
each item type. Simulated N400 (sN400) peak latency
was measured as simply the latency of the most positive
peak in the simulated ERPs; since N400 activity is
linked to mean semantic activation in the model, the
peak of mean semantic activation in the model is
transparently the peak of the sN400. Mean amplitude
of the sN400 was then measured according to the
FWHM of that peak, in analogy with measurement of
the N400. Analysis identical to that described for the

human ERPs revealed a substantial sN400 amplitude
reduction for all item types (all p < 0.005).

To assess the degree to which the alpha function was
responsible for the simulated repetition effects, we
conducted a second simulation in which the only
modification was the removal of the alpha function
(essentially, this model was a replication of Laszlo &
Plaut, 2012). In what follows, we will refer to this
simulation as the No-Alpha simulation, and the original
simulation as the Alpha simulation. Figure 4 displays
results of the No-Alpha simulation. As is evident in the
Figure, the No-Alpha model did not exhibit a sN400
repetition effect, in contrast with both the empirical data
and the Alpha simulation. Numerically, the difference
between first and second presentation sN400 mean
amplitude was not different than 0 to 5 degrees of
decimal precision for any item type.

Discussion
Our goal was to extend the original ERP model from
being insensitive to context to being sensitive to the
minimal context of whether an item has been repeated.
We aimed to achieve this by improving the neural
realism of the model. This improvement took the form
of imposing the fatigue dynamic of PSPs on individual
units in the model. The choice of this particular
dynamic was motivated both by the empirical need to
identify a fatiguing dynamic as well as the observation
that the source of the ERP signal is cortical PSPs.
Results indicated that, even when presented with a
situation never encountered in training (item pairs) and
items never encountered in training (pseudowords,
illegal strings), a variant of the ERP model
implementing unit fatigue reproduced the standard
pattern observed in ERP studies: namely, that repeated
orthographic items elicit reduced N400s. Importantly,
reduced sN400s in response to repetition were not
obtained in a version of the model without unit fatigue.
These results support the general conclusion that
improving the neural realism of PDP models is a
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strategy that can greatly extend the type of phenomena
such models are able to explain. More importantly,
however, this data provides a potential explicit
mechanistic explanation of ERP repetition effects that
subtly differs from that typically offered in the
literature. As already discussed, the classic explanation
of N400 repetition effects is that, when an item is first
encountered, it invokes access of its associated
semantics (or, in the case of nonwords, the semantics of
visually similar items). Then, when the same item is
repeated, there is less lexical-semantic processing
required to re-activate the pre-activated semantics,
resulting in a reduced N400 (see Rugg, 1985).

The source of N400 repetition effects in the model, in
contrast, is not pre-activation of semantic features-- as
is visible in Figure 3, network activity drops back
almost to zero between items in a pair, before the onset
of the simulated N400. Instead, semantic activity is
reduced due to the fatigue of individual semantic units.
While the traditional view of N400 repetition effects is
based on unspecified principles of cognitive resource,
the simulations suggest a view based on explicit
mechanistic principles of the underlying neural system.

More exploration-- both empirical and
computational-- of fatigue as an explanation of
repetition effects is clearly needed: for example, it has
been demonstrated in the ERP literature that additional
repetitions of word forms (i.e., third, fourth, or more
presentations) do not further diminish the N400
response (Young & Rugg, 2007), and it is not clear that
the ERP model would exhibit this pattern. Similarly, in
the present simulations words were considered a
monolithic group, but it is well known that N400
repetition effects are strongly influenced by lexical
factors such as word frequency (e.g., Young & Rugg,
2007), and it is again not clear that the ERP model
would respond similarly. Thus, although the current
work suggests an interesting alternative explanation of
N400 repetition effects, based on realistic neural
mechanisms and processing dynamics, clearly there is
significant additional work to be done to explore this
explanation  further. The explicit simulation
implemented here is hoped to provide a foundation for
this future work.
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