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Abstract

Utilizing a Preparation for Future Learning paradigm and the
Interactive-Constructive-Active-Passive framework, this study
examined how two different kinds of cognitively engaging
activities prepared students to learn from collaborating.
Findings show that preparing prior to collaborating improved
learning, but a difference was not detected in the type of
preparation. In addition, differences in learning outcomes were
only present in measures of deep knowledge. Analyses used a
multilevel method targeted to dyadic data. Discussion addresses
designing collaborative classroom activities that are effective
and efficient for deep learning, as well as the importance of
aligning assessments to depth of learning.

Keywords: collaborative learning; preparation for future
learning; cognitive engagement; classroom learning.

Introduction

Collaborative learning has become a common instructional
strategy in a variety of educational settings because of its
potential to boost student learning. Through peer discussion,
students can receive immediate feedback, ask questions,
generate explanations, challenge each other, jointly
construct understanding, and elaborate on each other’s
ideas, which are all behaviors that have been shown to
improve learning outcomes in both the classroom and
laboratory. However, despite the extensive research that has
been conducted on collaborative learning, the literature is
still unclear as to what factors lead to the best learning
outcomes, in particular, for deep understanding of concepts.
Thus, this work aimed to investigate two factors that may
improve deep knowledge, in particular, in a conceptual (as
opposed to a problem-solving) domain: (a) individually
engaging in the learning material prior to collaborating and
(b) “constructively” engaging, where students are generating
(constructing) new knowledge beyond the learning material.

There are mixed results as to how collaboration affects
student learning (Barron, 2003; Craig, Chi, & VanLehn,
2009). In general, students do not always take advantage of
the benefits collaboration affords, thus, researchers have
searched for ways to help students collaborate more
effectively. Methods such as training students in
collaboration skills (Hausmann, 2006; Uesaka & Manalo,
2011), providing structured guidance to students while
interacting (Coleman, 1998; Walker, Rummel, &
Koedinger, 2011), and designing collaborative learning
environments that elicit meaningful discussion (Engle &
Conant, 2002; Kapur & Bielaczyc, 2012) have been found
to improve learning from collaborating. However, there are
also challenges and limitations to these methods.

One limitation to training students in specific skills before
collaborating is that they often fail to retain those skills after
time (Webb, Nemer, & Ing, 2006). The challenge of
structured guidance during collaboration is that too much
can constrain creativity and flexible discussion, which can
hinder learning (Cohen, 1994). Therefore, one question that
remains is, does the effort and time that it takes to train or
guide students in collaborative behaviors really pay oft?
Work that has investigated the design of collaborative
activities to naturally elicit effective dialoguing addresses
this challenge, showing that open-ended and flexible tasks
can enrich discussion (Janssen, Erkens, Kirshner, &
Kanselaar, 2010; Van Boxtel, Van der Linden, & Kanselaar,
2000). However, this only occurs when students have
sufficient prior knowledge (Nokes-Malach, Meade, &
Morrow, 2012). Thus, a collaborative learning method that
avoids the time and effort needed to train students in
particular skills or structure their instance-by-instance
dialogic behaviors, while providing the opportunities for
students to acquire adequate prior knowledge is investigated
in the current study.

Cognitive theoretical models

Two cognitive theoretical models supported the design of
the collaborative activities in this study. The Interactive-
Constructive-Active-Passive (ICAP) framework and the
Preparation for Future Learning (PFL) paradigm are
described below.

The ICAP framework

The ICAP framework differentiates student engagement
in learning tasks by categorizing students’ overt behaviors
as Interactive, Constructive, Active, or Passive, and is
founded on theoretical assumptions about how those
behaviors link to different cognitive processes (Chi, 2009;
Menekse, Stump, Krause, & Chi, 2012). An Interactive
behavior might be debating or extending a partner’s idea
and the cognitive process underlying Interactive
engagement would be co-creating knowledge. Inventing a
rule, self-explaining, or creating a concept map would be
Constructive, the underlying cognitive process being
creating new knowledge. Active behaviors include
highlighting a textbook chapter or copying solutions steps
from the board, and correspond to assimilating knowledge.
Listening or watching would be considered Passive,
corresponding to the process of storing knowledge. The
ICAP hypothesis makes the prediction that Interactive
activities will produce better learning outcomes than
Constructive activities, which are better than Active
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activities, which are all better than Passive activities:
I>C>A>P. There is empirical support for the ICAP
hypothesis, although the Interactive category carries several
caveats (Menekse et al., 2012). One is that engagement
should only be considered Interactive when both individuals
in a dialogue are engaging constructively. This does not
always occur (literature on the process of collaboration in
learning settings attests to this claim). Thus, this current
study will address the question of how learning is affected
by interacting on a Constructively designed task or an
Actively designed task.

The PFL paradigm

This paradigm takes into account how earlier learning
experiences can shape future learning, under the perspective
that prior learning can activate a mental model to either
facilitate or hinder the learning of a new concept (Schwartz,
Sears, & Chang, 2007). Although the PFL paradigm was
introduced in the literature over two decades ago (Schwartz
& Bransford, 1998), more recent work has used this model
to investigate learning outcomes in a variety of domains
(Chin et al., 2010, in elementary school science; Gadgil &
Nokes-Malach, 2012, in cognitive psychology; Schwartz,
Chase, Oppezzo, & Chin, in press, in physics). This work
has shown that invention-type tasks better prepare students
to learn from a lecture (Schwartz & Martin, 2004). In other
words, tasks that are set up to cognitively engage students in
a “constructive” way, by causing students to generate new
knowledge (Chi, 2009), are those that best prepare students
to learn in a future task. The majority of the work that has
investigated the PFL paradigm uses some form of didactic
instruction (i.e. lecture) as the future task, thus, little is
known about the effects other forms of instruction as future
tasks, such as collaboration. The current study utilizes the
PFL model to structure collaborative learning activities for
students, however, the future activity is peer discussion
(instead of a lecture) and students individually (rather than
collaboratively) engage in the preparation task.

Measures of learning and mental models

In light of using the two aforementioned cognitive
perspectives as the basis for this study, the measures of
learning outcomes should be viewed as representing student
mental models of the concepts being tested. Mental models
can be assessed through externalizations such as self-
generated concept maps, matrices, drawings, and free-
writing (Janssen et al., 2010; Schwartz, 1995; Van
Amelsvoort, Andriessen, & Kanselaar, 2007). Multiple-
choice or T/F tests are often used to measure student
learning with regard to accuracy or correctness of
knowledge, however, these are not necessarily appropriate
to fully assess a mental model (Bransford & Schwartz,
1999; Schwartz et al., 2007). A more complete picture of
student knowledge can be captured by combining these
types of assessments. With respect to measuring depth of
knowledge, shallow knowledge can be equated to the
“surface features” of a mental model, while deep knowledge

lies in the “structure” of the model (Chi & VanLehn, 2012).
Surface features can be facets such as labels and definitions,
physical characteristics, or other plain facts. Structural
knowledge is much more complex, representing the
relationships between the features of a concept and/or the
process by which a concept occurs or functions. Thus, the
current work used student-generated written responses to
assess deep, structural-based learning, while T/F pre- and
posttests were used to assess shallow, surface-feature
learning.

Method

The study used a 2x2 experimental design examining
Preparation (No Prep and Prep) and Type of Task (Active
and Constructive). The two dependent variables were
shallow learning and deep learning. In order to preserve
both internal validity and ecological validity, the study was
conducted as a classroom study across four introductory
psychology classes with equal representation of the four
conditions in each classroom. The students participated in
the study as a part of their “regular” classroom activity for
the weekly topic of “concepts of memory.”

Participants

Ninety students from four Psych 101 courses at a large
community college in a Southwestern city in the United
States participated in this study. The mean age of students
was 21 years and the sample represented an ethnically
diverse population (46% Hispanic, 37% Caucasian, 10%
African American, and 7% Asian, Native American, or
Middle Eastern). Fifty six percent of the students were
female, 44% were male.

Materials

Regarding the topic of interest, prior research attests to
the difficulty that students have in deeply understanding the
differences between a variety of concepts of memory, in
particular, for encoding- and schema-based concepts
(Schwartz & Bransford, 1998). Thus, all learning activity
materials and assessments were based on Schwartz and
Bransford’s (1998) materials. These materials were the only
form of instruction to students for the topic. Students
received no other instructional material (lecture, textbook
readings, etc.) prior to the study and, therefore, were
assumed to have limited prior knowledge of the concepts.

The study used the following materials: (1) pretest and
demographic survey, (2) four versions of learning materials
based on condition, (3) posttest, and (4) scoring rubrics.

(1) The pretest consisted of T/F questions that were very
slightly modified from Schwartz and Bransford’s (1998)
verification measure, which was used in several studies on
concepts of memory.

(2) The materials used during the learning phase were
equivalent in domain content, however, the specific task
instructions varied according to the ICAP cognitive
engagement definitions and whether or not the condition
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included a preparation period. In Prep conditions, students
were given a portion of the class time to individually work
on the task prior to engaging with a partner, while students
in the No Prep conditions worked with a partner for the
entirety of the learning phase. Active tasks asked students to
work within the existing learning materials (i.e. they did not
have to generate inferences beyond the materials to
complete the tasks), while the Constructive tasks required
students to invent concepts. To provide an example, the
Constructive task required students to answer questions
such as, “Why do people remember certain kinds of
information, but not other kinds?” after studying a memory
experiment and its results. They had to generate ideas about
the process of memory. The Active version of the task, on
the other hand, instructed students to study a list of memory
terms and their descriptions. They then applied the terms to
the same memory experiment included in the Constructive
version by writing the term next to the appropriate result of
the experiment. These students had to “search and select,”
but did not necessarily have to generate any new
knowledge. Since the Active tasks took much less time to
complete (as shown in a prior pilot study of this work), they
included a secondary memory experiment task that was
identical in structure to the first, but with a different cover
story. This was to control for time-on-task, which was
equalized across the four conditions.

(3) The posttest included the same T/F questions that
were used in the pretest. To avoid a “testing effect” (i.e.
learning solely attributed to the recognition of identical test
questions at a later testing phase), the ordering of the
questions was changed and there were four to five days in-
between the tests. (See work by Bjork and Storm, 2011, for
details regarding the conditions under which testing
influences learning.) Student gain scores from pre- to
posttest served as the measure of shallow learning.

Two additional tasks were included on the posttest to
obtain a measure of deep learning. These were “prediction”
tasks, where students had to study novel experiments on
memory (i.e. they did not appear in the learning materials)
and synthesize their recently learned knowledge in order to
apply it to new experimental conditions, generate new
inferences about how memory works, predict the results of
the experiments, and provide evidence of their reasoning for
predictions. Students freely wrote their responses to a set of
sub-questions that all corresponded to a basic question of,
“Based on what you now know about memory, how do you
think the results of these experiments will turn out?”

Because these types of prediction tasks are likely deeply
cognitively engaging, there was concern that including any
on the pretest might influence students to engage differently
in the learning activity tasks. In particular, the Active
conditions may have become contaminated if students were
primed in a pretest task to think more deeply about the
concepts. Thus, the pretest only included the shallow T/F
questions. Although this prevented obtaining any measure
of deep knowledge prior to the learning phase, this was of
less concern since it was highly unlikely that students had

prior deep knowledge of memory concepts. As already
mentioned, they not did have previous instruction on the
topic in their classes and in addition, they produced low
shallow knowledge scores at pretest (M=50.8%, SD=21.6).
Thus, rather than a gain score, the deep learning measure
used only the posttest prediction task scores.

(4) Scoring rubrics were developed in order to quantify
students’ responses to these prediction tasks. Responses
were coded by how well they represented any of the
following eight concepts: elaboration, schema, gist, serial
position effect, generation effect, obstacle recall,
interference, and encoding failure. These concepts may have
been explicitly learned in the Active conditions, through the
“search and select” tasks, or may have been implicitly
learned in the Constructive conditions, through the
“invention of concepts” tasks. A code of “other” was used
for responses that represented novel ideas about memory
(i.e. ideas that were not taught through the activities). This
coding translated to a score ranging from 0-3 points, based
on a holistic-style rubric. A higher score indicated
knowledge of a broader range of concepts, representing a
more complete mental model of memory. A score was also
given for the quality of students’ reasoning supporting the
relationship between their predictions and the concepts, also
ranging from 0-3 points. This score indicated knowledge of
the relationships between the concepts and their applications
to novel settings, thus, representing a better structured
mental model. A total score of 0-6 was possible. Two raters
scored a randomly selected 20% of the data and intraclass
correlation was used to assess inter-rater reliability,
ICC(2,1)=.76, p<.001. One rater scored the remaining tests.

Procedure

The study took place over the course of a week. On the
first day, students took the pretest and filled out the
demographic survey. Students were given 15 minutes to
complete the pretest.

Students completed the learning activity phase during the
next class. They were randomly assigned to one of the four
conditions: (a) No Prep-Active, (b) No Prep-Constructive,
(c) Prep-Active, and (d) Prep-Constructive. For No Prep
conditions, students were randomly assigned to a partner
and told to follow the instructions on their packets. They
were encouraged to share ideas, try come to agreement
before writing down an answer, and not to worry about
writing right or wrong answers. Instructions varied
depending on whether students were completing the Active
or Constructive version (described in the Materials section),
but all students were told to try to contribute equally to the
discussion. For Prep conditions, students first completed an
individual packet. They were told not to worry about right
or wrong answers and to do their best. They were informed
that they would use this packet to work with a partner. After
the individual work (ranging from 15-20 minutes), students
were randomly paired and spent the remaining class period
doing their collaborative packet (10-15 minutes). They were
told to share their ideas, try to contribute equally to
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discussion, and come to agreement before writing down
their answers. At the end of class, all materials were
collected (each pair turned in a jointly completed
collaborative packet). Students spent 30-35 minutes on the
learning task in all conditions.

The posttest was given in the following class and was
completed individually. Students spent 35-50 minutes on the
posttest. Any students who finished before 30 minutes
passed were asked to go over their answers one more time.

Results

To avoid violation of the assumption of independence of
subjects (which traditional ANOVA assumes) (Kenny,
Kashy, & Cook, 2006), a dyadic multilevel model was used
for all analyses. Figure 1 illustrates the model. The analytic
technique was a linear mixed model with the Restricted
Maximum Likelihood (REML) method, appropriate to cope
with dependency between partners within dyads.

Level 2 Factors: Preparation and Type of Activity

No Prep € Prep

Active Constructive y Active Constructive

‘D—c ‘ ‘D—d ‘ ‘D—e

D-f ‘ ‘D—g ‘ ’D—h ‘

S S S S S S S
5 7 10 2 13 14 16
\ |

Legend

S = individual student
D =dyad

L =1level

Figure 1: Multilevel dyadic design.

Shallow learning

Analysis of the pre- and posttests compared learning gains
across conditions. “Normalized change” calculations were
used to adjust learning gains by accounting for influences of
pretest scores, yielding a more sensitive measure of gains
(Marx & Cummings, 2007). When post>pre, the following
formula was used: post-pre/l-pre. When post<pre, a
different formula was used: post-pre/pre. Although students
gained in all conditions, there was no reliable difference
between conditions. Table 1 summarizes these results.

Table 1: Shallow learning mean scores

Condition n Pretest%  Posttest’%  Adj.
Gain
No Prep-Active 14 53.6 72.6 43
No Prep- 18 49.1 61.1 21
Constructive
Prep-Active 15 46.7 63.3 28
Prep- 19 535 71.9 40
Constructive
Total 66  50.8 67.2 33

Note: Due to incompletion of the T/F questions at either pre- or
posttest, the total sample was reduced from 90 to 66 students.

These results are not surprising because even the “lowest”
condition (No Prep-Active) constitutes an effective teaching
strategy in a number of ways. Students were provided terms
and definitions, the opportunity to apply those to real-world
examples, and the benefit of engaging in discussion.
Because these pre- and posttests were used to assess the
knowledge of the surface features of memory concepts,
students were expected to gain in all conditions. The
differences between conditions were only hypothesized for
deep learning, attesting to the sensitivity of the manipulation
of the conditions. The deep learning results are below.

Deep learning

Ninety students completed the prediction task portion of
the posttest. The prediction task posttest scores were reliably
different across conditions. There was a main effect of
Preparation F(1,41.1)=5.79, p<.03, but no effect of Type of
Task, nor an interaction effect. Students who prepared in the
task individually in either type of task before collaborating
showed evidence of deeper learning. See Figure 2.

Preparation
Condition
WNo Prep
MEPrep

5.00

n=21

n=24

Mean Prediction Score

Active Constructive

Type of Task

Figure 2: Prediction task results.

This result was not expected since prior work supports the
notion that “constructively” engaging activities should
produce improved learning above “actively” engaging
activities. As shown in Figure 2, there is virtually no
difference between the Active and Constructive conditions
when students individually prepared prior to collaborating.
One interpretation of these results is that the inclusion of
preparation prior to discussion in a collaborative activity
boosts learning such that it overrides any effects of type of
task. It is possible that the inclusion of an individual
preparation period increases the likelihood that students will
engage constructively in a dialogue, regardless of whether
the task itself requires generation of new knowledge. In
other words, the preparation may have spontaneously
impelled students to engage constructively even in Active
tasks, thus, further exploratory analyses were conducted to
check this.
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Preparation facilitates constructive engagement

To assess differences between how the No Prep-Active
and Prep-Active students engaged in the tasks, the
collaborative activity worksheets were examined. They
were scored by student effort, rather than in correctness of
responses, since these were never intended to measure
learning. Support for such a strategy can be found in work
on dynamic assessments (Bransford & Schwartz, 1999;
Schwartz et al., 2007), which measure readiness to learn,
rather than learning outcomes. Thus, as related to the PFL
paradigm, these learning tasks can be viewed as readiness
tasks that prepared students to engage in collaboration, with
the posttest prediction task measuring learning. It is possible
that students from the Prep-Active condition developed an
enhanced readiness for learning in discussion, accounting
for the improved performance on the prediction tasks.

Each dyad that completed at least 94% (15 of 16 items) of
the activity worksheet received an effort score of two; those
that completed at least 75% received an effort score of one;
zero points were given to any dyads that completed under
69% of the activity (only four dyads). Since amount of work
completed is not a thorough indication of how deeply
engaged students were in the activities, the number of times
students within a pair disagreed was also taken into account.
The worksheets included a line for each item that asked
students if they agreed on the answer, and if not, they were
instructed to explain their disagreements. (Work on
argumentation shows that students benefit from talking
through disagreements, Asterhan & Schwarz, 2009.)
Analysis of discourse could have provided a better measure
of engagement, however, that was beyond the scope of this
paper. Thus, activity effort and average number of
disagreements per pair were used to measure engagement.

Results showed that dyads in the Prep-Active condition
produced a higher activity score (M = 1.71) compared to
those in the No Prep-Active condition (M = 1.43), and had a
slightly higher average number of disagreements (.55
compared to .45, respectively). Although none of these
differences were significant, put together they provide some
support that preparation may influence students to engage
constructively in an activity, even when the activity in and
of itself does not require such engagement.

Discussion and future work

This study tested the effects of preparation and type of
task on shallow and deep learning in a collaborative activity.
Students engaged in either an Actively or Constructively
designed task, and either worked individually during part of
the learning phase, then collaborated (Prep), or worked
jointly the entire time (No Prep). (Recall that time-on-task
and domain content of the learning materials were the same
across all conditions.) Results showed that preparation
improved deep learning outcomes, but no difference was
detected for type of task. The main effect of preparation on
outcomes extends the PFL paradigm, showing that peer
discussion can serve as a beneficial future learning task (i.e.
the future task need not be lecture). Considering the learning

opportunities that peer discussion offers as compared to
didactic forms of instruction, this is an important finding
towards design of classroom activities, especially with
regard to deep learning. Although this study cannot inform
on the comparison between collaborative learning and
didactic instruction as future learning tasks of a PFL model,
it supports the need for more work in this area.

The ICAP framework was not necessarily supported as an
effective tool for designing learning activities since, overall,
there were no differences in type of task on learning.
However, the ICAP hypothesis predicts outcomes based on
student engagement, not on task instructions. Thus, the
exploratory analysis showed that students in the Prep-Active
condition might have engaged constructively, justifying a
null effect. Additionally, one might argue that because all
four conditions included collaborative activities, the level of
engagement for all conditions was actually Interactive.
What is of interest here is that there then should have been
an overall null result, however, that did not occur in the
deep learning outcomes. Chi (2009) discusses the idea that
working in pairs does not automatically make engagement
Interactive, and that to be truly Interactive, both students
must at minimum be engaging constructively. Thus, with
regard to design of learning tasks, one way to better ensure
that students engage Interactively in collaborative tasks is to
include an individual preparation task prior to discussion.
Future work is examining discourse data from a sampling of
pairs from this study to further inform on how discourse
processes related to learning, within in the contexts of the
ICAP framework and PFL paradigm.

This study draws concern toward prior work that has not
used analytic techniques that account for dependency
between partners within dyads. Future work in areas of
collaborative learning should utilize dyadic or multilevel
models to analyze data that includes individual student
outcomes (such as individually completed posttests).

Regarding the learning assessments, this study shows the
usefulness of distinguishing between deep and shallow
learning, and that different kinds of measures are needed to
evaluate learning of varying depths. By using a mental
model perspective to understand outcomes, one can see that
a measure of “surface feature” knowledge would have
shown no effects across conditions. An appropriate measure
of deep “structural” knowledge was needed to tease apart
how learning was affected by the collaborative tasks.

To conclude, it appears that one way to maximize the
benefits of collaboration on deep learning is to include a
preparation task, which allows students to develop a
readiness for learning in future discussion. Preparation also
may elicit spontaneous constructive engagement in future
discussion, and it may not be necessary to otherwise design
collaborative activities to specifically engage constructive
behaviors. In addition, students who prepared only spent
half the amount of the time collaborating. Thus, using a PFL
paradigm to structure collaborative activity is also efficient,
in that students can make the most effective use of their time
engaging in discussion.
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