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Abstract 

 
Utilizing a Preparation for Future Learning paradigm and the 
Interactive-Constructive-Active-Passive framework, this study 
examined how two different kinds of cognitively engaging 
activities prepared students to learn from collaborating. 
Findings show that preparing prior to collaborating improved 
learning, but a difference was not detected in the type of 
preparation. In addition, differences in learning outcomes were 
only present in measures of deep knowledge. Analyses used a 
multilevel method targeted to dyadic data. Discussion addresses 
designing collaborative classroom activities that are effective 
and efficient for deep learning, as well as the importance of 
aligning assessments to depth of learning. 
 
Keywords: collaborative learning; preparation for future 
learning; cognitive engagement; classroom learning. 

Introduction 
Collaborative learning has become a common instructional 
strategy in a variety of educational settings because of its 
potential to boost student learning. Through peer discussion, 
students can receive immediate feedback, ask questions, 
generate explanations, challenge each other, jointly 
construct understanding, and elaborate on each other’s 
ideas, which are all behaviors that have been shown to 
improve learning outcomes in both the classroom and 
laboratory. However, despite the extensive research that has 
been conducted on collaborative learning, the literature is 
still unclear as to what factors lead to the best learning 
outcomes, in particular, for deep understanding of concepts. 
Thus, this work aimed to investigate two factors that may 
improve deep knowledge, in particular, in a conceptual (as 
opposed to a problem-solving) domain: (a) individually 
engaging in the learning material prior to collaborating and 
(b) “constructively” engaging, where students are generating 
(constructing) new knowledge beyond the learning material. 

There are mixed results as to how collaboration affects 
student learning (Barron, 2003; Craig, Chi, & VanLehn, 
2009). In general, students do not always take advantage of 
the benefits collaboration affords, thus, researchers have 
searched for ways to help students collaborate more 
effectively. Methods such as training students in 
collaboration skills (Hausmann, 2006; Uesaka & Manalo, 
2011), providing structured guidance to students while 
interacting (Coleman, 1998; Walker, Rummel, & 
Koedinger, 2011), and designing collaborative learning 
environments that elicit meaningful discussion (Engle & 
Conant, 2002; Kapur & Bielaczyc, 2012) have been found 
to improve learning from collaborating. However, there are 
also challenges and limitations to these methods.  

One limitation to training students in specific skills before 
collaborating is that they often fail to retain those skills after 
time (Webb, Nemer, & Ing, 2006). The challenge of 
structured guidance during collaboration is that too much 
can constrain creativity and flexible discussion, which can 
hinder learning (Cohen, 1994). Therefore, one question that 
remains is, does the effort and time that it takes to train or 
guide students in collaborative behaviors really pay off? 
Work that has investigated the design of collaborative 
activities to naturally elicit effective dialoguing addresses 
this challenge, showing that open-ended and flexible tasks 
can enrich discussion (Janssen, Erkens, Kirshner, & 
Kanselaar, 2010; Van Boxtel, Van der Linden, & Kanselaar, 
2000). However, this only occurs when students have 
sufficient prior knowledge (Nokes-Malach, Meade, & 
Morrow, 2012). Thus, a collaborative learning method that 
avoids the time and effort needed to train students in 
particular skills or structure their instance-by-instance 
dialogic behaviors, while providing the opportunities for 
students to acquire adequate prior knowledge is investigated 
in the current study. 

 
Cognitive theoretical models 

Two cognitive theoretical models supported the design of 
the collaborative activities in this study. The Interactive-
Constructive-Active-Passive (ICAP) framework and the 
Preparation for Future Learning (PFL) paradigm are 
described below. 

 
The ICAP framework 

The ICAP framework differentiates student engagement 
in learning tasks by categorizing students’ overt behaviors 
as Interactive, Constructive, Active, or Passive, and is 
founded on theoretical assumptions about how those 
behaviors link to different cognitive processes (Chi, 2009; 
Menekse, Stump, Krause, & Chi, 2012). An Interactive 
behavior might be debating or extending a partner’s idea 
and the cognitive process underlying Interactive 
engagement would be co-creating knowledge. Inventing a 
rule, self-explaining, or creating a concept map would be 
Constructive, the underlying cognitive process being 
creating new knowledge. Active behaviors include 
highlighting a textbook chapter or copying solutions steps 
from the board, and correspond to assimilating knowledge. 
Listening or watching would be considered Passive, 
corresponding to the process of storing knowledge. The 
ICAP hypothesis makes the prediction that Interactive 
activities will produce better learning outcomes than 
Constructive activities, which are better than Active 
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activities, which are all better than Passive activities: 
I>C>A>P. There is empirical support for the ICAP 
hypothesis, although the Interactive category carries several 
caveats (Menekse et al., 2012). One is that engagement 
should only be considered Interactive when both individuals 
in a dialogue are engaging constructively. This does not 
always occur (literature on the process of collaboration in 
learning settings attests to this claim). Thus, this current 
study will address the question of how learning is affected 
by interacting on a Constructively designed task or an 
Actively designed task. 

 
The PFL paradigm 

This paradigm takes into account how earlier learning 
experiences can shape future learning, under the perspective 
that prior learning can activate a mental model to either 
facilitate or hinder the learning of a new concept (Schwartz, 
Sears, & Chang, 2007). Although the PFL paradigm was 
introduced in the literature over two decades ago (Schwartz 
& Bransford, 1998), more recent work has used this model 
to investigate learning outcomes in a variety of domains 
(Chin et al., 2010, in elementary school science; Gadgil & 
Nokes-Malach, 2012, in cognitive psychology; Schwartz, 
Chase, Oppezzo, & Chin, in press, in physics). This work 
has shown that invention-type tasks better prepare students 
to learn from a lecture (Schwartz & Martin, 2004). In other 
words, tasks that are set up to cognitively engage students in 
a “constructive” way, by causing students to generate new 
knowledge (Chi, 2009), are those that best prepare students 
to learn in a future task. The majority of the work that has 
investigated the PFL paradigm uses some form of didactic 
instruction (i.e. lecture) as the future task, thus, little is 
known about the effects other forms of instruction as future 
tasks, such as collaboration. The current study utilizes the 
PFL model to structure collaborative learning activities for 
students, however, the future activity is peer discussion 
(instead of a lecture) and students individually (rather than 
collaboratively) engage in the preparation task.  

 
Measures of learning and mental models 

In light of using the two aforementioned cognitive 
perspectives as the basis for this study, the measures of 
learning outcomes should be viewed as representing student 
mental models of the concepts being tested. Mental models 
can be assessed through externalizations such as self-
generated concept maps, matrices, drawings, and free-
writing (Janssen et al., 2010; Schwartz, 1995; Van 
Amelsvoort, Andriessen, & Kanselaar, 2007). Multiple-
choice or T/F tests are often used to measure student 
learning with regard to accuracy or correctness of 
knowledge, however, these are not necessarily appropriate 
to fully assess a mental model (Bransford & Schwartz, 
1999; Schwartz et al., 2007). A more complete picture of 
student knowledge can be captured by combining these 
types of assessments. With respect to measuring depth of 
knowledge, shallow knowledge can be equated to the 
“surface features” of a mental model, while deep knowledge 

lies in the “structure” of the model (Chi & VanLehn, 2012). 
Surface features can be facets such as labels and definitions, 
physical characteristics, or other plain facts. Structural 
knowledge is much more complex, representing the 
relationships between the features of a concept and/or the 
process by which a concept occurs or functions. Thus, the 
current work used student-generated written responses to 
assess deep, structural-based learning, while T/F pre- and 
posttests were used to assess shallow, surface-feature 
learning. 

 
Method 

The study used a 2x2 experimental design examining 
Preparation (No Prep and Prep) and Type of Task (Active 
and Constructive). The two dependent variables were 
shallow learning and deep learning. In order to preserve 
both internal validity and ecological validity, the study was 
conducted as a classroom study across four introductory 
psychology classes with equal representation of the four 
conditions in each classroom. The students participated in 
the study as a part of their “regular” classroom activity for 
the weekly topic of “concepts of memory.” 

 
Participants 

Ninety students from four Psych 101 courses at a large 
community college in a Southwestern city in the United 
States participated in this study. The mean age of students 
was 21 years and the sample represented an ethnically 
diverse population (46% Hispanic, 37% Caucasian, 10% 
African American, and 7% Asian, Native American, or 
Middle Eastern). Fifty six percent of the students were 
female, 44% were male.  
 
Materials 

Regarding the topic of interest, prior research attests to 
the difficulty that students have in deeply understanding the 
differences between a variety of concepts of memory, in 
particular, for encoding- and schema-based concepts 
(Schwartz & Bransford, 1998). Thus, all learning activity 
materials and assessments were based on Schwartz and 
Bransford’s (1998) materials. These materials were the only 
form of instruction to students for the topic. Students 
received no other instructional material (lecture, textbook 
readings, etc.) prior to the study and, therefore, were 
assumed to have limited prior knowledge of the concepts. 

The study used the following materials: (1) pretest and 
demographic survey, (2) four versions of learning materials 
based on condition, (3) posttest, and (4) scoring rubrics.  

(1) The pretest consisted of T/F questions that were very 
slightly modified from Schwartz and Bransford’s (1998) 
verification measure, which was used in several studies on 
concepts of memory.  

(2) The materials used during the learning phase were 
equivalent in domain content, however, the specific task 
instructions varied according to the ICAP cognitive 
engagement definitions and whether or not the condition 
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included a preparation period. In Prep conditions, students 
were given a portion of the class time to individually work 
on the task prior to engaging with a partner, while students 
in the No Prep conditions worked with a partner for the 
entirety of the learning phase. Active tasks asked students to 
work within the existing learning materials (i.e. they did not 
have to generate inferences beyond the materials to 
complete the tasks), while the Constructive tasks required 
students to invent concepts. To provide an example, the 
Constructive task required students to answer questions 
such as, “Why do people remember certain kinds of 
information, but not other kinds?” after studying a memory 
experiment and its results. They had to generate ideas about 
the process of memory. The Active version of the task, on 
the other hand, instructed students to study a list of memory 
terms and their descriptions. They then applied the terms to 
the same memory experiment included in the Constructive 
version by writing the term next to the appropriate result of 
the experiment. These students had to “search and select,” 
but did not necessarily have to generate any new 
knowledge. Since the Active tasks took much less time to 
complete (as shown in a prior pilot study of this work), they 
included a secondary memory experiment task that was 
identical in structure to the first, but with a different cover 
story. This was to control for time-on-task, which was 
equalized across the four conditions.  

(3) The posttest included the same T/F questions that 
were used in the pretest. To avoid a “testing effect” (i.e. 
learning solely attributed to the recognition of identical test 
questions at a later testing phase), the ordering of the 
questions was changed and there were four to five days in-
between the tests. (See work by Bjork and Storm, 2011, for 
details regarding the conditions under which testing 
influences learning.) Student gain scores from pre- to 
posttest served as the measure of shallow learning. 

Two additional tasks were included on the posttest to 
obtain a measure of deep learning. These were “prediction” 
tasks, where students had to study novel experiments on 
memory (i.e. they did not appear in the learning materials) 
and synthesize their recently learned knowledge in order to 
apply it to new experimental conditions, generate new 
inferences about how memory works, predict the results of 
the experiments, and provide evidence of their reasoning for 
predictions. Students freely wrote their responses to a set of 
sub-questions that all corresponded to a basic question of, 
“Based on what you now know about memory, how do you 
think the results of these experiments will turn out?” 

Because these types of prediction tasks are likely deeply 
cognitively engaging, there was concern that including any 
on the pretest might influence students to engage differently 
in the learning activity tasks. In particular, the Active 
conditions may have become contaminated if students were 
primed in a pretest task to think more deeply about the 
concepts. Thus, the pretest only included the shallow T/F 
questions. Although this prevented obtaining any measure 
of deep knowledge prior to the learning phase, this was of 
less concern since it was highly unlikely that students had 

prior deep knowledge of memory concepts. As already 
mentioned, they not did have previous instruction on the 
topic in their classes and in addition, they produced low 
shallow knowledge scores at pretest (M=50.8%, SD=21.6). 
Thus, rather than a gain score, the deep learning measure 
used only the posttest prediction task scores.  

(4) Scoring rubrics were developed in order to quantify 
students’ responses to these prediction tasks. Responses 
were coded by how well they represented any of the 
following eight concepts: elaboration, schema, gist, serial 
position effect, generation effect, obstacle recall, 
interference, and encoding failure. These concepts may have 
been explicitly learned in the Active conditions, through the 
“search and select” tasks, or may have been implicitly 
learned in the Constructive conditions, through the 
“invention of concepts” tasks. A code of “other” was used 
for responses that represented novel ideas about memory 
(i.e. ideas that were not taught through the activities).  This 
coding translated to a score ranging from 0-3 points, based 
on a holistic-style rubric. A higher score indicated 
knowledge of a broader range of concepts, representing a 
more complete mental model of memory. A score was also 
given for the quality of students’ reasoning supporting the 
relationship between their predictions and the concepts, also 
ranging from 0-3 points. This score indicated knowledge of 
the relationships between the concepts and their applications 
to novel settings, thus, representing a better structured 
mental model. A total score of 0-6 was possible. Two raters 
scored a randomly selected 20% of the data and intraclass 
correlation was used to assess inter-rater reliability, 
ICC(2,1)=.76, p<.001. One rater scored the remaining tests. 

 
Procedure 

The study took place over the course of a week. On the 
first day, students took the pretest and filled out the 
demographic survey. Students were given 15 minutes to 
complete the pretest. 

Students completed the learning activity phase during the 
next class. They were randomly assigned to one of the four 
conditions:  (a) No Prep-Active, (b) No Prep-Constructive, 
(c) Prep-Active, and (d) Prep-Constructive. For No Prep 
conditions, students were randomly assigned to a partner 
and told to follow the instructions on their packets. They 
were encouraged to share ideas, try come to agreement 
before writing down an answer, and not to worry about 
writing right or wrong answers. Instructions varied 
depending on whether students were completing the Active 
or Constructive version (described in the Materials section), 
but all students were told to try to contribute equally to the 
discussion. For Prep conditions, students first completed an 
individual packet. They were told not to worry about right 
or wrong answers and to do their best. They were informed 
that they would use this packet to work with a partner. After 
the individual work (ranging from 15-20 minutes), students 
were randomly paired and spent the remaining class period 
doing their collaborative packet (10-15 minutes). They were 
told to share their ideas, try to contribute equally to 
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discussion, and come to agreement before writing down 
their answers. At the end of class, all materials were 
collected (each pair turned in a jointly completed 
collaborative packet). Students spent 30-35 minutes on the 
learning task in all conditions.  

The posttest was given in the following class and was 
completed individually. Students spent 35-50 minutes on the 
posttest. Any students who finished before 30 minutes 
passed were asked to go over their answers one more time.  

 
Results 

To avoid violation of the assumption of independence of 
subjects (which traditional ANOVA assumes) (Kenny, 
Kashy, & Cook, 2006), a dyadic multilevel model was used 
for all analyses. Figure 1 illustrates the model. The analytic 
technique was a linear mixed model with the Restricted 
Maximum Likelihood (REML) method, appropriate to cope 
with dependency between partners within dyads.  
 

 
Figure 1: Multilevel dyadic design. 

 
Shallow learning 

Analysis of the pre- and posttests compared learning gains 
across conditions. “Normalized change” calculations were 
used to adjust learning gains by accounting for influences of 
pretest scores, yielding a more sensitive measure of gains 
(Marx & Cummings, 2007). When post>pre, the following 
formula was used: post-pre/1-pre. When post<pre, a 
different formula was used: post-pre/pre. Although students 
gained in all conditions, there was no reliable difference 
between conditions. Table 1 summarizes these results.  

 
Table 1: Shallow learning mean scores 

Condition n Pretest% Posttest% Adj. 
Gain 

No Prep-Active  14 53.6 72.6 .43 
No Prep- 

Constructive 
18 49.1 61.1 .21 

Prep-Active 15 46.7 63.3 .28 
Prep- 

Constructive 
19 53.5 71.9 .40 

Total 66 50.8 67.2 .33 
Note: Due to incompletion of the T/F questions at either pre- or 
posttest, the total sample was reduced from 90 to 66 students. 
 

These results are not surprising because even the “lowest” 
condition (No Prep-Active) constitutes an effective teaching 
strategy in a number of ways. Students were provided terms 
and definitions, the opportunity to apply those to real-world 
examples, and the benefit of engaging in discussion. 
Because these pre- and posttests were used to assess the 
knowledge of the surface features of memory concepts, 
students were expected to gain in all conditions. The 
differences between conditions were only hypothesized for 
deep learning, attesting to the sensitivity of the manipulation 
of the conditions. The deep learning results are below. 
 
Deep learning 

Ninety students completed the prediction task portion of 
the posttest. The prediction task posttest scores were reliably 
different across conditions. There was a main effect of 
Preparation F(1,41.1)=5.79, p<.03, but no effect of Type of 
Task, nor an interaction effect. Students who prepared in the 
task individually in either type of task before collaborating 
showed evidence of deeper learning. See Figure 2. 
 

 
Figure 2: Prediction task results. 

 
This result was not expected since prior work supports the 

notion that “constructively” engaging activities should 
produce improved learning above “actively” engaging 
activities. As shown in Figure 2, there is virtually no 
difference between the Active and Constructive conditions 
when students individually prepared prior to collaborating. 
One interpretation of these results is that the inclusion of 
preparation prior to discussion in a collaborative activity 
boosts learning such that it overrides any effects of type of 
task. It is possible that the inclusion of an individual 
preparation period increases the likelihood that students will 
engage constructively in a dialogue, regardless of whether 
the task itself requires generation of new knowledge. In 
other words, the preparation may have spontaneously 
impelled students to engage constructively even in Active 
tasks, thus, further exploratory analyses were conducted to 
check this. 
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Preparation facilitates constructive engagement 
To assess differences between how the No Prep-Active 

and Prep-Active students engaged in the tasks, the 
collaborative activity worksheets were examined. They 
were scored by student effort, rather than in correctness of 
responses, since these were never intended to measure 
learning. Support for such a strategy can be found in work 
on dynamic assessments (Bransford & Schwartz, 1999; 
Schwartz et al., 2007), which measure readiness to learn, 
rather than learning outcomes. Thus, as related to the PFL 
paradigm, these learning tasks can be viewed as readiness 
tasks that prepared students to engage in collaboration, with 
the posttest prediction task measuring learning. It is possible 
that students from the Prep-Active condition developed an 
enhanced readiness for learning in discussion, accounting 
for the improved performance on the prediction tasks.  

Each dyad that completed at least 94% (15 of 16 items) of 
the activity worksheet received an effort score of two; those 
that completed at least 75% received an effort score of one; 
zero points were given to any dyads that completed under 
69% of the activity (only four dyads). Since amount of work 
completed is not a thorough indication of how deeply 
engaged students were in the activities, the number of times 
students within a pair disagreed was also taken into account. 
The worksheets included a line for each item that asked 
students if they agreed on the answer, and if not, they were 
instructed to explain their disagreements. (Work on 
argumentation shows that students benefit from talking 
through disagreements, Asterhan & Schwarz, 2009.) 
Analysis of discourse could have provided a better measure 
of engagement, however, that was beyond the scope of this 
paper. Thus, activity effort and average number of 
disagreements per pair were used to measure engagement.  

Results showed that dyads in the Prep-Active condition 
produced a higher activity score (M = 1.71) compared to 
those in the No Prep-Active condition (M = 1.43), and had a 
slightly higher average number of disagreements (.55 
compared to .45, respectively). Although none of these 
differences were significant, put together they provide some 
support that preparation may influence students to engage 
constructively in an activity, even when the activity in and 
of itself does not require such engagement.  

 
Discussion and future work 

This study tested the effects of preparation and type of 
task on shallow and deep learning in a collaborative activity. 
Students engaged in either an Actively or Constructively 
designed task, and either worked individually during part of 
the learning phase, then collaborated (Prep), or worked 
jointly the entire time (No Prep). (Recall that time-on-task 
and domain content of the learning materials were the same 
across all conditions.) Results showed that preparation 
improved deep learning outcomes, but no difference was 
detected for type of task. The main effect of preparation on 
outcomes extends the PFL paradigm, showing that peer 
discussion can serve as a beneficial future learning task (i.e. 
the future task need not be lecture). Considering the learning 

opportunities that peer discussion offers as compared to 
didactic forms of instruction, this is an important finding 
towards design of classroom activities, especially with 
regard to deep learning. Although this study cannot inform 
on the comparison between collaborative learning and 
didactic instruction as future learning tasks of a PFL model, 
it supports the need for more work in this area.  

The ICAP framework was not necessarily supported as an 
effective tool for designing learning activities since, overall, 
there were no differences in type of task on learning. 
However, the ICAP hypothesis predicts outcomes based on 
student engagement, not on task instructions. Thus, the 
exploratory analysis showed that students in the Prep-Active 
condition might have engaged constructively, justifying a 
null effect. Additionally, one might argue that because all 
four conditions included collaborative activities, the level of 
engagement for all conditions was actually Interactive. 
What is of interest here is that there then should have been 
an overall null result, however, that did not occur in the 
deep learning outcomes. Chi (2009) discusses the idea that 
working in pairs does not automatically make engagement 
Interactive, and that to be truly Interactive, both students 
must at minimum be engaging constructively. Thus, with 
regard to design of learning tasks, one way to better ensure 
that students engage Interactively in collaborative tasks is to 
include an individual preparation task prior to discussion. 
Future work is examining discourse data from a sampling of 
pairs from this study to further inform on how discourse 
processes related to learning, within in the contexts of the 
ICAP framework and PFL paradigm.   

This study draws concern toward prior work that has not 
used analytic techniques that account for dependency 
between partners within dyads. Future work in areas of 
collaborative learning should utilize dyadic or multilevel 
models to analyze data that includes individual student 
outcomes (such as individually completed posttests). 

Regarding the learning assessments, this study shows the 
usefulness of distinguishing between deep and shallow 
learning, and that different kinds of measures are needed to 
evaluate learning of varying depths. By using a mental 
model perspective to understand outcomes, one can see that 
a measure of “surface feature” knowledge would have 
shown no effects across conditions. An appropriate measure 
of deep “structural” knowledge was needed to tease apart 
how learning was affected by the collaborative tasks. 

To conclude, it appears that one way to maximize the 
benefits of collaboration on deep learning is to include a 
preparation task, which allows students to develop a 
readiness for learning in future discussion. Preparation also 
may elicit spontaneous constructive engagement in future 
discussion, and it may not be necessary to otherwise design 
collaborative activities to specifically engage constructive 
behaviors. In addition, students who prepared only spent 
half the amount of the time collaborating. Thus, using a PFL 
paradigm to structure collaborative activity is also efficient, 
in that students can make the most effective use of their time 
engaging in discussion. 
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