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Abstract 

Although many psychometric tests, like Raven’s Progressive 
Matrices, are commonly evaluated according to total score, 
additional variables can lend insight into the underlying 
cognitive processes.  We examine conceptual errors on the 
Raven’s Standard Progressive Matrices (SPM) test. We 
present a complete classification of error types on the SPM 
using a two-kind coding scheme, yielding ≥ 95% inter-rater 
reliability. We also examine how to extract error data from a 
computational model, and we present a method for measuring 
errors through systematic ablation to create a “population” of 
models whose performance can be examined as a group.  We 
present a preliminary analysis of error patterns on the SPM 
from typically developing individuals, individuals diagnosed 
with autism, and a computational model called ASTI. We 
discuss what the error patterns suggest regarding cognition on 
the SPM and routes towards improving the ASTI model. 

Keywords: ablation experiments; computational modeling; 
error patterns; mental imagery; psychometrics; Raven’s 
Progressive Matrices; visual representations. 

Introduction 
Raven’s Progressive Matrices (RPM) is a widely used series 
of intelligence tests that consist of multiple choice visual 
analogy problems, as in Fig. 1. Each problem contains a 
matrix of geometric figures with one figure missing; the 
correct missing figure that completes the matrix pattern 
must be selected from a set of answer choices.   

Performance is generally measured in terms of overall 
score, i.e. number correct, which can then be used as an 
index into normative test data to determine an IQ score or 
percentile ranking for that individual. While total score is 
certainly an important variable, serving as a coarse measure 
of an individual’s overall ability, there are alternative 
dimensions of performance that may provide a finer-grained 
view of an individual’s cognitive processing:  

1) Per-item accuracy, e.g. differential item functioning, 
takes into account potential variation even when 
individuals may obtain the same total score (Facon & 
Nuchadee, 2010; Lynn, Alik, & Irwing, 2004; Van 
Herwegen, Farran, and Annaz, 2011). 

2) Reaction time can be used to understand the stages of 
processing in solving a single item (Bethell-Fox, 
Lohman, & Snow, 1984) or to compare performance 

across individuals or groups (Soulières et al., 2009). 
3) Patterns of errors—for a problem answered 

incorrectly, which of the given distracters is 
selected?—have been studied as a window into 
cognitive strategy (Bromley, 1953; Gunn & Jarrold, 
2004; Miller & Raven, 1939; Van Herwegen, Farran, 
and Annaz, 2011; Vodegel Matzen et al., 1994). 

All of these dimensions represent measurable aspects of 
the “output” of a human cognitive system taking the RPM 
test.  The “input” to such a system, in addition to the test 
itself, can be conceptualized as the set of cognitive functions 
drawn upon while solving the test.  Unlike the output 
measures, it is difficult to directly measure cognitive 
functioning.  Some studies have used eye-tracking as a 
measure of visual attention (Bethell-Fox, et al., 1984; 
Carpenter, Just, & Shell, 1990), and some have used verbal 
reporting protocols (Carpenter et al., 1990) though verbal 
report may bias the cognitive strategies used by participants 
(DeShon, Chan, & Weissbein, 1995). 

Another way to elucidate these invisible cognitive 
mechanisms is to construct computational models of various 
aspects of RPM problem solving and then inspect these 
models in relation to human behavioral data.  Aspects of 
RPM (or RPM-like) problem solving that have been 
investigated using computational models include: 

 

 
 

Figure 1: Example of an RPM-like problem. 
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1) Knowledge representation, i.e. visual versus verbal 
representations of problem content (Hunt, 1974; 
Kunda, Goel, & McGreggor, 2013; McGreggor, 
Kunda, & Goel, 2011). 

2) Goal-subgoal maintenance (Carpenter et al., 1990). 
3) Problem-solving process, i.e. constructive matching 

(mentally constructing the answer and then selecting 
an answer choice) versus response elimination 
(inspecting each answer choice to find the best fit) 
(Bethell-Fox et al., 1984; Lovett & Forbus, 2012). 

4) Answer selection process in terms of confidence 
(McGreggor & Goel, 2012) or probability (Little, 
Lewandowsky, & Griffiths, 2012). 

However, in the extant literature on computational models 
of the RPM, many models tend to focus on only one 
measure of output performance: total score.  We believe it is 
not only valuable but critical that models examine the other 
dimensions of “output” that we have mentioned, in order to 
investigate how models relate to human cognition at 
increasingly fine-grained levels of resolution. 

In this paper, we focus on one such “output” measure—
error patterns—and one computational model—the ASTI 
model, described in detail in a previous publication (Kunda 
et al., 2013).  We first present an operationalization of error 
patterns on the Raven’s Standard Progressive Matrices 
(SPM) test, in the form of a two-kind classification of 
conceptual error types. Then, we briefly summarize the 
algorithms and performance of the ASTI model.  Finally, we 
present a method for analyzing the errors made by a 
computational model, and we give preliminary results based 
on a comparison of the errors made by the ASTI model 
against human error data from typically developing 
individuals and individuals diagnosed with autism, along 
with an evaluation of what these differences in error patterns 
can tell us about cognitive processing on the RPM. 

Types of Conceptual Errors on the SPM 
One way to examine errors on an RPM test is to look at 
which distracter is chosen in comparison to those most 
frequently chosen (Thissen, 1976; van der Ven & Ellis, 
2000).  However, many studies have shown that errors can 
also be classified according to conceptual type, which may 
provide additional insight into what it means when a certain 
error is made (Forbes, 1964; Horner & Nailling, 1980). 

However, there is currently one significant barrier to the 
widespread analysis of error patterns on the SPM test; while 
the published manuals for two of the RPM tests, the Colored 
Progressive Matrices (CPM) and the Advanced Progressive 
Matrices (APM), include taxonomies of conceptual error 
types, the manual for the Standard Progressive Matrices 
(SPM) does not (Raven, Raven, & Court, 2003). Vodegel 
Matzen et al. (1994) attempted to use the APM error type 
classifications on a portion of the SPM, but inter-coder 
reliability reached only about 70%. The authors concluded 
that classification of SPM distracters seemed “problematic” 
in that there did not seem to be a systematic methodology 
used for constructing distracters. 

The taxonomies given in the CPM and APM manuals 
(Raven et al., 2003), although having different labels, seem 
to represent the same four notions of error types. We now 
present a synthesized description of these four error types 
which, along with criteria used to classify a particular 
distracter, are also summarized in Table 1. 
1) Incomplete correlate (IC) errors occur when the 

chosen distracter is almost, but not quite, correct. For 
example, some IC distracters have the correct shape but 
the wrong texture, as exemplified by distracter #1 in 
Fig. 1. These kinds of errors are made when a test-taker 
more or less “gets” the problem, in terms of identifying 
the relevant matrix relationships, but then fails to fully 
account for all of the details when selecting an answer. 

2) Repetition (R) errors occur when the chosen distracter 
copies a matrix entry adjacent to the blank space, as 
shown by distracters #3 and #8 in Fig. 1. The choice of 
an R distracter may represent perseveration or fixation 
on the matrix entries, in which an answer is selected via 
perceptual matching between the answer choices and 
the matrix entries closest to the blank space.  

3) Difference (D) errors occur when the chosen distracter 
is qualitatively different in appearance from the other 
choices. D distracters include completely blank entries, 
as exemplified by distracter #2 in Fig. 1, as well as 
those that have extraneous or complex shapes not found 
in the matrix. A D distracter might be chosen because it 
visually “pops” from among the other choices. 

4) Wrong principle (WP) errors occur when the chosen 
distracter is a copy or composition of elements from 
various matrix entries, as exemplified by distracters #4 
and #6 in Fig. 1.  A WP distracter might be chosen if 
the test-taker fails to educe the correct relationship from 
the matrix and combines the entries according to some 
other rule or relationship to produce an answer. 

Two-Kind Taxonomy and Coding Results 
The main difficulty we observed in coding SPM distracters 
is that the same distracter often seems to fall under multiple 
categories, e.g. it might represent a repetition as well as an 
incomplete correlate; this difficulty was shared by Vodegel-
Matzen, et al. (1994). From this observation, we realized 
that the four error types listed above actually represent two 
orthogonal classifications of distracters: 

Kind I: Relationship of distracter to matrix entries: 
Repetition, difference, and wrong principle errors all have to 
do with how a distracter is related to information in the 
matrix and in the other answer choices, without any regard 
to the content of the correct answer choice. In particular, 
errors of the first kind assume the participant is attending to 
irrelevant or erroneous aspects of the problem, and that they 
are not able to discover even a partial solution. 

Kind II: Relationship of distracter to correct answer: 
Incomplete correlate errors have to do with how a particular 
distracter is related to the correct answer choice.  These 
errors assume the participant correctly guesses some part of 
the solution but does not quite attain the correct answer. 
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Using this two-kind taxonomy, two raters independently 
coded all 432 distracters on the SPM1 in two separate 
passes, first for Kind I and then for Kind II.  Kind I 
classification used a copy of the test booklet in which no 
answers had been marked, and raters assigned every 
distracter to one of categories #1-10 in Table 1.  Kind II 
classification used another test booklet copy in which the 
correct answers had been marked and the matrix portions of 
each problem had been cut off, so only the answer choices 
were visible; raters assigned each distracter to one of 
categories #11-17 in Table 1, or left it uncategorized. 

Initial agreement between the two raters was 82% for 
Kind I errors and (coincidentally) 82% for Kind II errors. 
Kappa coefficients were calculated to test for independence 
between raters. The kappa values were 0.79 for Kind I 
errors and 0.67 for Kind II errors. 

Discrepancies were resolved during a negotiation phase 
between the two raters.  Each discrepancy was discussed, 
and each rater presented a rationale for the classification.  It 
was found that there were several systematic discrepancies 
easily resolved by making the coding criteria more specific. 
For example, Criterion #5 in Table 1 was modified to 
specify that this type of distracter had to have more 
elements in it than any entry in the matrix, which was not 
originally part of the criterion. Table 1 shows the final 
coding criteria, after these changes had been incorporated. 

After the negotiation phase, rater agreement was 
recalculated. Post-negotiation agreement was 95% for Kind 
I errors and 98% for Kind II errors. Remaining differences 
were resolved by the primary rater based on consideration of 
the conceptual error type intended to be captured. 

Fig. 2 shows the overall proportions of error types across 
all distracters of the SPM.  Interestingly, there is roughly the 
same proportion of incomplete correlate distracters as 

                                                           
1 Each of the first 24 problems on the SPM has 6 answer 

choices, and each of the latter 36 problems has 8 answer choices. 

correct answers, and all remaining distracters are divided 
nearly evenly among the three remaining error types.  

 

 
 

Figure 2: Proportions of each error type on the SPM. 

The ASTI Model 
In previous work (Kunda et al., 2013), we presented a 
computational model of problem solving on the RPM, the 
Affine and Set Transformation Induction (ASTI) model.  
This model was constructed in order to investigate problem 
solving on the RPM using visual mental representations.  
All extant computational RPM models had previously relied 
on propositional forms of representation (e.g. Carpenter et 
al., 1990), despite a breadth of evidence from human studies 
suggesting that problem solving can proceed using either 
visual or verbal forms of representation (see Kunda et al., 
2013, for a summary of these studies).   

The ASTI model also has implications for a recent study 
of RPM performance in individuals diagnosed with autism, 
which found that these individuals seemed to use 
predominantly visual strategies (Soulières et al., 2009), in 
line with other empirical evidence showing a visual 
cognitive bias in autism (Kunda & Goel, 2011). 

Table 1:  Criteria for classifying distracters on the SPM. 
 

Error type  #  Criteria 

Kind I:  
Repetition 

1  Repetition of matrix entry to left of blank space 

2  Repetition of matrix entry above blank space 

3  Repetition of matrix entry to top‐left of blank space 

Kind I:  
Difference 

4  Filled completely white or black 

5  Union of matrix entries or aspects of them, so that union has more components than any single matrix entry 

6  Maximizes some feature value or makes it more complex 

7  Differs qualitatively from matrix and other answers, or contains information not found anywhere in matrix 

Kind I:  
Wrong 

Principle 

8  Copy of matrix entry not adjacent to blank space 

9  Rotation/reflection of matrix entry 

10  Other transformations or combinations of matrix entries or aspects of them, including negative images 

Kind II:  
Incomplete 
Correlate 

11  Negative (color‐inversion) of correct answer 

12  Change only in fill, texture, or style 

13  Rotation/reflection of correct answer 

14  Change only in spatial layout of elements 

15  Change only in size or scale, in either or both dimensions (allowing for feature‐wise scaling) 

16  Change only in number of discrete elements (allowing for slight changes in layout) 

17  Incomplete, with missing element or portion 
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The ASTI model uses purely visual representations in the 
form of pixel-based images along with affine and set 
transformations designed to emulate the types of operations 
observed in studies of human mental imagery. The model 
uses a constructive matching approach; first, it examines 
different subsets of the matrix entries (each an individual 
image), under each of these transforms to induce a “best-fit” 
overall transform.  Then, the ASTI model applies this best-
fit transformation to the remaining matrix entries to generate 
a predicted answer image.  Finally, this predicted answer is 
compared to each answer choice to select the best match. 

 

 

Figure 3: Algorithm used by the ASTI model. 

Obtaining Error Data from the ASTI Model 
The current version of the ASTI model correctly answers 50 
out of 60 problems on the SPM.  One difficulty with high 
performing computational models such as ASTI is that it is 
not immediately clear how errors made by the model might 
be analyzed in a meaningful way, as error data can only be 
collected on 10 of the 60 problems. 

We use a method for obtaining error data from a 
computational RPM model through model ablation (Cohen 
& Howe 1988).  The ASTI model uses affine transforms 
(rectilinear rotations and reflections), as well as addition, 
subtraction, and pair-wise image composition (union, 

intersection, etc.); the model also inspects the matrix 
according to rows, columns, and diagonals.  By removing 
access to subsets of these mechanisms, we can observe the 
errors made by general classes of ASTI configurations.   

Table 2 lists mechanisms used for 2x2 matrices (found in 
Sets A and B of the SPM) and 3x3 matrices (found in Sets C 
through E of the SPM).  Ablating combinations of these 
mechanisms yields 96 different model configurations, 
whose total scores range from 15 to 50 correct. 

 
Table 2: Mechanisms for Ablation in the ASTI Model 
 

Type  Image sets  Transforms 

2x2 
matrices 

1. Rows 
2. Columns 

1. Identity 
2. Rotation/reflection 
3. Addition/subtraction 

3x3 
matrices 

1. Rows 
2. Columns 
3. Diagonals 

1. Identity 
2. Rotation/reflection 
3. Addition/subtraction 
4. Composition 

Analysis of Error Patterns 
Using the new classification of error types on the SPM that 
we described above, we conducted an analysis to compare 
the error patterns of typically developing individuals, 
individuals diagnosed with autism, and the ASTI model. 

Human data were obtained from previous studies done at 
the Hôpital Rivière-des-Prairies in Montreal, Canada. 
Participants diagnosed with autism received a best-estimate 
multidisciplinary diagnosis after evaluation with standard 
diagnostic instruments, the ADOS and ADI-R (Lord et al., 
1999; Rutter et al, 2003).  

Using a cutoff of 17 years, participants were grouped into 
children and adults. Data included answer choices given  for 
each SPM problem, including a few instances in which no 
answer was given. (One participant in the autism group was 
excluded from analyses, as he had selected answer choice 
“1” for more than half of the problems.)  

Table 2 summarizes total SPM score, age, and Wechsler 
full-scale IQ information for these groups.  While total SPM 
scores between TD and AUT groups are not significantly 
different, the ASTI SPM scores are significantly lower.  
This introduces a potential confound, if error types are 
dependent on overall ability.  To address this issue, we 
conducted an analysis using three subgroups (TD children, 
AUT children, and the ASTI model) individually matched 
on total SPM score.  Table 3 gives data on these subgroups. 

We looked at the proportions of each error type that were 
made on the entire SPM test, averaged across participants in 
each group. Fig. 3 presents the results of these comparisons 
for the score-matched subgroups.  Results for the full groups 
of children and adults were similar, and so we present 
detailed results of this first analysis only. 

There is no significant difference in overall error 
distributions between the TD and AUT groups, 2(N = 826) 

Initialization 
 

1 Read matrix entries into list of images M 
2 Read answer choices into list of images A  
3 For any two images a and b, define a 

similarity metric S(a, b)  z ∈ [0, 1] 
4 Define set of base transforms T 
5 Define set of analogies I0  I1, where I0 

contains image sequences representing 
complete row, column, or diagonal lines in 
the matrix, and for each i0 ∈ I0, I1 has 
the corresponding images i1 representing 
the parallel partial line in the matrix 

 

Transformation Induction 
 

1 For each image sequence i0 ∈ I0, induce the 
best-fit composite transform tC: 

2 For each base transform t ∈ T: 
3 Apply t to the first image(s) in i0 

to produce image it 
4 Search all possible translation 

offsets (x, y) between i0 and it to 
find the best match, as calculated 
by S(i0(x,y), it) 

5 Select the best-fit base transform 
tB as per S, as calculated above 

6 tC is then a composition of tB and the 
translation offset (x, y) 

7 Obtain a final transform tF by selecting 
that tC which produces the best average 
fit, across each subset of parallel i0 ∈ I0 

 

Candidate Prediction and Answer Selection 
 

1 Choose image sequence i0 that results in 
the best-fit tF, according to S as 
calculated in the previous step 

2 Apply tF to corresponding partial image 
sequence i1 ∈ I1 to produce candidate 
answer image iC 

3 For each answer choice iA ∈ A, compute 
similarity S(iC, iA) 

4 Select the best-fit answer choice iA as 
per S, as calculated above 

2799



= 1.89, p = 0.60, whereas the error distribution from the 
ASTI model differs significantly from each of the human 
groups, 2(N = 826) = 91.62, p < 0.001 for TD, and 2(N = 
826) = 98.69, p < 0.001 for AUT. 

A one-way ANOVA was used to test for differences in 
error proportions among the three groups. Proportions 
differed significantly for repetition, F (2, 111) = 6.20, p = 
0.003, and difference errors, F = 32.03, p < 0.001, but did 
not differ significantly for incomplete correlate, F = 0.14, p 
= 0.87, or wrong principle errors F = 1.61, p = 0.20. 

 
Table 2: Demographic data for full participant groups.  

Values as shown as: mean (standard deviation). 
 

  Children  Adults  Model 

  TD  AUT  TD  AUT  ASTI 

N  54  108  52  44  96 

SPM 
score 

42.61 
(9.79) 

37.43 
(12.17) 

50.69 
(5.38) 

48.43 
(9.64) 

32.57 
(9.74) 

Age in 
years 

11.96 
(3.40) 

11.02 
(2.99) 

22.98 
(4.28) 

26.80 
(6.72) 

n/a 

IQ 
109.82 
(10.35) 

84.38 
(20.03) 

106.91 
(11.76) 

97.61 
(16.40) 

n/a 

Note:  IQ data was not available for all participants. 

 
Table 3: Demographic data for score-matched subgroups.   

 

  Children  Model 

  TD  AUT  ASTI 

N  38  38  38 

SPM 
score 

38.26 
(8.07) 

38.26 
(8.09) 

38.29 
(8.07) 

Age in 
years 

11.11 
(3.30) 

10.76 
(2.71) 

n/a 

IQ 
106.08 
(9.08) 

88.83 
(18.79) 

n/a 

Note:  IQ data was not available for all participants. 

 

 
 

Figure 3: Proportions of each error type made on the SPM 
by typically developing (TD) individuals, individuals 
diagnosed with autism (AUT), and the ASTI model.  

(Error bars represent one standard deviation.) 

Discussion 
We discuss results from two perspectives.  First, what does 
this analysis tell us about the error patterns shown by the 
TD versus AUT groups?  Second, what does this analysis 
tell us about the error patterns shown by the ASTI model? 

First, we see that the distribution of conceptual errors 
made on the SPM does not seem to differ significantly 
between the TD and AUT groups. Following a prior study 
suggesting that individuals with autism tend to use visual 
strategies to solve these kinds of problems (Soulières et al., 
2009), one interpretation may be that looking at error types 
of this kind does not by itself indicate potential differences 
in problem solving modality (i.e. visual/verbal).  However, 
as TD individuals most likely use a combination of visual as 
well as verbal strategies on the SPM, another, currently 
unexplored, hypothesis is that differences in error types may 
only surface for problems solved verbally by the TD group 
and visually by the autism group. If this is the case, then 
detecting such differences would require a finer-grained 
analysis of error types on various subsets of SPM problems 
instead of across the entire test as a whole. 

To address the latter question, comparisons of errors 
between human participants and the ASTI model show 
agreement on two types of errors (incomplete correlate and 
wrong principle) and discrepancies on the other two types 
(repetition and difference).  Looking at these differences in 
error patterns lends valuable insight into how specific 
aspects of the ASTI model affect its overall behavior and 
simultaneously suggests concrete avenues for improving the 
cognitive fidelity of the ASTI model.   

First, with regard to the relative increase in repetition 
errors, the ASTI model predicts answers based on the matrix 
entries adjacent to the blank space.  Thus, it is likely that its 
prediction is visually similar to an adjacent matrix entry, 
leading to an error of repetition.  While humans do often 
make repetition errors, they also likely draw upon more 
aspects of the matrix when selecting an answer, which the 
ASTI model could also be modified to do. 

Second, regarding the relative scarcity of difference errors 
made by the ASTI model, recall that these errors are made 
according to how a particular distracter might seem different 
or more complex than the other answer choices. Making 
difference errors thus should only affect test-takers using a 
response elimination strategy, i.e. looking at the answer 
choices as a set at the start of or during problem-solving. 
Test-takers using a constructive matching strategy already 
have an answer in mind before moving to inspect the answer 
choices, and if this answer is constructed by examining and 
combining matrix entries, it would likely be similar to these 
entries and thus not be likely to lead to a difference error. 

Difference errors may thus be considered a result of test-
takers fixating on the visual salience of one particular 
answer choice over another. The ASTI model currently does 
not contain mechanisms to detect salience or perform 
response elimination; the addition of these mechanisms will 
improve the fidelity with which problem-solving strategies 
used by the ASTI model mirror those of humans. 
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Conclusion 
The main motivation for this work stems from the view that 
conceptual types of errors made on the Raven’s tests can 
serve as an important additional measure of behavioral 
performance, above and beyond total score.  To this end, 
this paper makes two primary contributions.   

The first major contribution is the new classification of 
error types on the SPM using a two-kind approach that 
yielded ≥95% inter-rater reliability. This classification 
should have considerable utility for further studies of human 
or machine SPM performance, and it adds a significant new 
component of information for the RPM family of tests, as 
both the CPM and APM tests already have such error 
classifications, but the SPM previously did not.  One area of 
future work is to examine the error patterns made by 
humans on different subsets of test problems, instead of 
across the test as a whole, to achieve a finer-grained analysis 
of what kinds of errors people make on certain problems. 

The second major contribution is the methodology 
presented for measuring the conceptual errors made by a 
computational model on the RPM. Looking at the errors 
made by the ASTI model has led us to propose two 
modifications to improve its cognitive fidelity: first, the 
model should consider additional aspects of the matrix when 
generating answer predictions, in addition to just the 
adjacent entries, and the model should be able to adopt a 
response elimination strategy and also be susceptible to the 
visual salience of particular answer choices.   

Neither of these observations would have been possible 
by looking at total score alone, or even at the pattern of 
correct vs. incorrect answers.  Future work on test-taking by 
humans and computational models should continue to look 
at multiple performance measures, beyond just total score, 
to fully understand performance and cognitive implications. 
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