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Abstract

Although many psychometric tests, like Raven’s Progressive
Matrices, are commonly evaluated according to total score,
additional variables can lend insight into the underlying
cognitive processes. We examine conceptual errors on the
Raven’s Standard Progressive Matrices (SPM) test. We
present a complete classification of error types on the SPM
using a two-kind coding scheme, yielding > 95% inter-rater
reliability. We also examine how to extract error data from a
computational model, and we present a method for measuring
errors through systematic ablation to create a “population” of
models whose performance can be examined as a group. We
present a preliminary analysis of error patterns on the SPM
from typically developing individuals, individuals diagnosed
with autism, and a computational model called ASTI. We
discuss what the error patterns suggest regarding cognition on
the SPM and routes towards improving the ASTI model.

Keywords: ablation experiments; computational modeling;
error patterns; mental imagery; psychometrics; Raven’s
Progressive Matrices; visual representations.

Introduction

Raven’s Progressive Matrices (RPM) is a widely used series
of intelligence tests that consist of multiple choice visual
analogy problems, as in Fig. 1. Each problem contains a
matrix of geometric figures with one figure missing; the
correct missing figure that completes the matrix pattern
must be selected from a set of answer choices.

Performance is generally measured in terms of overall
score, i.e. number correct, which can then be used as an
index into normative test data to determine an IQ score or
percentile ranking for that individual. While total score is
certainly an important variable, serving as a coarse measure
of an individual’s overall ability, there are alternative
dimensions of performance that may provide a finer-grained
view of an individual’s cognitive processing:

1) Per-item accuracy, e.g. differential item functioning,
takes into account potential variation even when
individuals may obtain the same total score (Facon &
Nuchadee, 2010; Lynn, Alik, & Irwing, 2004; Van
Herwegen, Farran, and Annaz, 2011).

2) Reaction time can be used to understand the stages of
processing in solving a single item (Bethell-Fox,
Lohman, & Snow, 1984) or to compare performance

across individuals or groups (Souliéres et al., 2009).

3) Patterns of errors—for a problem answered

incorrectly, which of the given distracters is
selected?—have been studied as a window into
cognitive strategy (Bromley, 1953; Gunn & Jarrold,
2004; Miller & Raven, 1939; Van Herwegen, Farran,
and Annaz, 2011; Vodegel Matzen et al., 1994).

All of these dimensions represent measurable aspects of
the “output” of a human cognitive system taking the RPM
test. The “input” to such a system, in addition to the test
itself, can be conceptualized as the set of cognitive functions
drawn upon while solving the test. Unlike the output
measures, it is difficult to directly measure cognitive
functioning. Some studies have used eye-tracking as a
measure of visual attention (Bethell-Fox, et al.,, 1984
Carpenter, Just, & Shell, 1990), and some have used verbal
reporting protocols (Carpenter et al., 1990) though verbal
report may bias the cognitive strategies used by participants
(DeShon, Chan, & Weissbein, 1995).

Another way to elucidate these invisible cognitive
mechanisms is to construct computational models of various
aspects of RPM problem solving and then inspect these
models in relation to human behavioral data. Aspects of
RPM (or RPM-like) problem solving that have been
investigated using computational models include:
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Figure 1: Example of an RPM-like problem.
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1) Knowledge representation, i.e. visual versus verbal
representations of problem content (Hunt, 1974;
Kunda, Goel, & McGreggor, 2013; McGreggor,
Kunda, & Goel, 2011).

2) Goal-subgoal maintenance (Carpenter et al., 1990).

3) Problem-solving process, i.e. constructive matching
(mentally constructing the answer and then selecting
an answer choice) versus response elimination
(inspecting each answer choice to find the best fit)
(Bethell-Fox et al., 1984; Lovett & Forbus, 2012).

4) Answer selection process in terms of confidence
(McGreggor & Goel, 2012) or probability (Little,
Lewandowsky, & Griffiths, 2012).

However, in the extant literature on computational models
of the RPM, many models tend to focus on only one
measure of output performance: total score. We believe it is
not only valuable but critical that models examine the other
dimensions of “output” that we have mentioned, in order to
investigate how models relate to human cognition at
increasingly fine-grained levels of resolution.

In this paper, we focus on one such “output” measure—
error patterns—and one computational model—the ASTI
model, described in detail in a previous publication (Kunda
et al., 2013). We first present an operationalization of error
patterns on the Raven’s Standard Progressive Matrices
(SPM) test, in the form of a two-kind classification of
conceptual error types. Then, we briefly summarize the
algorithms and performance of the ASTI model. Finally, we
present a method for analyzing the errors made by a
computational model, and we give preliminary results based
on a comparison of the errors made by the ASTI model
against human error data from typically developing
individuals and individuals diagnosed with autism, along
with an evaluation of what these differences in error patterns
can tell us about cognitive processing on the RPM.

Types of Conceptual Errors on the SPM

One way to examine errors on an RPM test is to look at
which distracter is chosen in comparison to those most
frequently chosen (Thissen, 1976; van der Ven & Ellis,
2000). However, many studies have shown that errors can
also be classified according to conceptual type, which may
provide additional insight into what it means when a certain
error is made (Forbes, 1964; Horner & Nailling, 1980).

However, there is currently one significant barrier to the
widespread analysis of error patterns on the SPM test; while
the published manuals for two of the RPM tests, the Colored
Progressive Matrices (CPM) and the Advanced Progressive
Matrices (APM), include taxonomies of conceptual error
types, the manual for the Standard Progressive Matrices
(SPM) does not (Raven, Raven, & Court, 2003). Vodegel
Matzen et al. (1994) attempted to use the APM error type
classifications on a portion of the SPM, but inter-coder
reliability reached only about 70%. The authors concluded
that classification of SPM distracters seemed “problematic”
in that there did not seem to be a systematic methodology
used for constructing distracters.

The taxonomies given in the CPM and APM manuals
(Raven et al., 2003), although having different labels, seem
to represent the same four notions of error types. We now
present a synthesized description of these four error types
which, along with criteria used to classify a particular
distracter, are also summarized in Table 1.

1) Incomplete correlate (IC) errors occur when the
chosen distracter is almost, but not quite, correct. For
example, some IC distracters have the correct shape but
the wrong texture, as exemplified by distracter #1 in
Fig. 1. These kinds of errors are made when a test-taker
more or less “gets” the problem, in terms of identifying
the relevant matrix relationships, but then fails to fully
account for all of the details when selecting an answer.

2) Repetition (R) errors occur when the chosen distracter
copies a matrix entry adjacent to the blank space, as
shown by distracters #3 and #8 in Fig. 1. The choice of
an R distracter may represent perseveration or fixation
on the matrix entries, in which an answer is selected via
perceptual matching between the answer choices and
the matrix entries closest to the blank space.

3) Difference (D) errors occur when the chosen distracter
is qualitatively different in appearance from the other
choices. D distracters include completely blank entries,
as exemplified by distracter #2 in Fig. 1, as well as
those that have extraneous or complex shapes not found
in the matrix. A D distracter might be chosen because it
visually “pops” from among the other choices.

4) Wrong principle (WP) errors occur when the chosen
distracter is a copy or composition of elements from
various matrix entries, as exemplified by distracters #4
and #6 in Fig. 1. A WP distracter might be chosen if
the test-taker fails to educe the correct relationship from
the matrix and combines the entries according to some
other rule or relationship to produce an answer.

Two-Kind Taxonomy and Coding Results

The main difficulty we observed in coding SPM distracters
is that the same distracter often seems to fall under multiple
categories, e.g. it might represent a repetition as well as an
incomplete correlate; this difficulty was shared by Vodegel-
Matzen, et al. (1994). From this observation, we realized
that the four error types listed above actually represent two
orthogonal classifications of distracters:

Kind I: Relationship of distracter to matrix entries:
Repetition, difference, and wrong principle errors all have to
do with how a distracter is related to information in the
matrix and in the other answer choices, without any regard
to the content of the correct answer choice. In particular,
errors of the first kind assume the participant is attending to
irrelevant or erroneous aspects of the problem, and that they
are not able to discover even a partial solution.

Kind Il Relationship of distracter to correct answer:
Incomplete correlate errors have to do with how a particular
distracter is related to the correct answer choice. These
errors assume the participant correctly guesses some part of
the solution but does not quite attain the correct answer.

2797



Table 1: Criteria for classifying distracters on the SPM.

Error type # Criteria
Kind I: 1 Repetition of matrix entry to left of blank space
.. 2 Repetition of matrix entry above blank space
Repetition ;. .
3 Repetition of matrix entry to top-left of blank space
4  Filled completely white or black
Kind I: 5 Union of matrix entries or aspects of them, so that union has more components than any single matrix entry
Difference 6 Maximizes some feature value or makes it more complex
7 Differs qualitatively from matrix and other answers, or contains information not found anywhere in matrix
Kind I: 8 Copy of matrix entry not adjacent to blank space
Wrong 9 Rotation/reflection of matrix entry
Principle 10 Other transformations or combinations of matrix entries or aspects of them, including negative images
11 Negative (color-inversion) of correct answer
12 Change only in fill, texture, or style
Kind Il: 13  Rotation/reflection of correct answer
Incomplete 14 Change only in spatial layout of elements
Correlate 15 Change only in size or scale, in either or both dimensions (allowing for feature-wise scaling)
16 Change only in number of discrete elements (allowing for slight changes in layout)
17 Incomplete, with missing element or portion

Using this two-kind taxonomy, two raters independently
coded all 432 distracters on the SPM' in two separate
passes, first for Kind I and then for Kind II. Kind I
classification used a copy of the test booklet in which no
answers had been marked, and raters assigned every
distracter to one of categories #1-10 in Table 1. Kind II
classification used another test booklet copy in which the
correct answers had been marked and the matrix portions of
each problem had been cut off, so only the answer choices
were visible; raters assigned each distracter to one of
categories #11-17 in Table 1, or left it uncategorized.

Initial agreement between the two raters was 82% for
Kind I errors and (coincidentally) 82% for Kind II errors.
Kappa coefficients were calculated to test for independence
between raters. The kappa values were 0.79 for Kind I
errors and 0.67 for Kind II errors.

Discrepancies were resolved during a negotiation phase
between the two raters. Each discrepancy was discussed,
and each rater presented a rationale for the classification. It
was found that there were several systematic discrepancies
easily resolved by making the coding criteria more specific.
For example, Criterion #5 in Table 1 was modified to
specify that this type of distracter had to have more
elements in it than any entry in the matrix, which was not
originally part of the criterion. Table 1 shows the final
coding criteria, after these changes had been incorporated.

After the negotiation phase, rater agreement was
recalculated. Post-negotiation agreement was 95% for Kind
I errors and 98% for Kind II errors. Remaining differences
were resolved by the primary rater based on consideration of
the conceptual error type intended to be captured.

Fig. 2 shows the overall proportions of error types across
all distracters of the SPM. Interestingly, there is roughly the
same proportion of incomplete correlate distracters as

' Each of the first 24 problems on the SPM has 6 answer
choices, and each of the latter 36 problems has 8 answer choices.

correct answers, and all remaining distracters are divided
nearly evenly among the three remaining error types.
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Figure 2: Proportions of each error type on the SPM.

The ASTI Model

In previous work (Kunda et al., 2013), we presented a
computational model of problem solving on the RPM, the
Affine and Set Transformation Induction (ASTI) model.
This model was constructed in order to investigate problem
solving on the RPM using visual mental representations.
All extant computational RPM models had previously relied
on propositional forms of representation (e.g. Carpenter et
al., 1990), despite a breadth of evidence from human studies
suggesting that problem solving can proceed using either
visual or verbal forms of representation (see Kunda et al.,
2013, for a summary of these studies).

The ASTI model also has implications for a recent study
of RPM performance in individuals diagnosed with autism,
which found that these individuals seemed to use
predominantly visual strategies (Soulicres et al., 2009), in
line with other empirical evidence showing a visual
cognitive bias in autism (Kunda & Goel, 2011).

2798



The ASTI model uses purely visual representations in the
form of pixel-based images along with affine and set
transformations designed to emulate the types of operations
observed in studies of human mental imagery. The model
uses a constructive matching approach; first, it examines
different subsets of the matrix entries (each an individual
image), under each of these transforms to induce a “best-fit”
overall transform. Then, the ASTI model applies this best-
fit transformation to the remaining matrix entries to generate
a predicted answer image. Finally, this predicted answer is
compared to each answer choice to select the best match.

Initialization

Read matrix entries into list of images M
Read answer choices into list of images A
For any two images a and b, define a
similarity metric S(a, b) » z € [0, 1]
Define set of base transforms T

Define set of analogies lo » 11, where Ilo
contains image sequences representing
complete row, column, or diagonal lines in
the matrix, and for each io € lo, l1 has
the corresponding images i: representing
the parallel partial line in the matrix

Transformation Induction

1 For each image sequence io € lo, induce the
best-fit composite transform tc:
For each base transform t e T:
Apply t to the first image(s) in io
to produce image it
Search all possible translation
offsets (X, y) between io and it to
find the best match, as calculated
by S(loe,yy, Bt)
Select the best-fit base transform
ts as per S, as calculated above
6 tc is then a composition of ts and the
translation offset (X, y)
Obtain a final transform tr by selecting
that tc which produces the best average
fit, across each subset of parallel io € lo

Candidate Prediction and Answer Selection

1 Choose image sequence io that results in
the best-fit tr, according to S as
calculated in the previous step

2 Apply tr to corresponding partial image
sequence i1 € 11 to produce candidate
answer image ic

3 For each answer choice ia € A, compute
similarity S(ic, ia)

4  Select the best-fit answer choice iA as
per S, as calculated above

abrh wWNE

A wWN

a

~

Figure 3: Algorithm used by the ASTI model.

Obtaining Error Data from the ASTI Model

The current version of the ASTI model correctly answers 50
out of 60 problems on the SPM. One difficulty with high
performing computational models such as ASTI is that it is
not immediately clear how errors made by the model might
be analyzed in a meaningful way, as error data can only be
collected on 10 of the 60 problems.

We use a method for obtaining error data from a
computational RPM model through model ablation (Cohen
& Howe 1988). The ASTI model uses affine transforms
(rectilinear rotations and reflections), as well as addition,
subtraction, and pair-wise image composition (union,

intersection, etc.); the model also inspects the matrix
according to rows, columns, and diagonals. By removing
access to subsets of these mechanisms, we can observe the
errors made by general classes of ASTI configurations.

Table 2 lists mechanisms used for 2x2 matrices (found in
Sets A and B of the SPM) and 3x3 matrices (found in Sets C
through E of the SPM). Ablating combinations of these
mechanisms yields 96 different model configurations,
whose total scores range from 15 to 50 correct.

Table 2: Mechanisms for Ablation in the ASTI Model

Type Image sets Transforms
2x2 1.Rows L Identl.ty .
matrices 2. Columns 2. Rotation/reflection
’ 3. Addition/subtraction
1. Identity
1.R
3x3 ows 2. Rotation/reflection
) 2. Columns . .
matrices . 3. Addition/subtraction
3. Diagonals .
4. Composition

Analysis of Error Patterns

Using the new classification of error types on the SPM that
we described above, we conducted an analysis to compare
the error patterns of typically developing individuals,
individuals diagnosed with autism, and the ASTI model.

Human data were obtained from previous studies done at
the Hopital Riviére-des-Prairies in Montreal, Canada.
Participants diagnosed with autism received a best-estimate
multidisciplinary diagnosis after evaluation with standard
diagnostic instruments, the ADOS and ADI-R (Lord et al.,
1999; Rutter et al, 2003).

Using a cutoff of 17 years, participants were grouped into
children and adults. Data included answer choices given for
each SPM problem, including a few instances in which no
answer was given. (One participant in the autism group was
excluded from analyses, as he had selected answer choice
“1” for more than half of the problems.)

Table 2 summarizes total SPM score, age, and Wechsler
full-scale 1Q information for these groups. While total SPM
scores between TD and AUT groups are not significantly
different, the ASTI SPM scores are significantly lower.
This introduces a potential confound, if error types are
dependent on overall ability. To address this issue, we
conducted an analysis using three subgroups (TD children,
AUT children, and the ASTI model) individually matched
on total SPM score. Table 3 gives data on these subgroups.

We looked at the proportions of each error type that were
made on the entire SPM test, averaged across participants in
each group. Fig. 3 presents the results of these comparisons
for the score-matched subgroups. Results for the full groups
of children and adults were similar, and so we present
detailed results of this first analysis only.

There is no significant difference in overall error
distributions between the TD and AUT groups, x*(N = 826)
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= 1.89, p = 0.60, whereas the error distribution from the
ASTI model differs significantly from each of the human
groups, x*(N = 826) = 91.62, p < 0.001 for TD, and ¥*(N =
826) =98.69, p <0.001 for AUT.

A one-way ANOVA was used to test for differences in
error proportions among the three groups. Proportions
differed significantly for repetition, F (2, 111) = 6.20, p =
0.003, and difference errors, F = 32.03, p < 0.001, but did
not differ significantly for incomplete correlate, F = 0.14, p
= 0.87, or wrong principle errors F = 1.61, p = 0.20.

Table 2: Demographic data for full participant groups.
Values as shown as: mean (standard deviation).

Children Adults Model
TD AUT TD AUT ASTI
N 54 108 52 44 96
SPM 42.61 37.43 50.69 48.43 32.57
score (9.79) (12.17) (5.38) (9.64) (9.74)
Age in 11.96 11.02 22.98 26.80
years  (3.40)  (2.99)  (4.28)  (6.72) n/a
1Q 109.82 84.38 106.91 97.61 n/a
(10.35) (20.03) (11.76) (16.40)

Note: 1Q data was not available for all participants.

Table 3: Demographic data for score-matched subgroups.

Children Model
D AUT ASTI
N 38 38 38
SPM 38.26 38.26 38.29
score (8.07) (8.09) (8.07)
Age in 11.11 10.76 n/a
years (3.30) (2.72)
106.08 88.83
a (9.08) (18.79) n/a

Note: |Q data was not available for all participants.
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0.8 mAUT
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Figure 3: Proportions of each error type made on the SPM
by typically developing (TD) individuals, individuals
diagnosed with autism (AUT), and the ASTI model.
(Error bars represent one standard deviation.)

Discussion

We discuss results from two perspectives. First, what does
this analysis tell us about the error patterns shown by the
TD versus AUT groups? Second, what does this analysis
tell us about the error patterns shown by the ASTI model?

First, we see that the distribution of conceptual errors
made on the SPM does not seem to differ significantly
between the TD and AUT groups. Following a prior study
suggesting that individuals with autism tend to use visual
strategies to solve these kinds of problems (Souliéres et al.,
2009), one interpretation may be that looking at error types
of this kind does not by itself indicate potential differences
in problem solving modality (i.e. visual/verbal). However,
as TD individuals most likely use a combination of visual as
well as verbal strategies on the SPM, another, currently
unexplored, hypothesis is that differences in error types may
only surface for problems solved verbally by the TD group
and visually by the autism group. If this is the case, then
detecting such differences would require a finer-grained
analysis of error types on various subsets of SPM problems
instead of across the entire test as a whole.

To address the latter question, comparisons of errors
between human participants and the ASTI model show
agreement on two types of errors (incomplete correlate and
wrong principle) and discrepancies on the other two types
(repetition and difference). Looking at these differences in
error patterns lends valuable insight into how specific
aspects of the ASTI model affect its overall behavior and
simultaneously suggests concrete avenues for improving the
cognitive fidelity of the ASTI model.

First, with regard to the relative increase in repetition
errors, the ASTI model predicts answers based on the matrix
entries adjacent to the blank space. Thus, it is likely that its
prediction is visually similar to an adjacent matrix entry,
leading to an error of repetition. While humans do often
make repetition errors, they also likely draw upon more
aspects of the matrix when selecting an answer, which the
ASTI model could also be modified to do.

Second, regarding the relative scarcity of difference errors
made by the ASTI model, recall that these errors are made
according to how a particular distracter might seem different
or more complex than the other answer choices. Making
difference errors thus should only affect test-takers using a
response elimination strategy, i.e. looking at the answer
choices as a set at the start of or during problem-solving.
Test-takers using a constructive matching strategy already
have an answer in mind before moving to inspect the answer
choices, and if this answer is constructed by examining and
combining matrix entries, it would likely be similar to these
entries and thus not be likely to lead to a difference error.

Difference errors may thus be considered a result of test-
takers fixating on the visual salience of one particular
answer choice over another. The ASTI model currently does
not contain mechanisms to detect salience or perform
response elimination; the addition of these mechanisms will
improve the fidelity with which problem-solving strategies
used by the ASTI model mirror those of humans.
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Conclusion

The main motivation for this work stems from the view that
conceptual types of errors made on the Raven’s tests can
serve as an important additional measure of behavioral
performance, above and beyond total score. To this end,
this paper makes two primary contributions.

The first major contribution is the new classification of
error types on the SPM using a two-kind approach that
yielded >95% inter-rater reliability. This classification
should have considerable utility for further studies of human
or machine SPM performance, and it adds a significant new
component of information for the RPM family of tests, as
both the CPM and APM tests already have such error
classifications, but the SPM previously did not. One area of
future work is to examine the error patterns made by
humans on different subsets of test problems, instead of
across the test as a whole, to achieve a finer-grained analysis
of what kinds of errors people make on certain problems.

The second major contribution is the methodology
presented for measuring the conceptual errors made by a
computational model on the RPM. Looking at the errors
made by the ASTI model has led us to propose two
modifications to improve its cognitive fidelity: first, the
model should consider additional aspects of the matrix when
generating answer predictions, in addition to just the
adjacent entries, and the model should be able to adopt a
response elimination strategy and also be susceptible to the
visual salience of particular answer choices.

Neither of these observations would have been possible
by looking at total score alone, or even at the pattern of
correct vs. incorrect answers. Future work on test-taking by
humans and computational models should continue to look
at multiple performance measures, beyond just total score,
to fully understand performance and cognitive implications.
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