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Abstract

The contextuality of changing attitudes makes them extremely
difficult to model. This paper scales up Quantum Decision
Theory (QDT) to a social setting, using it to model the man-
ner in which social contexts can interact with the process of
low elaboration attitude change. The elements of this extended
theory are presented, along with a proof of concept compu-
tational implementation in a low dimensional subspace. This
model suggests that a society’s understanding of social issues
will settle down into a static or frozen configuration unless that
society consists of a range of individuals with varying person-
ality types and norms. Keywords: contextual models; quan-
tum decision theory; attitude change; agent based modelling

Modelling Attitude Change in a Social Context
The ability to model and predict human responses to changing
social conditions is fast becoming highly desirable in a world
facing a number of global challenges. This social behaviour
is frequently driven by their internally held attitudes of the
individuals in a society (Ajzen, 2005; Fazio & Petty, 2008).
For example, privately held attitudes play a critical role in
people’s personal choices about their health, education, so-
cial groups, and housing, as well as the importance they at-
tribute to national issues such as the environment, immigra-
tion and state security. However, attitudes are highly contex-
tual, and this makes them extremely difficult to model for-
mally. People’s attitudes are not static immutable objects, but
change in response to persuasion (Seiter & Gass, 2010), and
the attempt to maintain cognitive consistency (Cooper, 2007).
We often express different attitudes and opinions in accor-
dance with the social scenario we find ourselves in (Bond &
Smith, 1996), and it is frequently the case that an explicitly
expressed attitude is quite different from an internally held
one (Greenwald & Banaji, 1995).

The Elaboration Likelihood Model (ELM) (Petty & Ca-
cioppo, 1986); and the Heuristic-Systematic Model (HSM)
(Chaiken, 1987) are the two traditional models of attitude
change, but both depend upon a number of poorly de-
fined variables, which led Mosler, Schwarz, Ammann, and
Gutscher (2001) to create a computational model of attitude
change in order force a more accurate specification of the
largely heuristic ELM. In essence, both models posit that
some processes of attitude change require relatively high
amounts of mental effort, resulting from situations where in-
dividuals are motivated to pay attention to a message, or have
the cognitive capacities to consider it carefully. In these high

effort or high elaboration processes, people’s attitudes will be
determined by an effortful examination of all relevant infor-
mation, and so changing them will expend high amounts of
cognitive energy. In contrast, other low effort or low elabo-
ration processes of persuasion require relatively little mental
consideration by the persuadee, resulting in attitudes deter-
mined by factors like emotions, ‘gut feeling’, liking, and ref-
erence to authority.

There are few analytical models capable of describing the
dynamics of low elaboration attitude change. While high
elaboration processes are more logical and considered, hence
frequently following processes similar to first order logic, low
elaboration processes are more difficult to control, and are
frequently more open to subtle social influences. While it
must be acknowledged that involuntary factors such as dis-
gust can play a very important role in low elaboration attitude
change (Griskevicius et al., 2013; Rozin, Haidt, & McCauley,
2008), these responses are themselves often mandated by pre-
vious social conditioning. It is very difficult to separate low
elaboration attitude change from the social context (both cur-
rent and historical) in which it occurs.

Furthermore, the underlying personalities of individuals in
a society can reveal stark differences in how they will respond
to their social context. For example, the Asch conformity ex-
periments (Bond & Smith, 1996), while not directly applying
to attitude change, revealed stark differences in the confor-
mity of subjects when responding to a group of confeder-
ates who had been instructed to lie about a perceptual task.
While a control group of subjects who performed the same
task alone revealed an error rate of less than 1%, 75% of the
experimental group of subjects gave an incorrect answer to
at least one perceptual task. These incorrect responses of-
ten matched those of the lying confederate group. Interest-
ingly, by performing post task interviews, Asch established
that there was a wide range of individual responses to these
tasks. Some individuals reacted confidently to their individ-
ual perceptions, whereas others became more withdrawn and
hesitant. Some yielded easily to the group decisions, even
to the point of actively believing that the group answer was
the correct one. This suggests that the underlying personality
of the subjects was a key factor affecting their likelihood of
conforming with the group, or truly reporting their differing
perceptual observations.

In this paper, we shall introduce a dynamical model of
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low elaboration attitude change, showing how it is possi-
ble to mathematically represent the manner in which the so-
cial context of an agent can affect their expressed attitudes.
The model uses a cognitive state to represent an attitude, but
is non-deterministic, with the probability of an agent acting
taken to depend not just on this state, but also on: (1) the so-
cial context in which an agent finds themselves; and, (2) their
underlying personality. A simple computational implementa-
tion will be discussed, and the way in which agent personal-
ities affect individual attitude changes, and in turn affect the
dynamics of the society as a whole will be explored.

Modelling Decisions in a Social Context
Our model takes Quantum Decision Theory (QDT)
(Busemeyer, Pothos, Franco, & Trueblood, 2011; Buse-
meyer & Bruza, 2012) as its starting point, due to its
implicit capacity to represent the effect of context upon
a decision. QDT has been shown capable of providing a
unified explanation for many of the so called ‘violations’
of rational decision theory that are exhibited by individual
humans, and so offers a promising new approach to the
modelling of human decision making in context. A recent
work by the authors (Kitto & Boschetti, 2013) has introduced
a social extension of the basic QDT model. It proposes a
mechanism by which a society of agents self-organises into
a set of ideologies representing their combined, and often
contradictory, attitudes towards a social issue. This section
will briefly introduce that model, but full details can be found
in the longer paper.

The Basic QDT
We shall begin with a consideration of an agent A, called Al-
ice, who is deciding whether or not to ‘act’ in response to a
given social issue. Recognising that A’s decision is likely to
depend upon their social context, we shall represent her cog-
nitive state as a vector |A〉 in a vector space,1 the structure of
which will depend upon the nature of the issue under consid-
eration. If A has decided to act on this issue, then we shall
denote this state of action as the vector |1〉, to represent a sit-
uation where it is true that she has chosen to act (in contrast
to a state of inaction which we denote as |0〉).

These decisions only make sense with respect to a par-
ticular social context, and the probability of A acting could
change with a new social setting. However, the quantum for-
malism can easily incorporate this contextuality due to its
vectorial representation of the state |A〉. Thus, QDT repre-
sents the cognitive state of Alice, defined with respect to the

1Dirac notation being used here, which was invented as a short-
hand for quantum physics (Isham, 1995). It explicitly allows us to
represent a vector a using a ket, |a〉, with the transpose given as a
bra 〈a|. This allows for an immediate recognition of the inner prod-
uct between two vectors 〈a|b〉 (a bra-ket) and of the outer product
|a〉〈b|. We use it here to make explicit the difference between our
agent A and her cognitive state |A〉, a distinction that will become
important when the effects of social context are discussed. The vec-
tor space being used is a Hilbert space, which is a real or complex
inner product space that is also a complete metric space with respect
to the distance function induced by the inner product (Isham, 1995).

(a) (b)

Figure 1: An agent attempts to decide whether or not to act.
(a) Their probability of action is proportional to the length
squared of the projection of their state onto the axes labelled
|0p〉 (no action) and |1p〉 (action); (b) The changing context
of a decision. The probability of the agent acting changes
between the two depicted contexts, which can immediately
be seen by the different lengths of the projections from the
state |A〉 onto the two different ‘act’ axes |1p〉 and |1q〉.

context p as

|A〉= a0|0p〉+a1|1p〉, where |a0|2 + |a1|2 = 1, (1)

a situation that is illustrated in Figure 1(a). Pythagoras the-
orem is used to extract the probabilities of A acting (or not)
in this context, with the probability of action given by |a1|2
and that of inaction similarly given by |a0|2. Thus, the pro-
jection of the state |A〉 onto the current context decides the
probabilities of action for this model (Isham, 1995).

With reference to Figure 1(a), we see that in the context p
Alice is genuinely undecided. The cognitive state |A〉 repre-
sents an agent who has yet to decide how to act within some
context, in contrast to the more standard modelling scenario
where the agent has decided how to act, but we as modellers
do not know what that decision is. Thus, the probabilities that
arise in this model are fundamentally different from those of
the more standard Kolmogorovian approaches (both Bayesian
and frequentist), and this difference can have a profound ef-
fect with a change in context.

This can be seen with a consideration of figure 1(b), which
is an elaboration of figure 1(a), and represents the changing
probabilities of action that arise in the case of two differ-
ent contexts, p and q. With reference to figure 1(b) we can
quickly see that while our agent is highly likely to act in con-
text q, this is not the case in context p, where A is much less
likely to act (since by examination of the figure we can see
that while |a0|> |a1| in context p, |b1|> |b0| in context q).

Social Framings of an Issue
This simple model can be naturally extended across a
set of multiple agents which we shall call a society
{|A〉, |B〉, |C〉 . . .}, all of whom are considering an issue,
where each individual agent X is described with a cognitive
state |X〉 which is expected to change in time.

We assume that agents can make decisions to act within
one of two contexts, which we denote as local, and global.
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This is taken to represent the manner in which, while we fre-
quently make internal or private decisions (as represented by
a local frame), we must sometimes cast our choices within a
societal domain (as represented by a global frame) when for
example, we are required to vote in a general election. The
local frames of the individuals in a society might be similar to
a global understanding, or they might differ substantially, de-
pending upon the agent and how they think about the world.
Local frames might arise from a wide range of both exter-
nal and internal factors, such as the socioeconomic status of
an agent, their educational background, race etc. and so are
likely to be highly complex, and multidependent variables.
As a first approximation we shall model them as another ba-
sis in the two dimensional vector space already introduced for
the states and global frame. This allows us to anticipate that
global frames will result from an aggregation function applied
to the local frames of every agent who somehow identifies
with that ideology. At this point in time, we define identifica-
tion by performing a distance measure; the global frame that
most closely aligns with the local frame of the agent is the one
to which the agent is deemed to belong. However, we note
that this identification is not intrinsic to the theoretical model
per se, rather it is expected to evolve as the model is applied to
different social scenarios, and extended into a higher dimen-
sional state space than the early 2D implementation discussed
below. We currently use clustering for the definition of global
frames via aggregation, but we anticipate that there are many
potential methods for defining global frames, and that differ-
ent ones will prove necessary for different issues (List, 2012)

Kitto and Boschetti (2013) claimed that this framework
provides an opportunity to model low elaboration processes
of attitude change nontrivially, due to its explicit recognition
of the context in which an agent makes a decision. The QDT
approach allows for the probability of an agent acting to vary
over the full range (0,1) in response to the range of angles
that can be taken by the cognitive state of the agent within the
Hilbert space that represents the issue currently under con-
sideration. Thus, in order to evaluate Alice’s probability of
acting, we must take both her current cognitive state |A〉, and
her current social context p (as represented by a global or lo-
cal frame) into account.

We postulate that an agent who has made a decision
is likely to feel a certain amount of cognitive dissonance
(Cooper, 2007) as their internal cognitive state will not be
aligned with their decision (unless their cognitive state was
already aligned with the relevant frame from which they are
currently considering an issue). This means that they will
feel a certain amount of psychological discomfort, which
will drive them to alter their view of the world to fit with
their decision within the context that it was made. They can
do this in the current model by adjusting either their cogni-
tive state, or their local framing of the issue, to more accu-
rately reflect their decision. However, the literature suggests
that some people are more comfortable with cognitive dis-
sonance than others; their personalities will therefore play a

key role in how this adjustment occurs. For example, some
agents will feel far less comfortable with uncertainty than
others, and so be more affected by dissonance (Sorrentino
& Roney, 2000; Sorrentino & Hewitt, 1984). In order to
model these intuitions, we note that an agent whose cognitive
state lies close to the axes representing their current frame
will be more certain about their likely future actions than one
whose cognitive state lies between those axes (i.e. has the
cognitive state forms a 45◦ angle between choosing to act
and choosing not to act in the frame p). This leads us to
introduce a measure of the uncertainty that an agent experi-
ences about their likely future decisions, using binary entropy
Hb(P)≡−P log2 P− (1−P) log2(1−P), which is a function
taking its minimum values at P = 0 and P = 1, and its max-
imum at P = 1/2. Here, the probability P is defined with
reference to the probability of the agent acting (or not) within
the given context. Referring to Figure 1(a), we can rewrite
the binary entropy of our agent within the context p using a
set of geometric variables

Hb(P(θ)) =−|a1|2. log2(|a1|2)−|a0|2. log2(|a0|2) (2)

where θ is the angle between the |1p〉 basis state and the state
of the agent |A〉. This entropy measure is then used in a model
of the two different drives for cognitive consistency that we
hypothesise are experienced by an agent making a decision in
a social context:

1. A desire for internal cognitive consistency. This drives
agents to align their cognitive state with the local frame
within which they are currently considering an issue.

2. A desire to ‘fit in’ with the society and its current norms.
This desire is expressed by a pull of agent’s local frame
towards the current global frame (or ideology) to which
they belong, which serves to reframe their understanding
of the issue.

Defining Θ as the angle between the agent’s current state
|A〉 and the decision to act in the global frame to which they
currently belong we introduce a function which measures the
uncertainty of the agent A with respect to both frames:

H(|A〉,θ,Θ) = wi(A)Hb(P(θ))+ws(A)Hb(P(Θ)) (3)

where the weights wi(A) and ws(A) refer to agent A’s need
for internal consistency and social conformity respectively.
These weights can be set to range over a population of
agents, indicating a rough parameterisation of a society’s so-
cial make-up. This measure can naturally be extended to con-
sider the uncertainty of the whole society of N agents:

HbTot =
N

∑
i=1

H(|i〉,θi,Θi) (4)

=
N

∑
i=1

[wi(i)Hb(P(|i〉,θ))+ws(i)Hb(P(|i〉,Θ))] (5)

which should decrease as the agents achieve cognitive con-
sistency and so settle into a set of stable ideologies, or global
attitudes about the world.
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Time Evolution
The weights wi(A) and ws(A) can be considered as person-
ality variables, and they will affect each agent’s future ac-
tions, in addition to their current cognitive comfort (as is rep-
resented by (3)). At present, we update agent states and local
frames slightly differently according to the frame in which
the decision was initially made.

Local Decisions If the decision was in the local frame, then
only the cognitive state of the agent is updated (within the
local frame). Thus, an agent who has chosen to act within a
certain framing of a problem will shift their state towards the
decision (‘yes’ or ‘no’) that they made in that context. The
size of this shift is defined as dependent upon two factors: (1)
the personality profile of the agent (given in this case as wi,
as it represents the desire of an agent to align their cognitive
state with their local frame); (2) the angle θ. Writing θ0 for
the angle between the agent’s state and the |0p〉 axis, and θ1
for the angle between their state and the |1p〉 axis, the new
angle between the agent’s state and the frame will become:

if A decides
{

to act: θ1(|A〉t+1,w(A)) = θ1(|At〉)×w(A)
not to act: θ0(|A〉t+1,w(A)) = θ0(|At〉)×w(A)

(6)
where w(A) depends upon the comfort of A with holding an
attitude that is dissonant from their decision. Thus, for this
update process w(A) = wi(A). Agents who decide to act will
thus experience a rotation of their cognitive state by a certain
distance dependent upon their personality towards the |1p〉
axis (recall that θ is the distance between the |1p〉 axis and
the current state of the agent |A〉), and agents who decide not
to act will experience a rotation of their cognitive state in the
opposite direction.

Global Decisions If the decision was made in the global
frame, then both the cognitive state of the agent and their lo-
cal frame are updated (with reference to their global frame).
Thus, in addition to the update of the cognitive state that is
represented in equation (6), the local frame of the agent will
shift towards the global axis that represents the decision made
by the agent. The amount by which the local frame shifts is
given by an equivalent version of equation (6), thus the new
angle between the local frame and the global frame is given
by (6), but with w(A) = ws(A).

Implementation
A proof of concept model has been implemented in MAT-
LAB, which allows for an investigation of the timewise be-
haviour of this new agent based modelling paradigm. Space
does not permit a full explanation of this implementation,
however, we direct the interested reader towards the actual
MATLAB script2 which implements the basic pseudocode
shown in Figure 2.

While the model that we have presented is admittedly very
simple, it does exhibit a number of key features which one

2Available at http://www.per.marine.csiro.au/staff/
Fabio.Boschetti/quantumPeople.html .

Number of global frames = G
Number of agents = N
For i=1..N
Assign coherence & consistency variables
If RandomPersonality = 0 then
conformity = 0.5 and consistency = 0.5
If RandomPersonality = 1 then
consistency & conformity range over [0-1]
Assign cognitive states & local frames randomly
For each timestep
Find the position of the global frames (use k-means)
For each agent
Calculate which global frame the agent belongs to
Probabilistically choose to act or not in one frame
If acting in local frame then update cognitive state
If acting in global frame then update cognitive
state and local frame
Calculate entropy of the agent
Calculate total entropy of system

Figure 2: Pseudocode for the computational implementation.

could reasonably expect should be found in an agent based
model of attitude change. For example, Kitto and Boschetti
(2013) describes the manner in which a population self-
organises into a set of ideologies, which evolve and update
in time. As predicted, the entropy (4) has a tendency to de-
crease in time. It is also possible to guide the behaviour of
the population, through shifting a global frame, and to then
watch the system reorganise into a new semi-stable configu-
ration. In this paper we shall instead focus upon one key fea-
ture that has not yet been described, namely, the importance
of personality in driving the attitude changes of a society of
individuals.

The Importance of a Personality Spread
Two different seeding strategies have been utilised to ini-
tialise the consistency and conformity parameters (wi(A) and
ws(A)) for each agent within the computational model. A ran-
dom distribution is possible, where each agent is seeded with
parameters that randomly range from 0 to 1, or alternatively
all agents can be seeded with a fixed personality distribution.
This allows for an investigation of the effect that varying per-
sonality spreads can have upon a population.

Random Personality When agents are seeded with a ran-
dom personality mix the time evolution of the system is pre-
dictably at its most erratic. While the entropy of the system
has a tendency to decrease throughout a run, the agents tend
not to find a stable configuration, and the system remains in a
state of flux and change; states, local, and global frames can
all move throughout a run.

Figure 3 shows a set of shots from a typical run for this
scenario, along with the entropy plot as it gradually decreases
through time, subject to some stochastic variance as agents
realign their local frames. Two global frames were specified,
and their location at each timestep found using a k-means
style algorithm. Agent’s cognitive states are represented us-
ing black lines, global frames by the large dots above the cog-
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nitive states, and local |1〉 frames as small black spots.

Figure 3: A typical run of a system initialised with agents
of random personality spread. Note that the entropy of the
system has a tendency to decrease in time, but that it never
fully minimises or stablises.

Figure 4 shows a collection of entropy plots for two, three,
and four global frames, all initialised with a random mix of
personality parameters. Note that in all cases the entropy
decreases, but that the system shows more erratic behaviour
when more global points of view are available for the agents
to align with. The limited nature of the current computational
implementation (which has only been performed for two di-
mensions) means that arbitrarily adding more frames to what
is a very small space does not result in realistic behaviour,
however, work is currently in progress to extend this model
to a higher dimensional state space, and this would allow for
the interaction of far more social contexts to be investigated.

Fixed Personality In contrast, when the personality mix of
the agents is fixed at wi(A) = 0.5, ws(A) = 0.5 the system

Figure 4: A collection of entropy plots for differing numbers
of global frames, initialised with a random mix of personality.

exhibits a far more stable time evolution pattern, and becomes
fixed in a static configuration around timestep 25. Figure 5
shows a typical run for this scenario. Note that the entropy
minimises very early during a run, as the agents settle into
a stable scenario that does not need to re-adjust. All agents
can find a state and local frame that minimises (3), and the
system rapidly settles down. This dynamics is also evident
for for higher numbers of global frames.

Figure 5: A typical run of a system seeded with a popula-
tion of fixed personality type. (In this case wi(A) = 0.5 and
ws(A) = 0.5.) The system quickly stabilises into a configura-
tion where all agents are of one, or the other, state of mind.
This behaviour is observed for all fixed personality profiles.

Evolution Requires Consistency and Cohesion

This brief discussion highlights the need for a society to con-
tain a range of personality types. A society of individuals
who all have the same personality mix quickly becomes static
in this model, it settles down into a scenario where the atti-
tudes of the agents, and their framing of those attitudes, do not
change in time. This situation becomes even more dramatic
when the society is seeded with individuals who have nonzero
values only for conformity or for consistency. In both of these
scenarios the model does not evolve at all, it remains in the
same state as the one that it was initialised in.

This behaviour plausibly reflects the behaviour of societies
in general. Difference of opinion and a varying response to
the social context are both key and essential features of a soci-
ety, and yet such behaviour does not tend to be well captured
by current modelling technology. Thus, the contextualised
apparatus of QDT offers an interesting new perspective on
the modelling of social behaviour that we feel holds promise
for future extension and expansion to a more realistic set of
scenarios.
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Conclusions
We begin our conclusion with something of a caveat. The
model presented here does not utilise the standard com-
plex Hilbert space of quantum theory, nor even the standard
Schrödinger based time evolution equation of that model. In-
deed, while the dynamics of equation (6) are unitary (Isham,
1995), they are not a part of the standard formalism of quan-
tum theory. We propose that QDT is the first of a class of
contextual models of human cognition, but do not expect that
a straightforward application of the quantum formalism will
suffice to model every contextually dependent cognitive sys-
tem.

The geometric nature of the model presented here provides
a dramatic departure from more standard state based mod-
elling methodologies. In particular, the interaction between
the cognitive state of the agent (|A〉) and of the basis in which
they choose to make their decision (as represented by the
basis {|0〉, |1〉}) means that in a different social context, the
agent is highly likely to make a different decision as to how to
act. Thus, in adopting a framework inspired by QDT, a very
new approach to the treatment of context has been obtained.
Furthermore, as the model presented here is developed, we
anticipate that it will become necessary to progress to a com-
plex space in order to represent the full range of personality
variables and their associated cognitive states. In particular,
the interference effects that are apparent in QDT, are not im-
plemented in the current simple form of this model. In sum-
mary, it is the contextuality of human decision making in a
social context that is captured by this model, but more cogni-
tive effects are likely to be possible within this framework.

However, this initial step is important. Uncertainty domi-
nates in scenarios where contextuality arises, but it is a cog-
nitive effect apparent in the minds of the agents themselves,
not in that of the modeller (Payne, Bettman, & Schkade,
1999), and this is not well captured by our current proba-
bilistic approaches. We have shown one viable approach to-
wards capturing contextual social effects, based upon QDT.
A proof of concept computational model was discussed, and
a set of varying personalities was shown to be essential for
the dynamical evolution of the model. Thus, a way forwards
presents, and future work will seek to develop this exciting
new approach.
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