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Abstract 

Coherent collective behavior emerges from local interactions 
between individuals that generate group dynamics. An 
outstanding question is how to quantify group coherence in 
order to understand the nature of these dynamics. We 
investigate this problem in the context of a small group of 
pedestrians instructed simply to walk to a goal. To measure 
the degree of coordination in a group, we employed principal 
components analysis to estimate dimensional compression, 
and cross-recurrence quantification analysis to estimate the 
coupling strength between individuals. The results indicate 
lower-dimensional behavior and more stable coupling in real 
groups compared to reshuffled virtual groups. These findings 
demonstrate spontaneous local coordination in pedestrian 
groups that gives rise to coherent collective behavior, and 
offer an approach for investigating group dynamics in more 
complex contexts.  

Keywords: group locomotion; group coordination; cross-
recurrence quantification; principal components analysis 

Introduction 
Group dynamics arise from local interactions between 
individuals that are governed by a multi-level set of 
processes. At the most basic level, these interactions depend 
on a coupling between individuals based on perceptual 
information, which may further depend on higher-order 
cognitive and social constraints. To understand the 
emergence of collective behavior, it is necessary to begin by 
characterizing both the local informational coupling and the 
global group behavior. Such an approach requires a 
complementary set of analysis tools to quantify observable 

properties, such as the degree and stability of coordination, 
at both the individual and group levels.  

In the context of locomotion, we focus on the coupling 
between individual pedestrians that yields the formation of a 
coherent crowd. A recent dynamical model of locomotor 
behavior (Fajen & Warren, 2003, 2007; Warren & Fajen, 
2008) has characterized both individual behavior and 
pedestrian interactions, including coordination in leader-
follower and side-by-side dyads (Rio & Warren, 2011; Page 
& Warren, 2012), and may be generalized to coordination in 
groups (Rio, Bonneaud & Warren, 2012).  Here we 
investigate measures of the degree of coordination in small 
groups, or group coherence.   

Relevant behavioral variables to index the locomotor 
trajectory of an agent include (1) the agent’s direction of 
travel, or heading (ϕ) and (2) the agent’s speed (s). Each of 
these variables can be considered a degree of freedom (DoF) 
of pedestrian locomotion, and thus the DoF of a group of N 
pedestrians can be operationally defined as a system 
consisting of N×2 DoF (i.e., ϕ and s). 

It has been proposed that behavioral coordination between 
two agents arises from the coupling of DoF via shared 
information variables (Riley, Richardson, Shockley & 
Ramenzoni, 2011). Shared information between agents 
allows the DoF to directly regulate one another. This 
permits the characterization of interpersonal coordination in 
terms of the reduction of DoF, or dimensional compression, 
due to the behavioral reorganization of the newly assembled 
system. In the context of pedestrian interactions, a follower 
controls their speed by nulling change in the leader’s visual 
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angle, and a pedestrian walking beside a neighbor controls 
their speed by nulling change in the neighbor’s visual 
direction. Thus, visual information that serves to couple 
DoFs (i.e. ϕ and s) gives rise to pedestrian coordination and, 
ultimately, coherent crowds (Bonneaud & Warren, 2012; 
Moussaïd, Helbing & Theraulaz, 2011; Ondřej, Pettré, 
Olivier, & Donikian, 2010; Rio, Bonneaud & Warren, 
2012). 

We aim to advance the analysis of collective behavior by 
developing methods to quantify the degree of coordination 
among pedestrians in groups. We focus on both the basic 
coordination mechanism – the local coupling between pairs 
of neighbors – and the global characteristic of group 
coherence. The problem then becomes how to quantify 
coherence as a measure of collective behavior. To that end, 
we must identify analysis tools that can be used to 
characterize coordination at multiple scales of measurement. 

Principal Components Analysis (PCA) is one way to 
quantify the overall dimensional compression of an 
observed system (Riley et al., 2011). An advantage of PCA 
is that it can take all of the DoF, or variables of interest, in a 
given system and identify new collective variables (the 
principal components), based on relations within high-
dimensional datasets. It also indexes the load magnitude of 
the original variables of interest on the identified principal 
components, and this can help uncover how the behavioral 
variables are coupled together in the organized system. 
These characteristics make PCA an important tool for 
revealing global properties of a system. 

However, PCA is a linear analysis and cannot measure the 
local coordination between agents. That question requires an 
analysis tool that quantifies patterns of coordination 
between two behavioral variables. Cross-recurrence 
quantification (CRQ) is better suited for this purpose. CRQ 
is a nonlinear analysis that indexes repeating patterns in a 
pair of time series (Shockley, Butwill, Zbilut, & Webber, 
2002; Webber & Zbilut, 1994), and has already 
demonstrated its utility in interpersonal coordination (e.g., 
Ramenzoni, Riley, Shockley & Baker, 2012; Richardson, 
Dale & Shockley, 2008). In particular, when analyzing side-
by-side walking, Page and Warren (2012) found CRQ to 
output a reliable measure of the coupling strength, or degree 
of coordination, between the walking speed (s) of two 
pedestrians as their behavior evolved over time. In contrast 
to PCA, CRQ is limited to a pairwise analysis of time series, 
and thus provides a measure of coupling strength in a dyad 
rather than the overall coordination of the group. Taken 
together, PCA and CRQ allow us to characterize 
coordination and coherence at a local (i.e., dyad) and more 
global (i.e., group) level of behavior. 

To study group coherence, we began with observations of 
a simple and highly controlled locomotor task: four 
pedestrians walking to a common goal. While quantitative 
measures of crowd dynamics should apply to more complex 
scenarios (see Moussaïd et al., 2012), we believed this 
approach would reveal essential coordination dynamics as a 
first pass to understanding crowd behavior. In the present 

experiment, we instructed groups of four participants to 
walk toward one of three goals; the group’s initial density 
was varied on each trial (see Figure 1). As described above, 
we analyzed time series of two behavioral variables for each 
participant: the heading direction (ϕ) and speed (s). This 
resulted in a total of eight DoF for the four-agent system. 
We hypothesized that the groups would exhibit dimensional 
compression in all conditions, compared to virtual groups 
we constructed by randomly sampling the same participants 
from different trials (see Method section). We also expected 
a greater reduction in DoF as density increased, due to 
larger changes in visual angle and visual direction at smaller 
distances, as well as to spatial constraints on walking.  With 
regard to CRQ, we hypothesized that the coupling strength 
would be greater in all conditions compared to virtual 
groups, and that the leader-follower pairs would exhibit 
stronger coupling than the side-by-side pairs, as observed in 
our previous studies of two pedestrians (Rio & Warren, 
2011; Page & Warren, 2012). 

Participants 
Five groups of four participants (N=20; M age 23.57 ± 0.93 
years; 12 females, 8 male) from Brown University and the 
greater region were compensated $15 for their participation. 
Participants had no history of cognitive deficits, lower 
extremity injury, or neuromuscular disorders that would 
inhibit normal locomotor activity. The experiment was 
approved by the Brown University Institutional Review 
Board and adhered to guidelines for the ethical treatment of 
participants. 

Materials and Apparatus 
The experiment took place in a 12 × 14 m open room. The 
head position of each participant was tracked with a 
MicroTrax inertial tracker affixed atop a lightweight bicycle 
helmet on the head. Each tracker communicated with an IS-
900 ultrasonic overhead grid tracking system (InterSense, 
Billerica MA, USA) and provided 6 DoF position (4 mm 
RMS error) and orientation (0.1° RMS error) data at 60 Hz. 
Three cardboard goal poles (approximately 2 m tall and 0.5 
m in diameter) were placed at an initial distance of 8 m and 
angular offsets of 12.53° to the left (pole 1), 0° (pole 2), and 
12.53° to the right (pole 3) of the midpoint of the front two 
participants (see Figure 1). Colored tape was used to mark 
four possible starting positions in a square configuration, 
with initial spacing of 0.5, 1.0, 1.5, or 2.5m on a side. 

Design & Procedure 
Each group completed eight trials in each of 12 conditions, 
four densities (0.5, 1.0, 1.5, 2.5m spacing) crossed with 
three goal positions (left, straight, right; see Figure 1). This 
resulted in a total of 96 trials, presented in a random order, 
in each experimental session. Goal position was changed 
only to vary the task between trials, and thus was not 
included as a factor in the statistical analyses.  

At the beginning of each trial the four participants were 
randomly assigned to the four positions in the square 
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configuration: (1) front right, (2) front left, (3) back right, or 
(4) back left (Figure 1). Once they were standing in the 
correct location, an experimenter gave a “go” signal and the 
group began to walk straight ahead. As the last participant 
crossed a line 1 m in front of the initial positions of the front 
participants, the experimenter gave a verbal command to 
walk to goal 1, 2, or 3. The only instruction given to the 
participants was to continue walking to the specified goal at 
a comfortable pace without stopping. Participants were not 
told to stay together as a group or to maintain the initial 
configuration. Each trial lasted approximately 6 to 8 s.   

 
 

Figure 1: The four possible starting positions for each of the 
four possible starting densities. From this view, the 
participants would walk from left to right. Note the dotted line 
1 m from the midpoint between the front two participants that 
represents when the experimenter “goal” command was 
given. The heading and speed variables (ϕ and s, respectively) 
under each agent indicate the eight DoF of the system (i.e., 
the eight variables analyzed in the present experiment). FR = 
Front Right; FL = Front Left; BR = Back Right; BL = Back 
Left. 

Data Reduction and Analysis 
The tracking system recorded the head position (x- and z-
coordinates) of each participant at a sampling rate of 60 Hz. 
The raw (unfiltered) position data were used to compute the 
participant’s speed (s) and heading (ϕ) from the 
displacement between successive samples, according to the 
following equations: 

 

  𝒔! =   
!!  !  !!!! !! !!  !  !!!! ! .!

∆!
,        (1) 

 
ϕ! =    tan!!

!!  !  !!!!
!!  !  !!!!

,                           (2) 
 

where 𝑥! and 𝑧! are the head position on the ith frame, in 
room coordinates. The ϕ and s time series were used for all 
subsequent analyses. 

 
Virtual Group Construction For each real group trial, a 
paired virtual group trial was constructed by randomly 
selecting a time series from the same participants in the 
same group and condition, but from different trials.  Thus all 
task constraints were matched, except that the four 

participants in the virtual group were not perceptually 
coupled with each other. The virtual groups were created to 
ensure that any results that indicated significant 
coordination between participants were due to the 
perceptual coupling, not the task constraints (e.g., the 
common goal, the simultaneous goal command, or similar 
preferred walking speeds). After random selection of the 
four time series, they were temporally aligned based on the 
time the goal command was given by the experimenter. To 
equate their length (a requirement of both PCA and CRQ 
analysis), a time series was then potentially cropped at the 
beginning and/or end. This resulted in four time series of 
equal length that were aligned by the goal command. 
 
Principal Components Analysis (PCA) PCA identifies 
linear relationships within multi-dimensional datasets and 
then maps the original data into a newly defined space. The 
principal components (i.e., axes of space) represent the 
dataset’s primary dimensions of variation, but do not 
necessarily map directly onto the original dimensions of the 
actual measurement. The end result is a representation of 
potentially new, important variables that best account for the 
variance within the observed system.  

In the context of the present experiment, eight variables of 
interest representative of the 8 DoFs of the observed system 
(i.e., ϕ and s for each participant) were submitted to a single 
PCA. The data were normalized using a z-score transform 
prior to analysis. PCA was performed in Matlab using the 
princomp function and the results were examined in a 
similar fashion to Ramenzoni et al. (2012). 

First, the number of components that together account for 
90% or more of the variance in the data set was determined.  
To investigate dimensional compression in the real vs. 
virtual group, a 4×2 mixed-model analysis of variance 
(ANOVA) was conducted on number of components, with 
initial density as a within-subjects factor and group (real vs. 
virtual) as a between-subjects factor, averaged across goal 
position.  

Next, the amount of variance accounted for by the first 
principal component (PC) in the real vs. virtual group was 
compared using an identical mixed-model ANOVA. The 
analysis was limited to the first PC because the subsequent 
components were dependent on the first PC. Greater 
variance accounted for by the first PC in the real group 
indicates dimensional compression, and thus greater 
coherence, in the visually coupled system. 

Finally, the mean correlation coefficient (r) for the 
loading of each behavioral variable on the first PC was 
examined to investigate which of the eight variables were 
most influential in characterizing the group’s behavior. The 
r values were transformed using a Fisher’s z’ transform and 
submitted to a 4×8×2 mixed-model ANOVA with initial 
density and agent position as within-subjects factors, and 
group as a between-subjects factor, again averaged across 
goal position. The aim of this analysis was to examine 
whether the speed or heading of an agent in a particular 
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position more strongly influenced the group’s behavior and 
whether this influence depended on density. 
 
Cross-recurrence Quantification (CRQ) A nonlinear, 
two-dimensional cross-recurrence quantification (CRQ) 
analysis was used to quantify the time-correlated activity 
between the heading time series of each dyad in the group, 
and, separately, the speed time series of each dyad (see 
Figure 2 for the analysis steps). A CRQ analysis is 
conducted by first embedding the pair of normalized time 
series in a multidimensional, time-delayed phase space (see 
Marwan, Romano, Thiel & Kurths, 2007; Ramenzoni et al., 
2012; Richardson, Schmidt, & Kay, 2007; Shockley et al., 
2002; Webber & Zbilut, 1994). Because not all variables 
that make up the behavior in a dynamical system are 
necessarily knowable a priori, phase space reconstruction 
allows for the behavior of these potentially “hidden” 
variables in the dynamical system to be evaluated via their 
interaction with, or influence on, the known variable (in this 
case the s time series). Thus, the structure of the 
reconstructed phase space can reveal the underlying 
dynamics of the dynamical system as a whole. Specifically, 
the “neighborliness” of points within some tolerance or 
radius in phase space can indicate recurrent points in the 
two time series. These represent states in one time series 
that closely correspond to previous or future states in the 
other time series, and can illustrate behavioral patterns of 
coordination in the observed system. The recurrent points 
are identified and represented in a cross-recurrence plot (see 
Figure 2, bottom), from which a suite of measures can then 
be computed to quantify these patterns (see Shockley et al., 
2002 and Marwan et al., 2007 for a review of analysis 
procedures).  
 
In the present experiment, only cross-maxline (CML) was 
computed and analyzed: specifically the longest diagonal 
line of consecutive recurrent points on a cross-recurrence 
plot. This provides a measure of the longest time interval 
that the speed (or heading) of two participants was coupled 
during a given trial. CML is known to be sensitive to the 
temporal stability of coordination between two time series, 
associated with the coupling strength between agents 
(Richardson et al., 2007). A previous CRQ analysis of speed 
with two pedestrians revealed stronger coupling between 
leader-follower pairs than side-by-side pairs (Page & 
Warren, 2012). The parameters used for CRQ were as 
follows: embedding dimension = 5; delay = 3 data points; 
radius within which points are counted as recurrent = 1.0% 
of the actual distance separating points in reconstructed 
phase space. 

Results 
PCA  
Number of Components The number of components 
required to account for 90% of the variance was 
significantly reduced in real groups (M = 3.71 ± 0.12) 
compared to virtual groups (M = 5.76 ± 0.07), F(1,8) = 

233.22, p < .001 (see Figure 3, top). Thus, the visual 
coupling between agents reduced the DoF of the group 
significantly more than the external task constraints, 
indicative of emergent global coherence. Surprisingly, there 
was no effect of initial density (p > .05), implying that 
group coherence at low densities was comparable to that at 
high densities. 
 

 
 
Figure 2: A schematic of the steps in the CRQ analysis. For 
each trial, the speed time series of the FR agent (top left) and 
BR agent (top right) are unfolded separately into a shared 
reconstructed phase space via time-delayed copies of each 
measured time series, denoted as sFR,BR (A). Recurrent points 
within a given radius (B) and strings of recurrent points (C) 
are identified with respect to each point in phase space and 
represented in a cross-recurrence plot (bottom) with each axis 
representative of the sFR and sBR time series at each time step. 
Each pixel indicates a recurrent point, and the diagonal line 
structures indicate the length of a string of recurrent points, or 
the co-evolution of the two time series at different time 
delays. The longest diagonal line, cross-maxline (CML), was 
computed for each dyad in the group. 

 
PC 1 The first principal component accounted for 
significantly more variance in real groups (M =52.43% ± 
0.79) than in virtual groups (M =39.74% ± 0.45), F(1,8) = 
190.42, p < .001. This result confirms dimensional 
compression in group behavior, due to the visual coupling. 
There was, again, no effect of initial density (p > .05) on the 
variance accounted for by PC 1. 

 
Contribution of Variables to PC 1 The composition of the 
first principal component was further examined to determine 
the relative contributions of each behavioral variable, by 
computing the loading (r) of each variable on PC1 (see 
Figure 3, bottom). A significant agent position × group 
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interaction was observed for r, F(7,56) = 408.03, p < .001. 
Follow-up t-tests (Bonferroni corrected p ≤ .01) indicated 
that the s variable was more strongly correlated with PC1 in 
the real groups than in the virtual groups (all p < .001), 
whereas the ϕ variable was not (all p > .01), for all four 
agent positions.  Within the real groups, the s variable was 
more strongly correlated with PC1 than the ϕ variable (p < 
.001), whereas s and ϕ did not significantly differ in the 
virtual groups (all p > .01), for all agent positions. Thus, the 
behavior of real groups was more coherent than that of 
virtual groups, primarily due to the coordination of walking 
speed; thanks to the presence of a common goal, heading 
was independently aligned in both groups. 

 

 
Figure 3: The amount of variance accounted for by each 
component beginning with PC1 (top), and the loading (r) of 
behavioral variables onto PC 1 (bottom).  Black bars = real 
groups, white bars = virtual groups, significant differences (p 
< .001) indicated with Duncan Grouping. 

 
CRQ 
The results of PCA indicated the importance of speed (more 
than heading) as a variable of interest in the current dataset. 
Accordingly, the CRQ analyses focused on the speed time 
series for all six dyads on each trial. Representative cross-
recurrence plots for a real and virtual dyad appear in Figure 
4. A significant main effect of group was observed for 
cross-maxline length (CML), F(1,8) = 34.83, p < .001. 
Specifically, the real group exhibited a mean CML (M = 
49.93 ± 0.03) more than twice as long as the virtual group 
(M = 20.73 ± 0.02), irrespective of dyad, goal position, or 
initial density.  Surprisingly, this implies that the coupling is 
equally stable at high and low densities, and for leader-
follower and side-by-side dyads.  

  
Figure 4: Sample cross-recurrence plots for speed time series 
from a real (top) and a virtual (bottom) leader-follower dyad. 
Note the diagonal lines visible in the cross-recurrence plot for 
the real dyad, indicative of a temporally stable speed coupling 
between agents.   

Discussion 
The present experiment attempted to measure the degree of 
coherence in pedestrian groups, based on analyses of two 
behavioral variables, heading (ϕ) and speed (s), during goal-
directed locomotion. We expanded the analysis from 
interpersonal coordination to the behavior of small groups, 
as a path to understanding collective crowd dynamics. 

The PCA found that visually coupled pedestrian groups 
exhibited significant dimensional compression across all 
experimental conditions, compared to virtual groups. The 
results indicate that the task constraints (e.g. common goal, 
simultaneous command, preferred walking speed) accounted 
for a reduction of approximately 2.2 DoF (from 8 to 5.8) in 
the virtual groups. However, the visual coupling produced a 
further reduction of approximately 2.1 DoF (from 5.8 to 
3.7). This is indicative of a functional reorganization of DoF 
thanks to the informational coupling of behavioral variables, 
yielding the emergence of coherent collective behavior. 

In addition, PC 1 analysis offers preliminary evidence of a 
new collective variable that accounts for group coherence in 
the present case. The loading of behavioral variables on PC1 
suggests that agent speed is a primary contributor to the new 
group dynamics. However, the comparatively weak 
contribution of the behavioral variable of heading direction 
is likely due to the external constraint of a common goal in 
this particular task. Taken together, these findings support 
the reduction of DoF in interpersonal coordination proposed 
by Riley et al. (2011; Ramenzoni et al., 2012). 

The CRQ analysis provided more specific results about 
the coupling strength between particular dyads in the group. 
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The speed variable exhibited a significantly more stable 
coupling in real groups than virtual groups, with no 
differences between leader-follower, side-by-side, and 
diagonal dyads. Taken together, the PCA and CRQ results 
indicate that the reduction in group DoF in the present task 
is due in large part to the coordination of speed at the dyad 
level, resulting from the visual coupling between neighbors.  

While the overall results supported the hypothesis of 
group coordination via local coupling, the analyses diverged 
from our expectations in two important respects. First, we 
anticipated that the degree of coordination would increase as 
group density increased, but we did not observe an effect of 
density. It is possible that the range of densities tested was 
too small to observe an effect, or that the task constraints 
combined with a short walking distance limited the degree 
of variability in individual trajectories. But consistent with 
this finding, we previously observed that speed coordination 
in pairs of pedestrians is also independent of distance over 
1-3m (Rio & Warren, 2011). Second, we were surprised that 
coupling strength did not differ among dyads, given we had 
previously observed greater speed coordination between 
leader-follower than side-by-side pairs. Again, it is possible 
the task constraints may have limited the variability in 
individual behavior. In subsequent experiments, we are 
measuring pedestrian groups over longer distances without a 
common goal or timing signal. 

The present work is a starting point for understanding 
collective behavior in pedestrian groups. We have begun by 
focusing on the local coupling between agents, on the 
hypothesis that this generic coordination mechanism will 
scale up from small groups to large crowds and perhaps to 
swarms across species. It is likely that other cognitive and 
social variables also constrain this coupling. For example, 
cognitive processes such as decision-making and 
motivation, and social factors such as group membership, 
dominance relations, and social communication, may 
influence the selection of goals, neighbors, speeds, and 
control laws and shape group dynamics. The present 
experiment suggests an approach to quantifying multi-agent 
coordination in many of these contexts. Future work will 
continue to scale up these analyses to larger groups in 
various pedestrian scenarios, with the aim of understanding 
the emergence of collective behavior and global patterns in 
large crowds. 
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