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Abstract

Coherent collective behavior emerges from local interactions
between individuals that generate group dynamics. An
outstanding question is how to quantify group coherence in
order to understand the nature of these dynamics. We
investigate this problem in the context of a small group of
pedestrians instructed simply to walk to a goal. To measure
the degree of coordination in a group, we employed principal
components analysis to estimate dimensional compression,
and cross-recurrence quantification analysis to estimate the
coupling strength between individuals. The results indicate
lower-dimensional behavior and more stable coupling in real
groups compared to reshuffled virtual groups. These findings
demonstrate spontaneous local coordination in pedestrian
groups that gives rise to coherent collective behavior, and
offer an approach for investigating group dynamics in more
complex contexts.

Keywords: group locomotion; group coordination; cross-
recurrence quantification; principal components analysis

Introduction

Group dynamics arise from local interactions between
individuals that are governed by a multi-level set of
processes. At the most basic level, these interactions depend
on a coupling between individuals based on perceptual
information, which may further depend on higher-order
cognitive and social constraints. To understand the
emergence of collective behavior, it is necessary to begin by
characterizing both the local informational coupling and the
global group behavior. Such an approach requires a
complementary set of analysis tools to quantify observable

properties, such as the degree and stability of coordination,
at both the individual and group levels.

In the context of locomotion, we focus on the coupling
between individual pedestrians that yields the formation of a
coherent crowd. A recent dynamical model of locomotor
behavior (Fajen & Warren, 2003, 2007; Warren & Fajen,
2008) has characterized both individual behavior and
pedestrian interactions, including coordination in leader-
follower and side-by-side dyads (Rio & Warren, 2011; Page
& Warren, 2012), and may be generalized to coordination in
groups (Rio, Bonneaud & Warren, 2012). Here we
investigate measures of the degree of coordination in small
groups, or group coherence.

Relevant behavioral variables to index the locomotor
trajectory of an agent include (1) the agent’s direction of
travel, or heading (¢) and (2) the agent’s speed (s). Each of
these variables can be considered a degree of freedom (DoF)
of pedestrian locomotion, and thus the DoF of a group of N
pedestrians can be operationally defined as a system
consisting of Nx2 DoF (i.e., ¢ and s).

It has been proposed that behavioral coordination between
two agents arises from the coupling of DoF via shared
information variables (Riley, Richardson, Shockley &
Ramenzoni, 2011). Shared information between agents
allows the DoF to directly regulate one another. This
permits the characterization of interpersonal coordination in
terms of the reduction of DoF, or dimensional compression,
due to the behavioral reorganization of the newly assembled
system. In the context of pedestrian interactions, a follower
controls their speed by nulling change in the leader’s visual
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angle, and a pedestrian walking beside a neighbor controls
their speed by nulling change in the neighbor’s visual
direction. Thus, visual information that serves to couple
DoFs (i.e. ¢ and s) gives rise to pedestrian coordination and,
ultimately, coherent crowds (Bonneaud & Warren, 2012;
Moussaid, Helbing & Theraulaz, 2011; Ondfej, Pettré,
Olivier, & Donikian, 2010; Rio, Bonneaud & Warren,
2012).

We aim to advance the analysis of collective behavior by
developing methods to quantify the degree of coordination
among pedestrians in groups. We focus on both the basic
coordination mechanism — the local coupling between pairs
of neighbors — and the global characteristic of group
coherence. The problem then becomes how to quantify
coherence as a measure of collective behavior. To that end,
we must identify analysis tools that can be used to
characterize coordination at multiple scales of measurement.

Principal Components Analysis (PCA) is one way to
quantify the overall dimensional compression of an
observed system (Riley et al., 2011). An advantage of PCA
is that it can take all of the DoF, or variables of interest, in a
given system and identify new collective variables (the
principal components), based on relations within high-
dimensional datasets. It also indexes the load magnitude of
the original variables of interest on the identified principal
components, and this can help uncover how the behavioral
variables are coupled together in the organized system.
These characteristics make PCA an important tool for
revealing global properties of a system.

However, PCA is a linear analysis and cannot measure the
local coordination between agents. That question requires an
analysis tool that quantifies patterns of coordination
between two behavioral variables. Cross-recurrence
quantification (CRQ) is better suited for this purpose. CRQ
is a nonlinear analysis that indexes repeating patterns in a
pair of time series (Shockley, Butwill, Zbilut, & Webber,
2002; Webber & Zbilut, 1994), and has already
demonstrated its utility in interpersonal coordination (e.g.,
Ramenzoni, Riley, Shockley & Baker, 2012; Richardson,
Dale & Shockley, 2008). In particular, when analyzing side-
by-side walking, Page and Warren (2012) found CRQ to
output a reliable measure of the coupling strength, or degree
of coordination, between the walking speed (s) of two
pedestrians as their behavior evolved over time. In contrast
to PCA, CRQ is limited to a pairwise analysis of time series,
and thus provides a measure of coupling strength in a dyad
rather than the overall coordination of the group. Taken
together, PCA and CRQ allow us to characterize
coordination and coherence at a local (i.e., dyad) and more
global (i.e., group) level of behavior.

To study group coherence, we began with observations of
a simple and highly controlled locomotor task: four
pedestrians walking to a common goal. While quantitative
measures of crowd dynamics should apply to more complex
scenarios (see Moussaid et al., 2012), we believed this
approach would reveal essential coordination dynamics as a
first pass to understanding crowd behavior. In the present

experiment, we instructed groups of four participants to
walk toward one of three goals; the group’s initial density
was varied on each trial (see Figure 1). As described above,
we analyzed time series of two behavioral variables for each
participant: the heading direction (¢) and speed (s). This
resulted in a total of eight DoF for the four-agent system.
We hypothesized that the groups would exhibit dimensional
compression in all conditions, compared to virtual groups
we constructed by randomly sampling the same participants
from different trials (see Method section). We also expected
a greater reduction in DoF as density increased, due to
larger changes in visual angle and visual direction at smaller
distances, as well as to spatial constraints on walking. With
regard to CRQ, we hypothesized that the coupling strength
would be greater in all conditions compared to virtual
groups, and that the leader-follower pairs would exhibit
stronger coupling than the side-by-side pairs, as observed in
our previous studies of two pedestrians (Rio & Warren,
2011; Page & Warren, 2012).

Participants

Five groups of four participants (N=20; M age 23.57 + 0.93
years; 12 females, 8 male) from Brown University and the
greater region were compensated $15 for their participation.
Participants had no history of cognitive deficits, lower
extremity injury, or neuromuscular disorders that would
inhibit normal locomotor activity. The experiment was
approved by the Brown University Institutional Review
Board and adhered to guidelines for the ethical treatment of
participants.

Materials and Apparatus

The experiment took place in a 12 x 14 m open room. The
head position of each participant was tracked with a
MicroTrax inertial tracker affixed atop a lightweight bicycle
helmet on the head. Each tracker communicated with an IS-
900 ultrasonic overhead grid tracking system (InterSense,
Billerica MA, USA) and provided 6 DoF position (4 mm
RMS error) and orientation (0.1° RMS error) data at 60 Hz.
Three cardboard goal poles (approximately 2 m tall and 0.5
m in diameter) were placed at an initial distance of 8§ m and
angular offsets of 12.53° to the left (pole 1), 0° (pole 2), and
12.53° to the right (pole 3) of the midpoint of the front two
participants (see Figure 1). Colored tape was used to mark
four possible starting positions in a square configuration,
with initial spacing of 0.5, 1.0, 1.5, or 2.5m on a side.

Design & Procedure

Each group completed eight trials in each of 12 conditions,
four densities (0.5, 1.0, 1.5, 2.5m spacing) crossed with
three goal positions (left, straight, right; see Figure 1). This
resulted in a total of 96 trials, presented in a random order,
in each experimental session. Goal position was changed
only to vary the task between trials, and thus was not
included as a factor in the statistical analyses.

At the beginning of each trial the four participants were
randomly assigned to the four positions in the square
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configuration: (1) front right, (2) front left, (3) back right, or
(4) back left (Figure 1). Once they were standing in the
correct location, an experimenter gave a “go” signal and the
group began to walk straight ahead. As the last participant
crossed a line 1 m in front of the initial positions of the front
participants, the experimenter gave a verbal command to
walk to goal 1, 2, or 3. The only instruction given to the
participants was to continue walking to the specified goal at
a comfortable pace without stopping. Participants were not
told to stay together as a group or to maintain the initial
configuration. Each trial lasted approximately 6 to 8 s.
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Figure 1: The four possible starting positions for each of the
four possible starting densities. From this view, the
participants would walk from left to right. Note the dotted line
1 m from the midpoint between the front two participants that
represents when the experimenter “goal” command was
given. The heading and speed variables (¢ and s, respectively)
under each agent indicate the eight DoF of the system (i.c.,
the eight variables analyzed in the present experiment). FR =
Front Right; FL = Front Left; BR = Back Right; BL = Back
Left.

Data Reduction and Analysis

The tracking system recorded the head position (x- and z-
coordinates) of each participant at a sampling rate of 60 Hz.
The raw (unfiltered) position data were used to compute the
participant’s speed (s) and heading (¢) from the
displacement between successive samples, according to the
following equations:

_ (Gim x4 (i - zi-0%)°

si " . (1)
— -1 (Xi = Xi-1
¢ = ™ (22, @

where x; and z; are the head position on the ith frame, in
room coordinates. The ¢ and s time series were used for all
subsequent analyses.

Virtual Group Construction For each real group trial, a
paired virtual group trial was constructed by randomly
selecting a time series from the same participants in the
same group and condition, but from different trials. Thus all
task constraints were matched, except that the four

participants in the virtual group were not perceptually
coupled with each other. The virtual groups were created to
ensure that any results that indicated significant
coordination between participants were due to the
perceptual coupling, not the task constraints (e.g., the
common goal, the simultaneous goal command, or similar
preferred walking speeds). After random selection of the
four time series, they were temporally aligned based on the
time the goal command was given by the experimenter. To
equate their length (a requirement of both PCA and CRQ
analysis), a time series was then potentially cropped at the
beginning and/or end. This resulted in four time series of
equal length that were aligned by the goal command.

Principal Components Analysis (PCA) PCA identifies
linear relationships within multi-dimensional datasets and
then maps the original data into a newly defined space. The
principal components (i.e., axes of space) represent the
dataset’s primary dimensions of variation, but do not
necessarily map directly onto the original dimensions of the
actual measurement. The end result is a representation of
potentially new, important variables that best account for the
variance within the observed system.

In the context of the present experiment, eight variables of
interest representative of the 8 DoFs of the observed system
(i.e., ¢ and s for each participant) were submitted to a single
PCA. The data were normalized using a z-score transform
prior to analysis. PCA was performed in Matlab using the
princomp function and the results were examined in a
similar fashion to Ramenzoni et al. (2012).

First, the number of components that together account for
90% or more of the variance in the data set was determined.
To investigate dimensional compression in the real vs.
virtual group, a 4x2 mixed-model analysis of variance
(ANOVA) was conducted on number of components, with
initial density as a within-subjects factor and group (real vs.
virtual) as a between-subjects factor, averaged across goal
position.

Next, the amount of variance accounted for by the first
principal component (PC) in the real vs. virtual group was
compared using an identical mixed-model ANOVA. The
analysis was limited to the first PC because the subsequent
components were dependent on the first PC. Greater
variance accounted for by the first PC in the real group
indicates dimensional compression, and thus greater
coherence, in the visually coupled system.

Finally, the mean correlation coefficient (r) for the
loading of each behavioral variable on the first PC was
examined to investigate which of the eight variables were
most influential in characterizing the group’s behavior. The
r values were transformed using a Fisher’s z’ transform and
submitted to a 4x8%2 mixed-model ANOVA with initial
density and agent position as within-subjects factors, and
group as a between-subjects factor, again averaged across
goal position. The aim of this analysis was to examine
whether the speed or heading of an agent in a particular
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position more strongly influenced the group’s behavior and
whether this influence depended on density.

Cross-recurrence Quantification (CRQ) A nonlinear,
two-dimensional cross-recurrence quantification (CRQ)
analysis was used to quantify the time-correlated activity
between the heading time series of each dyad in the group,
and, separately, the speed time series of each dyad (see
Figure 2 for the analysis steps). A CRQ analysis is
conducted by first embedding the pair of normalized time
series in a multidimensional, time-delayed phase space (see
Marwan, Romano, Thiel & Kurths, 2007; Ramenzoni et al.,
2012; Richardson, Schmidt, & Kay, 2007; Shockley et al.,
2002; Webber & Zbilut, 1994). Because not all variables
that make up the behavior in a dynamical system are
necessarily knowable a priori, phase space reconstruction
allows for the behavior of these potentially “hidden”
variables in the dynamical system to be evaluated via their
interaction with, or influence on, the known variable (in this
case the s time series). Thus, the structure of the
reconstructed phase space can reveal the underlying
dynamics of the dynamical system as a whole. Specifically,
the “neighborliness” of points within some tolerance or
radius in phase space can indicate recurrent points in the
two time series. These represent states in one time series
that closely correspond to previous or future states in the
other time series, and can illustrate behavioral patterns of
coordination in the observed system. The recurrent points
are identified and represented in a cross-recurrence plot (see
Figure 2, bottom), from which a suite of measures can then
be computed to quantify these patterns (see Shockley et al.,
2002 and Marwan et al.,, 2007 for a review of analysis
procedures).

In the present experiment, only cross-maxline (CML) was
computed and analyzed: specifically the longest diagonal
line of consecutive recurrent points on a cross-recurrence
plot. This provides a measure of the longest time interval
that the speed (or heading) of two participants was coupled
during a given trial. CML is known to be sensitive to the
temporal stability of coordination between two time series,
associated with the coupling strength between agents
(Richardson et al., 2007). A previous CRQ analysis of speed
with two pedestrians revealed stronger coupling between
leader-follower pairs than side-by-side pairs (Page &
Warren, 2012). The parameters used for CRQ were as
follows: embedding dimension = 5; delay = 3 data points;
radius within which points are counted as recurrent = 1.0%
of the actual distance separating points in reconstructed
phase space.

Results

PCA

Number of Components The number of components
required to account for 90% of the variance was
significantly reduced in real groups (M = 3.71 + 0.12)
compared to virtual groups (M = 5.76 + 0.07), F(1,8) =

233.22, p < .001 (see Figure 3, top). Thus, the visual
coupling between agents reduced the DoF of the group
significantly more than the external task constraints,
indicative of emergent global coherence. Surprisingly, there
was no effect of initial density (p > .05), implying that
group coherence at low densities was comparable to that at
high densities.
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Figure 2: A schematic of the steps in the CRQ analysis. For
each trial, the speed time series of the FR agent (top left) and
BR agent (top right) are unfolded separately into a shared
reconstructed phase space via time-delayed copies of each
measured time series, denoted as sgr gr (A). Recurrent points
within a given radius (B) and strings of recurrent points (C)
are identified with respect to each point in phase space and
represented in a cross-recurrence plot (bottom) with each axis
representative of the sgr and sgg time series at each time step.
Each pixel indicates a recurrent point, and the diagonal line
structures indicate the length of a string of recurrent points, or
the co-evolution of the two time series at different time
delays. The longest diagonal line, cross-maxline (CML), was
computed for each dyad in the group.

PC 1 The first principal component accounted for
significantly more variance in real groups (M =52.43% =+
0.79) than in virtual groups (M =39.74% =+ 0.45), F(1,8) =
190.42, p < .001. This result confirms dimensional
compression in group behavior, due to the visual coupling.
There was, again, no effect of initial density (p > .05) on the
variance accounted for by PC 1.

Contribution of Variables to PC 1 The composition of the
first principal component was further examined to determine
the relative contributions of each behavioral variable, by
computing the loading (») of each variable on PC1 (see
Figure 3, bottom). A significant agent position x group

2713



interaction was observed for r, F(7,56) = 408.03, p < .001.
Follow-up t-tests (Bonferroni corrected p < .01) indicated
that the s variable was more strongly correlated with PC1 in
the real groups than in the virtual groups (all p < .001),
whereas the ¢ variable was not (all p > .01), for all four
agent positions. Within the real groups, the s variable was
more strongly correlated with PC1 than the ¢ variable (p <
.001), whereas s and ¢ did not significantly differ in the
virtual groups (all p > .01), for all agent positions. Thus, the
behavior of real groups was more coherent than that of
virtual groups, primarily due to the coordination of walking
speed; thanks to the presence of a common goal, heading
was independently aligned in both groups.
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Figure 3: The amount of variance accounted for by each
component beginning with PC1 (top), and the loading (») of
behavioral variables onto PC 1 (bottom). Black bars = real
groups, white bars = virtual groups, significant differences (p
<.001) indicated with Duncan Grouping.

CRQ

The results of PCA indicated the importance of speed (more
than heading) as a variable of interest in the current dataset.
Accordingly, the CRQ analyses focused on the speed time
series for all six dyads on each trial. Representative cross-
recurrence plots for a real and virtual dyad appear in Figure
4. A significant main effect of group was observed for
cross-maxline length (CML), F(1,8) = 34.83, p < .001.
Specifically, the real group exhibited a mean CML (M =
49.93 £+ 0.03) more than twice as long as the virtual group
(M = 20.73 £ 0.02), irrespective of dyad, goal position, or
initial density. Surprisingly, this implies that the coupling is
equally stable at high and low densities, and for leader-
follower and side-by-side dyads.
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Figure 4: Sample cross-recurrence plots for speed time series
from a real (top) and a virtual (bottom) leader-follower dyad.
Note the diagonal lines visible in the cross-recurrence plot for
the real dyad, indicative of a temporally stable speed coupling
between agents.

Discussion

The present experiment attempted to measure the degree of
coherence in pedestrian groups, based on analyses of two
behavioral variables, heading (¢) and speed (s), during goal-
directed locomotion. We expanded the analysis from
interpersonal coordination to the behavior of small groups,
as a path to understanding collective crowd dynamics.

The PCA found that visually coupled pedestrian groups
exhibited significant dimensional compression across all
experimental conditions, compared to virtual groups. The
results indicate that the task constraints (e.g. common goal,
simultaneous command, preferred walking speed) accounted
for a reduction of approximately 2.2 DoF (from 8§ to 5.8) in
the virtual groups. However, the visual coupling produced a
further reduction of approximately 2.1 DoF (from 5.8 to
3.7). This is indicative of a functional reorganization of DoF
thanks to the informational coupling of behavioral variables,
yielding the emergence of coherent collective behavior.

In addition, PC 1 analysis offers preliminary evidence of a
new collective variable that accounts for group coherence in
the present case. The loading of behavioral variables on PC1
suggests that agent speed is a primary contributor to the new
group dynamics. However, the comparatively weak
contribution of the behavioral variable of heading direction
is likely due to the external constraint of a common goal in
this particular task. Taken together, these findings support
the reduction of DoF in interpersonal coordination proposed
by Riley et al. (2011; Ramenzoni et al., 2012).

The CRQ analysis provided more specific results about
the coupling strength between particular dyads in the group.
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The speed variable exhibited a significantly more stable
coupling in real groups than virtual groups, with no
differences between leader-follower, side-by-side, and
diagonal dyads. Taken together, the PCA and CRQ results
indicate that the reduction in group DoF in the present task
is due in large part to the coordination of speed at the dyad
level, resulting from the visual coupling between neighbors.

While the overall results supported the hypothesis of
group coordination via local coupling, the analyses diverged
from our expectations in two important respects. First, we
anticipated that the degree of coordination would increase as
group density increased, but we did not observe an effect of
density. It is possible that the range of densities tested was
too small to observe an effect, or that the task constraints
combined with a short walking distance limited the degree
of variability in individual trajectories. But consistent with
this finding, we previously observed that speed coordination
in pairs of pedestrians is also independent of distance over
1-3m (Rio & Warren, 2011). Second, we were surprised that
coupling strength did not differ among dyads, given we had
previously observed greater speed coordination between
leader-follower than side-by-side pairs. Again, it is possible
the task constraints may have limited the variability in
individual behavior. In subsequent experiments, we are
measuring pedestrian groups over longer distances without a
common goal or timing signal.

The present work is a starting point for understanding
collective behavior in pedestrian groups. We have begun by
focusing on the local coupling between agents, on the
hypothesis that this generic coordination mechanism will
scale up from small groups to large crowds and perhaps to
swarms across species. It is likely that other cognitive and
social variables also constrain this coupling. For example,
cognitive processes such as decision-making and
motivation, and social factors such as group membership,
dominance relations, and social communication, may
influence the selection of goals, neighbors, speeds, and
control laws and shape group dynamics. The present
experiment suggests an approach to quantifying multi-agent
coordination in many of these contexts. Future work will
continue to scale up these analyses to larger groups in
various pedestrian scenarios, with the aim of understanding
the emergence of collective behavior and global patterns in
large crowds.
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