
Mental simulation and the construction of informal algorithms

Sangeet Khemlani1 and Phil Johnson-Laird2
sunny.khemlani.ctr@nrl.navy.mil, phil@princeton.edu

1Naval Research Laboratory, Washington, DC 20375 USA
2Princeton University, Princeton NJ 08540 USA

Abstract
We describe two studies that show that when individuals who
are not programmers create algorithms, they rely on mental
simulations. Our studies concerned a railway domain in which
carriages are rearranged – a simple environment but
equivalent in computational power to a Turing machine.
Participants successfully solved rearrangement problems
(Experiment 1), and created algorithms to solve them
(Experiment 2) and their performance corroborated the use of
simulation. The participants tended to use loops and to prefer
while-loops even though they are of greater computational
power than for-loops. Their ability to create algorithms for
abstract problems improved when they first had to create
algorithms for more concrete problems. We devised a
computer program that creates its own algorithms for
rearrangement problems. It generates Lisp functions that
operate on lists and creates descriptions of them in everyday
language. The complexity of the resulting algorithms predicts
participants’ difficulty in devising them.

Keywords: algorithms, computer programming, creativity,
deduction, problem-solving, reasoning

Introduction
A long controversy about human thinking is whether it

depends on logic (Rips, 1994), probabilities (Oakford &
Chater, 2007; Tenenbaum & Griffiths, 2001), or mental
simulations (Craik, 1943; Johnson-Laird, 1983; Hegarty,
2004). Many inferences such as syllogistic deductions can
be explained by mechanisms that depend on any of the three
approaches (see Khemlani & Johnson-Laird, 2012, for a
review). Indeed, few inferential tasks unequivocally depend
on one approach. Computer programming may be such a
task: it is readily explained by appealing to mental
simulation (Bornat, Dehnadi, & Simon, 2008; Caspersen,
Bennedsen, & Larsen, 2007; Kurland & Pea, 1985). To
debug faulty code, programmers have to mentally simulate
the algorithm to discover the situations in which the
computer failed to produce the expected output. It is less
apparent how mental rules of logic or probabilities could be
used develop algorithms. Logic can be used to deduce the
consequences of a program, but the creation of a program
goes beyond logic (cf. Gulwani, 2010; Kitzelmann,
Schmidt, Mühlpfordt, & Wysotzki, 2002). Probabilities
hardly enter into the process, because computer programs
are deterministic, and the language of the probability
calculus is ill equipped to operate over the structures of
programs. Mental simulation is therefore an appropriate
framework with which to characterize the ability to create
algorithms, and researchers can benefit from studying the
simulations programmers use to solve tasks (Holt, Boehm-
Davis, & Schultz, 1987).

Expert programming depends on more than just mental
simulation, however. Programmers often have specialized
knowledge of programming languages, of relevant software
platforms and tools, and about computer science in general
(Boehm-Davis & Ross, 1992). For that reason, many studies
have tested the ability of novice programmers to write
computer programs (see, e.g., Anderson, Pirolli, & Farrell,
1988). Few have investigated how those without any
background in programming try to create algorithms. Miller
(1974) pioneered such studies. He examined the way college
students unfamiliar with computers wrote instructions for
others to follow, and found that they tended not to use loops
in their instructions, even though they could understand
them (Miller, 1981). More recently, Pane and his colleagues
carried out a study in which they presented non-
programmers with static descriptions of an agent moving in
a popular video game, PacMan, and the participants had to
summarize how agents moved in general. They again
preferred not to make use of loops, but when they did, they
appeared to rely on while-loops (Pane et al., 2001).

Despite these results, there exists no psychological theory
of how non-programmers construct algorithms. To develop
such a theory, and to study algorithmic creativity in non-
programmers, we designed a novel problem-solving task
environment in which reasoners have to sort the order of a
list in various ways. We introduce the environment below,
and then explain how individuals build kinematic mental
models to construct algorithms for their solutions. We then
describe two experiments that show that reasoners
intuitively understand the environment (Experiment 1) and
that they can mentally create algorithms for the problems in
the environment (Experiment 2).

Rearrangement problems
and the railway environment

We studied how individuals who have never learned
computer programming create algorithms in everyday
language. For problems that they readily understood, we
used the railway environment shown in Figure 1. The
environment consists of a railway track and a siding. It is an
analog of a finite-state device with two stacks – the left
track (a) holds the input and also acts as a stack, the siding
(b) acts as another stack, and the right track (c) holds the
final output. Participants’ task is to move the cars from the
left track to the right track into a specific order. Cars can
move only from the siding to and from the left track, and
from left track to right track. Multiple cars can be moved at
once, i.e., any move of a selected car applies to all cars in
front of it. For example, in Figure 1, if you moved the E car

2698

Figure 1. The railway domain with an example of an initial
configuration in which a set of cars is on the left side (a) of the
track, the siding (b) can hold one or more cars while other cars are
moved to the right side of the track (c).

to the right track, then the F car would move along in front
of it. To restrict the environment to a single stack, cars could
move from the siding only to the output on the right track.
In summary, only three sorts of move are possible in the
railway environment:

R: one or more cars moved from left track to right track.
S: one or more cars moved from left track to siding.
L: one or more cars moved from the siding to left track.

One constraint is that cars can be neither removed nor added
to trains in our rearrangement problems – if they could be,
then the railway environment would be equivalent to a
universal Turing machine power.

Experiment 1 below investigated all 24 possible re-
arrangements of four cars, and examined whether the
participants perseverated, i.e., made one or more
unnecessary moves. They can use a simple variant of
“means-ends” analysis in which they work backwards from
the required goal, invoking operations relevant to reducing
the difference between the current state and the goal (e.g.,
Newell & Simon, 1972; Newell, 1990). For rearrangement
problems, they need only envisage each successive car in
the goal. Suppose, for instance, they have to re-arrange the
order ABCD into ACBD. The starting state is: ABCD[],
where the square brackets denote the contents of the siding,
which is empty at the start. Their immediate goal is to get D
to the far end of the right track: [] . . . D. So, they move D
from left to right track: ABC[]D. The next partial goal is to
get B to the right track, and so they need to move C out of
the way onto the siding: AB[C]D. Now, they can move B to
the right: A[C]BD. They move C off the stack: AC[]BD.
The next move is intriguing. They should move both A and
C together from left to right track. But, if reasoners
perseverate, they may move only C to the right track. Their
solution won’t be minimal, because they then have to make
a separate move of A to right track.

We investigated how reasoners solve single instances of
such problems, but our primary goal was to understand the
processes and representations non-programmers use to
create algorithms. In the following section, we explain how
kinematic mental models can be used to construct
algorithms, and illustrate the predictions that the model-
based theory makes.

A model-based theory of algorithmic creativity
How do naïve individuals create informal algorithms? We

hypothesize that individuals simulate solutions to problems,
where a simulation consists of a sequence of kinematic
mental models representing states of the world, real or
imaginary, and the sequence itself represents a logical or
temporal order of the states (Johnson-Laird, 1983, Ch. 15).
Reasoners use such simulations to carry out three separate
steps to create an algorithm: 1) they solve at least two
different instances of a rearrangement problem using a
kinematic sequence of moves; 2) they scan the kinematic
sequences to abduce a pattern; 3) they translate the pattern
into a verbal description. We address the three steps in turn.

Step 1: Problem-solving as simulation. The first step is to
solve two different instances of a rearrangement problem.
Otherwise, re-arrangements are ambiguous. At any point in
the simulation, only a single move is made, and so to
reverse, say, four carriages, reasoners can begin by
envisaging the transformation from the start state:

 ABCDEF[] → [] . . . A

This partial goal calls for a move of five cars onto the
siding, A[BCDEF], so A can be moved to right track,
[BCDEF]A. The next partial goal is to get B to right track,
and so it should be moved to left track, B[CDEF]A, and
over to right track, [CDEF]BA. A repeated loop of these
two operations moves each car in turn off the siding and to
right track, and solves the problem.

Two variables should affect performance in the solution
of rearrangement problems: the number of moves and the
number of their operands. Obviously, the greater the number
of moves, the more difficult a problem should be – the only
sort of theory that would not make this prediction would be
one that made no appeal to simulation. A more subtle
prediction concerns the number of operands. In a reversal
problem, such as the one above, each move after the first
has an operand of one car. We can contrast this case with
the solution of a palindrome problem, such as:

 ABCCBA[] → []AABBCC

There are three cars, BCC, on the left that match the goal,
but they are blocked, and so to solve the problem, the
blocking cars are moved onto the siding: ABCC[BA]. The
three cars on the left are moved to the right: A[BA]BCC.
One car on the siding matches the goal, and so it is moved
to the left: AB[A]BCC. Two cars on the left match the goal,
and so they are moved to the right: [A]ABBCC. The car on
the stack matches the goal, and so it is moved to the left and
then over to the right, and the problem is solved. Its minimal
solution required a total of 10 cars to be moved in 6 moves.
This solution has a mean number of operands per move
greater than that for the reversal problems, and so the theory
predicts that the palindrome problems should be more
difficult than reversal problems of the same number of

a. c.

b.

2699

moves. And individuals may make an unnecessary move in
their solution of the problem, i.e., they may fail to solve the
problem parsimoniously. Number of operands has a family
resemblance to “relational complexity”, which concerns the
number of arguments in a relation, and which affects
problem difficulty (Halford, Wilson, & Phillips, 1998).
However, the number of operands concerns, not the number
of arguments of an operator, but whether the value of a
single argument is one or more entities.

Step 2: Pattern abstraction and abduction. The second step
in creating an algorithm is to recover the structure of the
solutions – the loop they contain, and any operations before
or after it. Consider the moves to reverse trains of four and
five cars, respectively:

 (S3 R1 L1 R1 L1 R1 L1 R1)
 (S4 R1 L1 R1 L1 R1 L1 R1 L1 R1)

where ‘S3’ means move three cars from left track to the
Siding, ‘R1’ means move one car from left track to Right
track, and ‘L1’ means move one car from the siding to Left
track. The loop of operations is (R1 L1). But, how many
times should it be iterated? There are two ways to find the
answer. The simpler is to observe the conditions in the
simulation when the loop ceases, respectively:

 D[]CBA
 E[]DCBA

In both cases, the siding is empty, and so this condition
determines that a while-loop should continue until the siding
is empty. The alternative answer depends on computing the
number of times that a for-loop should be executed, and it
calls for the solution of a pair of simultaneous linear
equations to obtain the values of a and b in:

number-of-iterations = a * train-length + b.

Step 3: Conversion to natural language. The third and final
step is to map the structure of the solution into a description.
A general algorithm for reversing the order of cars applies
to trains of any length. Hence, it needs to describe a loop of
moves. When reasoners convert the algorithm to a natural
language description, their responses should yield the
condition in which the loop stops (an indication that they’ve
constructed while-loop) or else reflect the number of times
for which the loop should be executed (an indication that
they’ve constructed a for-loop). The solution of
simultaneous equations calls for more than just simulation,
whereas the halting conditions of a loop can be observed in
a simulation, and so the theory predicts that correct
responses should tend to use while-loops more often than
for-loops.

We have implemented all three steps in a computer
program that discovers and outputs algorithms to solve any
re-arrangement problem that depends on a single loop. It

outputs a for-loop, a while-loop, and a translation of the
while-loop into informal English (see Appendix). Each of
these algorithms solves any instance of the relevant class of
rearrangements.

Experiment 1 tested whether solutions to rearrangements
depend on the number of moves and the number of
operands. Experiment 2 tested whether reasoners use
simulation to construct algorithms, and therefore formulate
while loops, and whether the theory predicts the relative
difficulty of different sorts of problem.

Experiment 1
Experiment 1 tested the effects of number of moves and

number of operands on the solution of simple rearrangement
problems in the railway environment. The problems were
simple and called for the rearrangement of only four cars.
Hence, our interest was in whether the participants could
solve the problems without making redundant moves. The
participants had to solve all the 24 possible rearrangements
of trains containing four cars. Their minimal solutions call
for various numbers of moves (1, 4, 5, 6, 7, or 8), and as a
consequence the theory predicts an increasing trend in
redundant moves for these problems. The total numbers of
operands in minimal solutions was (4, 6, 8, 10, or 12), and
as a consequence there should be an increasing trend in
redundant moves. Because these two variables are only
partially correlated, we were able to examine their effects
independently (see Table 1 below).

Method
Participants. Twenty undergraduate students at Princeton
University served as participants, and none had had any
prior training in logic or computer science.

Design and procedure. Participants acted as their own
controls and carried out all 24 problems, which were
presented in a different random order to each of them. When
they had completed the experiment, they carried out two of
the problems again, but they had to think aloud as they did
so. They were tested individually, and carried out the
experiment on a PC running LispWorks 4.4. They interacted
with the system using the mouse and the keyboard of the
computer. They were shown a three-minute instructional
video that guided them through the elements of the railway
environment, and that presented the instructions. The key
instruction stated that they should try to solve each problem
with as few moves as possible.

Results and discussion
Non-programmers were able to solve rearrangement

problems with ease: they produced very few incorrect
solutions. Table 1 presents the participants’ mean numbers
of moves to solve the problems depending on the minimum
number of moves and the total number of operands. We
dropped the two extreme problems from the statistical

2700

of moves in
a minimal
solution

Total number of operands
(cars) moved in minimal solutions

Mean # of
actual moves 4 6 8 10 12

1 1.0 1.0
4 4.3 4.7 4.6 4.5
5 5.5 5.2 5.4
6 6.5 6.6 6.6
7 7.9 7.9
8 8.3 8.5 8.6 8.4
Mean # of
actual moves 1.0 4.9 6.5 6.9 8.6

Table 1. The mean numbers of moves in Experiment 1 in
rearrangement problems as a function of the total number of moves
in their minimal solutions and the total number of operands (cars)
to be moved.

analysis so that they would not bias the results, i.e., the
problem that required only one move to solution, and the
problem that had a total of 12 operands. Given that the
participants solved the problems, it is hardly surprising that
the mean number of the participants’ moves increased with
the minimal number of moves required to solve a problem
(Page’s trend test, L = 1809.5, z = 8.47, p < .0001). But, the
results also showed that their mean number of moves also
increased with the number of operands (Page’s trend test, L
= 276, z = 5.69, p < .0001). In other words, the participants
tended to fail to find minimal solutions, and as the mean
number of operands increased so the number of their moves
increased, independently of the total number of moves in a
minimal solution. (For brevity, we spare readers the latency
results, but their patterns corroborated both of these effects.)
There was a reliable tendency for the participants to make
redundant moves. Every participant made at least one
redundant move (Binomial, p = .520).

In summary, the experiment shows that naive individuals
can solve simple rearrangements. It corroborated the
prediction that the number of moves affected the difficulty
of the problem, and thereby supported simulation-based
accounts. Likewise, it corroborated the prediction unique to
the model-based theory that the number of operands should
affect the difficulty of a problem. The following experiment
tested whether non-programmers could formulate general
solutions for rearrangement problems.

Experiment 2

In Experiment 2, the participants had to formulate
algorithms to solve three sorts of rearrangement: reversals,
such as ABCDEFGH becomes HGFEDCBA; palindromes,
such as ABCDDCBA becomes AABBCCDD; and parity
sorts, such as ABCDEFGH becomes ACEGBDFH.
Participants had to construct the algorithms in their mind’s
eye with no access to the railway environment. They were
familiar with the environment, because they had just solved
five practice problems on it, but these problems were simple
rearrangements that differed from the problems in the
experiment proper. They were then shown the inputs and
outputs for each of the problems, and they had to write
down algorithms for solving them. They did so for fixed-

length problems in which trains of eight cars had to be
rearranged, and indefinite-length problems in which trains
of any number of cars had to be rearranged. The fixed-
length problems should be easier than indefinite-length
problems, because only the former can be solved without
loops. Likewise, complexity and number of operands predict
a trend in difficulty over the three sorts of general
rearrangements: reversals should be easier than
palindromes, which in turn should be easier than parity
sorts. The latter should be the hardest to solve because they
call for an extra operation in their algorithm (see the
Appendix).

Method
Design and materials. The participants acted as their own
controls and carried out six problems: the three sorts of
rearrangement as both fixed-length problems of eight cars
and indefinite-length problems of any number of cars. The
session began with five practice problems akin to those in
Experiment 1, which the participants merely had to solve by
interacting with the railway system. These problems were
unrelated to the experimental problems: each of them had a
train of 6 cars, and a solution depending on 8 moves. The
experiment proper followed, and the participants’ task was
to type out a procedure that would solve each problem, but
they were not allowed to interact with the railway
environment. They carried out two blocks of trials, one of
the definite problems and one of the indefinite problems,
presented in a counterbalanced order to two groups of
participants. The order of the three sorts of rearrangement
was randomized for each participant within the blocks. For
the indefinite-length problems, the participants were told
that a car containing an ellipsis stood in place for any
number of cars that had the same pattern.

Participants and procedure. Twenty students from the same
population as before took part in the experiment. They
watched an instructional video and were told how to
interpret the car containing an ellipsis. They then solved the
practice problems using the same procedure as before. In the
experiment proper, the participants were told to write a
description of a procedure for solving each of the
experimental problems as efficiently as possible. They were
free to use their own words in any way that they wanted, but
they no longer were allowed to manipulate the cars in the
railway environment.

Results and discussion
Two independent raters scored the correctness of the
algorithms and whether they contained a while-loop, a for
loop, or no loop whatsoever (see Appendix for examples of
correct responses). Inter-rater reliability was high for
judgments of correctness (Cohen’s κ = .82) and the sorts of
loops that participants devised (κ = .73). A third
independent rater resolved the disagreements. Performance
with the fixed-length problems was at ceiling (90% correct)

2701

Figure 2. The percentages of correct algorithms (panel a) and the
response times in s (panel b) for the indefinite-length problems as a
function of the sort of rearrangement, and whether they occurred in
the first or second block of trials.

and much better than the indefinite-length problems (52%
correct; Wilcoxon test, z = 3.5, p = .0004; Cliff’s δ = .64).
Figure 2 accordingly shows only the performance for the
indefinite-length problems, and the Appendix provides
examples of participants’ correct algorithms. The three sorts
of rearrangement yielded the predicted trend in accuracy
and in the time to respond (see Appendix; Page’s trend tests,
zs > 3.08, ps < .002). Likewise, the participants used many
more while-loops (74% of correct solutions) than for-loops
(26% of correct solutions) for indefinite-length problems.
The use of while-loops correlated with accuracy (r = .32, p
< .0005), whereas the use of for-loops did not (r = .14, p =
.10). The differences in ability were striking: the best
participant created a correct algorithm for every problem,
whereas the worst did so for only a third of the fixed-length
problems and for none of the indefinite-length problems.

General Discussion
The ability to create algorithms might seem to be a case

of competence in pure mathematics with little relation to
everyday life. Problems in rearranging cars in toy trains may
similarly seem remote from the exigencies of daily life.
However, algorithmic thinking is regularly called for, e.g.,
in laying place settings on a table, in determining kinship
relations, in following a recipe or a set of instructions. Other
sorts of algorithmic thinking are needed to determine the
consequences of knitting patterns, instructions for kits,
maintenance manuals, and, above all, algorithms in
computer programs.

Algorithmic thinking is easier when you can manipulate
an external environment and solve a problem using only
partial means-ends analysis, i.e., you can use the railway
environment and solve a rearrangement of the cars in a train,
one car at a time (Experiment 1). But suppose that your task
is to devise an algorithm for the general problem of sorting
cars in this way – so that cars in odd-numbered positions
precede cars in even-numbered positions. The algorithm for
this task is not obvious. According to the present theory, the
way that you carry it out is to make another simulation so
that you can figure out what is going on. You should then

notice that there is a loop of two operations (move one car
to the right, and then one car onto the siding) that has to be
repeated while more than two cars remain on the left track.
It follows that while-loops should occur more often than
for-loops in putative algorithms, because it is easier to
envisage halting conditions for while-loops from
simulations than to use them to compute the number of
iterations for a for-loop. The difficulty of the task also
depends on the Kolmogorov complexity of the program, as
indexed in the number of its instructions (in Lisp or in
everyday language), and on the number of operands
(Experiment 2).

Computer scientists often complain about the lack of any
valid test of the likely ability of naive individuals as
computer programmers (e.g., Bornat, Dehnadi, & Simon,
2008). The rearrangement problems in our experiments
may provide the basis for such a test. At the very least, we
now know that individuals differ reliably in their ability
both to solve problems in the railway domain (Experiment
1), and to formulate informal algorithms for their solutions
(Experiment 2). The question remains as to whether such
tasks are reliable predictors of ability. Mathematicians,
logicians, and computer programmers, learn to reason about
the repeated loops of operations that are needed in recursive
functions. Previous studies have examined how novice
programmers cope with such reasoning in trying to specify
algorithms in a programming language (see, e.g., Anderson
& Jeffries, 1985). Our studies have shown that naive
individuals with no training in computer programming are
able to make simulation-based deductions, to solve
rearrangement problems, and even to abduce informal
algorithms for their general solution.

The evidence we have reported corroborated the theory
based on mental models. To the best of our knowledge, no
other theory of naïve algorithmic creativity exists. But, a
theory could be developed in principle from an
axiomatization of the domain in first-order logic (see, e.g.,
McCarthy & Hayes, 1969; McCarthy, 1986; Rips, 1994). A
typical axiom would capture the effects of a move, e.g.:

For any x, y, if x is a car & y is a train & z is a train
& y is on right track & z is on left track & x is at
the front of y & R 1 is carried out then x is at back
of z & not (x is at front of y).

No one has proposed such an account, and so it is not yet
possible to pit it against the model-based theory. But, we
cannot rule it out, and remark only that the approach runs
into difficulties. Our participants’ think-aloud protocols
raise problems for it, because they report moving cars
around in a mental simulation of the railway environment.
Likewise, their reliance on simulations predicts their use of
while-loops in algorithms, because simulations yield the
halting conditions for while-loops more readily than the
number of iterations for for-loops. These results seem
difficult, if not impossible, to explain without recourse to
the use of mental simulations.

Indefinite first Indefinite last

0.00

0.25

0.50

0.75

1.00

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

%
 C

or
re

ct

a.

Indefinite first Indefinite last

0

100

200

300

400

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

R
es

po
ns

e
tim

e
(in

 s
)

b.

2702

Acknowledgements
This research was supported by a National Science
Foundation Graduate Research Fellowship to SSK and by
NSF Grant No. SES 0844851 to PJL to study deductive and
probabilistic reasoning. We are grateful to Monica
Bucciarelli, Sam Glucksberg, Adele Goldberg, Geoffrey
Goodwin, Louis Lee, David Lobina, Max Lotstein, Robert
Mackiewicz, Paula Rubio, and Carlos Santamaria, for their
helpful comments and criticisms.

References
Anderson, J.R., & Jeffries, R. (1985). Novice Lisp Errors: Undetected

losses of information from working memory. Human-Computer
Interaction, 1, 107-131.

Anderson, J. R., Pirolli, P., & Farrell, R. (1988). Learning to program
recursive functions. In M. Chi, R. Glaser, & M. Farr (Eds.), The
nature of expertise (pp. 153-183). Hillsdale, NJ: Erlbaum.

Boehm-Davis, D., & Ross, L. (1992). Program design methodologies
and the software development process. International Journal of
Man-Machine Studies, 36, 1-19.

Bornat, R., Dehnadi, S., & Simon (2008). Mental models, consistency
and programming aptitude. Proceedings of the Tenth conference on
Australasian Computing Education Conference, 10, 53–61.

Caspersen, M.E., Bennedsen, J., & Larsen, K.D. (2007). Mental
models and programming aptitude. ACM SIGCSE Bulletin, 39.

Corballis, M. (2011). The recursive mind. Princeton: Princeton
University Press.

Craik, K. (1943). The Nature of Explanation. Cambridge, UK:
Cambridge University Press.

Gulwani, S. (2010). Dimensions in program synthesis. In Proceedings
of the 12th International ACM SIGPLAN Conference. Hagenberg,
Austria.

Halford, G.S., Wilson, W.H., & Phillips, S. (1998). Processing
capacity defined by relational complexity: Implications for

comparative, developmental, and cognitive psychology. Behavioral
and Brain Sciences, 21, 803-865.

Hegarty, M. (2004). Mechanical reasoning as mental simulation.
Trends in Cognitive Sciences, 8, 280-285.

Holt, R.W., Boehm-Davis, D., & Schultz, A. (1987). Mental
representations of programs for students and professional
programmers. In Empirical Studies of Programmers: Second
Workshop (pp. 33-46). Ablex Publishing Corp.

Johnson-Laird, P.N. (1983). Mental models. Cambridge: Cambridge
University Press.

Khemlani, S., & Johnson-Laird, P.N. (2012). Theories of the
syllogism: A meta-analysis. Psychological Bulletin, 138.

Kitzelmann, E., Schmidt, U., Mühlpfordt, M., & Wysotzki, F. (2002).
Inductive synthesis of functional programs. In Calmet, J.,
Benhamou, B., et al. (Eds.) Artificial Intelligence, Automated
Reasoning, and Symbolic Computation. New York: Springer.

Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of
recursive LOGO programs. Journal of Educational Computing
Research, 1, 235-244.

Miller, L. (1974). Programming by non-programmers. International
Journal of Man-Machine Studies, 6, 237-260.

Miller, L. (1981). National language programming: Styles, strategies,
and contrasts. IBM Systems Journal, 20, 184-215.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA:
Harvard University Press.

Newell, A., & Simon, H.A. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

Oaksford, M., & Chater, N. (2007). Bayesian rationality. Oxford:
Oxford University Press.

Pane, J.F., Ratanamahatana, C.A., & Myers, B.A. (2001). Studying the
language and structure in non-programmers’ solutions to
programming problems. International Journal of Human-Computer
Studies, 54, 237-264.

Rips, L.J. (1994). The psychology of proof. Cambridge, MA: MIT
Press.

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity,
and Bayesian inference. Behavioral and Brain Sciences, 24.

Appendix. Natural language solutions (as outputted by the computer program for abducing them) to three sorts of general
problem: reversals, palindromes, and parity sorts, and examples of correct algorithms created by participants; and the
percentage of participants’ algorithms that correctly solved the given problems in Experiment 2.

Problem Automatically generated algorithms Examples of correct algorithms % Correct

Reversal

1 Move one less than the cars to siding.
2 While there are > zero cars on siding
3 ...move one car to right track
4 ...move one car to left track.
5 Move one car to right track.

“i'll move everything in the side track. then
i'll move each letter back onto the left track
and then to the right track.” (Participant 14) 90%

Palindrome

1 Move one less than half the cars to siding.
2 While there are > two cars on left track
3 ...move two cars to right track
4 ...move one car to left track.
5 Move two cars to right track

“step1: cut the train into half, move the right
half to siding
step2: for both half trains on the left and
siding track, move a pair of carts of the
same letter to the right. Continue doing so
until all the carts are on the right track.”
(Participant 1)

68%

Parity sort

1 While there are > two cars on left track
2 ...move one car to right track
3 ...move one car to siding.
4 Move one car to right track.
5 Move one less than half the cars to left
track

6 Move half the cars to right track

“Move the rightmost car to the right track,
and move the next car to the side track.
Continue alternating between right track
and side track until the left track is empty.
Then move all cars from the side track to
the left track, and then to the right track.”
(Participant 7)

55%

2703

