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Abstract

Episodic future thinking refers to a human cognitive process
which generates successive predictions of events that are
likely to occur in a cue-specific context in the future. An
emerging view is that semantic memory as well as episodic
memory contributes to this process, but the exact mechanism
remains unclear. We built a computational model that learned
to predict the next event upon a presented event (sequence
prediction model). After learning the statistical structure in the
training sequence, the model was tested for generating
successive self-predictions of events triggered by a cue. The
generated  sequence  of events  captured  some
phenomenological features of patients with semantic
dementia when the semantic system of the model was
damaged. The role of semantics in episodic future thinking
and the usefulness of a sequence prediction model are
discussed.
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Introduction

We can project ourselves into the future despite the fact that
we have never experienced it. The term episodic future
thinking refers to a human ability to envision a plausible
future event in a specific time and place (i.e., a specific
context) (Atance & O’Neill, 2001; Schacter, Addis &
Buckner, 2008). Over the last decade, researchers from
various fields, including psychology, neuropsychology, and
neuroimaging, have investigated episodic future thinking,
focusing mainly on the contribution of episodic memory to
constructing episodic future thought. More recently, data
from patients with semantic dementia have suggested that
semantic memory may also play a role (Irish, Addis, Hodges,
& Piguet, 2012). The current study used a computational
model to investigate the mechanism by which semantic
memory supports episodic future thinking.

Role of Episodic Memory

The role of episodic memory has been suggested in various
studies. For example, some neuroimaging studies have
revealed a common neural network involved in the
remembering of past, and in imagining future events
(Szpunar, Watson, & McDermott, 2007). These data are
consistent with neuropsychological studies with amnesic
patients (e.g., hippocampal amnesia or Alzheimer’s disease)
who showed simultaneous impairments in both
remembering past episodes and imagining future events
(e.g., Irish et al., 2012). Based on these findings, the

constructive episodic simulation hypothesis was proposed,
which assumes that imagining future events requires a
system that can retrieve detailed information stored in
episodic memory and flexibly recombine them into coherent
representations of future events (Schacter, Addis, & Buckner,
2008). Further support for this idea comes from
experimental psychology. For example, both retrieving an
episode and imagining a future event are affected by a
temporal distance factor in the same manner. Specifically,
Addis, Wong, & Schacter (2008) collected both the past
events that participants recalled and the future events they
generated, and classified detailed information in these
outputs as either internal or external. Internal details are
“episodic” information, meaning specific in time and place
and related to the central events (i.e., the main event
described by the participant). In contrast, external details are
not specific in time and place. It was found that, in both
recalling of past episodes and thoughts about future
episodes, internal details lessened as participants were
required to produce farther events from the present in both
directions. This means that as episodic future thinking goes
farther in terms of temporal distance from the present, the
time and place (context) of the generated events deviates
from those of the central events (central topic).

Role of Semantic Memory

More recently, the role of semantic memory in episodic
future thinking has also captured attention (lrish et al., 2012).
D’Argembeau and Mathy (2011) suggest that construction
of episodic future thought typically involves progressive
conversion from general to more specific information such
that access to general knowledge (semantics) precedes
retrieval of time-specific episodic information. In other
words, semantic memory provides a “framework” for
construction of episodic future event representations, and
then episodic information from the past is integrated to form
a coherent and elaborated sequence of future events. A key
support for this idea came from a study with neurological
patients with semantic dementia, characterized by the
progressive and insidious loss of conceptual knowledge
about objects, facts and the meaning of words, yet preserved
non-verbal episodic memory (Irish et al., 2012). Specifically,
Irish et al. (2012) found that although their patients were as
good at remembering past episodes as controls, their
episodic future thoughts lacked internal details. In other
words, the sequence of events they generated did not
maintain the time and place information (context) that was
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cued by an investigator. Note that this was not due to a
difference in task difficulty because Alzheimer’s disease
patients in this study showed simultaneous impairments in
both measures. Thus, this dissociative pattern suggests that
even if episodic memory is relatively intact, loss of
conceptual knowledge has an impact on episodic future
thinking.

Motivated by these findings, we employed a parallel-
distributed processing (PDP) modelling approach to
investigate the mechanism by which semantic memory
contributed to episodic future thinking. As we reviewed
above, human experiments have provided significant
insights, but each has its own limitation: It is relatively
difficult to separate the contribution of episodic memory
from that of semantic memory in healthy controls. Semantic
dementia patients are the best test cases but their verbal
outputs are limited such that it is difficult to probe their
cognitive processing in detail. In contrast, computational
modelling provides an ideal situation where we can directly
look at the nature of computation/representations in the
model to glean further insights into how semantic memory
supports other cognitive processing (e.g., Woollams,
Joanisse, & Patterson, 2009).

Future Prediction Model

Given there is no computational model for episodic future
thinking in the literature, the initial step is to make some
simplified assumptions so that the target cognition can be
implemented in a computational model. A standard
paradigm to probe episodic future thinking involves a
presentation of a cue such as time/location/object (e.g., next
year’s birthday, or 50" birthday, etc.), and a participant
successively generates cue-specific predictions on what is
likely to happen (e.g., a birthday cake is on a plate in a
dining room — | blow the candle — my friend will pick out
the candle — the friend will cut the cake — the friend will
serve me a cake on a plate, etc.). The nature of this
generation is successive such that the order of these example
sentences cannot be at random. In other words, future
thinking includes at least two aspects - computing cue-
specific information and successively generating future
predictions based on the corresponding previous prediction.
Of course, these two aspects are not enough to account for
the whole episodic future thinking processing. However,
once we assume that episodic future thinking taps at least an
ability to generate successive predictions based on the
corresponding previous prediction upon a time-/location-
/object-specific cue, then there is an existing computational
model by Elman (1990) that we can adopt and modify for
the current purpose. This model was trained for predicting
the next alphabetic letter in an artificial language.
Specifically, the model received a 6-bit binary vector, which
represented one of the alphabetic letters, and the model was
trained for predicting the next 6-bit binary input vector. The
presented sequence was not random, but there was a
statistical structure regarding what was likely to come next
(artificial grammar). The model learned this statistical

structure in the sequence. In later studies, human
participants were trained for the same task and were able to
use their statistical knowledge after training in order to
generate successive predictions about the next letter
following their own previous predictions upon a presented
cue (Perruchet & Amorim, 1992). Returning back to the
current study, it would be possible to assume that a
statistical structure exists even in the event sequence
(episode) within the real world. For example, we reasonably
guess that the next event would be to blow the candle when
a birthday cake is served to the dinner table. Also, we know
that someone will cut cake into pieces before biting into a
whole cake. Thus, there is some statistical structure in the
sequence of events in real world, and our working
hypothesis is that the order of successive cue-specific
predictions in episodic future thinking should be to some
extent constrained by this statistical structure in real world.
Once we assume the similarity between the future prediction
of the next letter in a given language (Elman, 1990) and the
future prediction of the next event in real life, then it is
natural to adopt Elman’s approach for modelling episodic
future thinking (see below in detail). As we admit above,
episodic future thinking is a complex cognitive process, but
this approach is promising to capture at least the two core
characteristics of episodic future thinking mentioned above.

Method

Model Architecture, Tasks, and Representations

Figure 1 shows the architecture of the model. Four
peripheral layers (input layer, output layer, semantic layer,
and recognition layer) were connected bidirectionally
through a single hidden layer. The hidden layer and each of
the five output layers were connected to themselves. The
input layer was sub-divided into five layers, each of which
represented one of the five elements of the current event
(Figure 1). For example, the first layer represented the
context information of the current event. If this context layer
was hard-clamped to the binary vector of [1 0 0 0 0 0], then
it meant the current event occurred in Context 1 (e.g.,
school). The remaining four layers represented the
Agent/Action/Object/Instrument of the current event. Thus,
if the whole input layer was hard-clamped to the 18-bit

Output layers (18 units)

Context Agent Action Object Instrument

Semantics
(15 units)

Recognition

(1 unit) Hldden Iayer (80 unlts)

d-;II

Context Agent Action Object Instrument

Input layers (18 units)

Figure 1: The architecture of the model (Hinton diagram).
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Table 1: Sequence structure of the training set.

context other information
sequence CONteX aitery PrEdictabilit pattern . predictability
p agent action object instrumen  with  without
label i context context
event (1) 010 100 010 100 17 83
eve:nt(2) 1 100000 constant 100 010 001 100 or
’ 100%
event (i) 010 001 010 010 ’
event (i + 1) 001 010 001 010 33’50’6~45%
: 6 000001 constant or
event (j) 100 100 100 010 100%
event (j + 1) 001 001 001 001
event (j + 2) 3 001000 constant 010 010 100 100 100%

vector of [(Context) 0 1 000 0 (Agent) 1 00 (Action) 001
(Object) 1 0 0 (Instrument) 0 0 1], then the current event
was ‘In Context 2 (e.g., home), Agent 1 (e.g., John) did
Action 3 (e.g., cut) to Object 1 (e.g., cake) with Instrument 3
(e.g., knife)’. The layers in the output side had the same
structure, and when presented with the input pattern of the
current event, the model was trained to activate the units in
the output layer that consisted of the next event (the input
18-bit vector of the next trial). The sequence structure will
be explained later.

Next, the semantic layer consisted of 15 units whose
activation patterns represented the ‘conceptual knowledge’
of the current event (interpretation of the event) in a
distributed manner. Following many parallel-distributed
processing (PDP) models that incorporated a ‘conceptual
knowledge’ system in their models (Woollams et al., 2009),
no attempt was made to design semantic representations that
captured the actual meanings of the input pattern (e.g., input
words, action, event, etc.). Instead, like past models,
artificial semantic representations were created that,
nonetheless, captured core characteristics of the meaning of
an event. Specifically, we assumed that the meaning of an
event would be to some extent related to the action,
instrument, and object information of that event (e.g., not an
arbitrary mapping). Once we hear these pieces of
information, we can guess what happened in that event with
some confidence. In contrast, the meaning of an event
would be less strongly related to information on who
(Agent) did that action. For example, the meaning of cutting
an apple with a knife is invariant irrespective of who did
that action. Next, the context information also constrains the
meaning of the event. We know that certain kinds of events
rarely occur in a certain context. For example, passing a
ball should not occur in a restaurant. Of course, Agent
information would also constrain the meaning of an event
(e.g., we might know that John would never eat an apple),
but to a lesser extent than context/action/object/instrument

information. Taking these assumptions together, we created
the target semantic representations such that the bit-patterns
in the context/action/object/instrument input layers were
systematically related to part of the target vectors in the
semantic layer (i.e., mapping was not completely arbitrary).
Then, when presented with the current event pattern in the
input layer, the network was trained for generating the
correct pattern in the semantic layer in addition to predicting
the next event in the output layer. Irish et al. (2012)
demonstrated that semantic dementia patients were less
accurate than controls for ‘knowing (semantic)’ non-
personal events over the past/future 10 years. Thus, we
damaged this layer in simulation of the patients’ behaviour.

A recognition trial was occasionally inserted during
training, in which the network was trained for judging
whether the presented event pattern had been experienced
before or not. The single unit in the recognition layer served
to represent the network’s recognition judgment.
Specifically, the input layer was hard-clamped to the value
of an event representation, and then the network was trained
to activate this recognition unit (1.0) if the presented event
representation had appeared (‘old’) before, as part of the
main task. In contrast, the recognition unit should be turned
off (0.0) if the presented episode representation had never
appeared before (‘new’).

Sequence Structure of the Training Set

Sequence Structure of Context Information The sequence
in the main trial was semi-random. Table 1 shows the
structure of the sequence. First, as the left half of Table 1
shows, the context information (i.e., first 6-bit of the 18-bit
input vector) was kept constant for several successive events
in order to mimic the real world, where we experience
successive events in the same context then move to another
one. By presenting the first 6-bit information in this way, we
can more safely argue that this 6-bit information represents
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the context information of an event. Thus, the predictability
of the next context information was 100% in most trials
unless it was the boundary of a context-block. After several
events, the context information changed into another context
semi-randomly (33%-50% predictability).

Sequence Structure of Agent/Action/Object/Instrument
Information The sequence of the remaining 12-bit
information of an event was also semi random. There were
81 possible input patterns, formed by crossing 3 (Agent) by
3 (Action) by 3 (Object) by 3 (Instrument). When the
context information was not considered, the predictability of
the next event (i.e., next agent/action/object/instrument
information) varied from 4% to 45% depending on a trial.
When the context was considered together, the predictability
increased such that it varied from 33% to 100% depending
on a trial. We implemented the constraint from context
information to mimic the real world. For example, it is more
difficult to predict what will happen if we see a ball
bouncing at a restaurant, but it is less difficult to predict at a
park.

Recognition Trials After every nine trials for event
prediction (and simultaneous computation of meaning), six
trials were inserted to train the model for event recognition.
The network received a 18-bit input pattern, and was
required to judge whether or not this pattern had been
presented before as part of the main task by
activating/deactivating the recognition unit. In order not to
bias the network’s response, ‘old’ and ‘new’ trials were
evenly distributed (3 trials, each) within each recognition
block. The ‘old’ events were randomly sampled from the
main training trials that the network had experienced during
event prediction. The ‘new’ event-set was created in the
following steps. First, when we had created the sequence of
the main trials, we had ensured that not all the 81 possible
input patterns (formed by combining agent, object, action, &

instrument) appeared in every one of the 6 possible contexts.

Specifically, in each context, 20-27 possible combination of
agent/object/action/instrument  information had  been
randomly sampled and removed from the training set such
that these patterns never appeared in that particular context
during the main task. These pre-removed patterns served as
‘new’ events. To be clear, it was possible that these patterns
appeared in another context. For example, the network
might have received the 18-bit vector of [100000, 100,
100,100,100 (comma denotes the boundary of layers)]
but not received that of [010000,100,100,100,10
0]. Then, the network would have to activate the recognition
unit when presented with the former pattern but would have
to deactivate the same unit in the case of the latter. Thus, the
network was trained for recognition of a particular event

involving a particular context/agent/object/action/instrument.

We also ensured that not all the possible ‘old’ trials and
‘new’ trials were presented during training, such that we
were able to probe the generalization performance of the
network to the untrained ‘old’/’new’ patterns.
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Figure 2: Learning curves for event prediction, recognition
of trained-items, and recognition of untrained-items.

Training Parameters

In each trial, 18 units in the input layer were hard-clamped
to their input values, and the network was allowed to cycle
10 times. In each time step, the activation spread to the next
layer gradually being scaled by the values of the
interconnecting weights, and the network settled into the
steady state (called as an attractor). After 10 cycles of
updates, the discrepancy between the output activation
patterns (output event layer and semantic layer) generated
by the network and the correct target pattern was calculated,
and the connection strength was adjusted to reduce the
discrepancy. In recognition trials, only the discrepancy in
the recognition unit was considered. A learning rate of 0.01
was set at the beginning of the training. Then, every 10
epochs of training, the learning rate was gradually reduced
by 0.001. A decay parameter was set to 0.0000001 at the
beginning and gradually reduced by 0.00000001 as the
learning rate was reduced. When we evaluated the network’s
performances during/after training, we used a strict criterion
such that the output was scored correct if the discrepancy
was within 0.5 in every unit of the target layer after the 10"
cycle (i.e., the activation is less/more than 0.5 if the target is
0.0/1,0. for each unit respectively).

Results

Trained Tasks

Figure 2 shows the learning curves for the event prediction
task and the recognition task averaged across 10
independent simulations (initiated with different random
seeds). The network successfully learned to predict the next
event, thus acquiring the statistical structure which existed
in the event sequence as well as recognizing the presented
event pattern, which was generalized to untrained items.
Accuracy for computing the meaning of an event quickly
reached 100% after the training was initiated.
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Episodic Future Thinking

As explained in the introduction, the current model focused
to capture at least the ability to compute cue-specific events
successively following its own previous event prediction, a
core characteristic of episodic future thinking. Thus, we first
presented cues (e.g., Context = home, Agent = john, Action
= cut, Object = cake, Instrument = knife). Then, once the
network generated an output (i.e., prediction of next event),
we presented this output vector pattern as the input of the
next event, and the network generated the next output
(prediction of the next event following its own prediction,
see Botvinick & Plaut, 2004, for the same approach in
action learning). This cycle was reiterated 1000 times, and
the generated 1000-event sequence was regarded as an
approximation of the network’s episodic future thinking. As
a result, the network successfully kept the presented context
information (Context 1) constant for the first 829 events
(average of 10 simulations), but lost this context
information after this point.

Simulation of Semantic Dementia

Following past simulations on semantic cognition, we
simulated the episodic future thinking of patients with
semantic dementia by removing some of the links between
the semantic layer and the hidden layer (e.g., Woollams et
al., 2009). Figure 3 shows how long (how many successive
events) the network maintained the cued-context
information as a function of disease severity (in terms of the
proportion of links removed). This ‘lesioning’ simulation
was reiterated 50 times with different links being sampled
and removed, and the outcomes were averaged in order to
avoid an idiosyncratic result. We found that, as the damage
became more severe, the network was increasingly unable to
maintain the event sequence of the cued-context (NB., The
intact model kept the context for 829 events). Thus, future
thinking deviated into another context/topic. Moreover, the
proportion of the links removed was negatively correlated
with the number of event predictions that maintained the
cued-context [r(17) = .-75, p < .01], suggesting that
semantics had a causal role in generating a coherent episode
in future thinking. Importantly, event recognition accuracy
was intact (more than 95% accurate) after this lesioning. All
of these are consistent with the data from semantic dementia
patients (Irish et al., 2012).

Discussion

The current model successfully acquired the statistical
structure within the training set, and used this knowledge to
generate a context-coherent sequence of events triggered by
cues (episodic future thinking). Moreover, when the
computation of semantic knowledge was impaired, the
model could not generate a context-coherent event sequence,
yet preserved its recognition ability of event patterns.
Importantly, the number of the events generated in a specific
context was negatively correlated with the severity of
damage, suggesting the causal role of semantics in episodic
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Figure 3: Numbers of successive events in which the
network maintained the cued-context information as a
function of disease severity.

future thinking (lIrish et al., 2012). This is consistent with
the idea that the semantic system provides the framework of
the event (D’ Argembeau & Mathy, 2011).

How does the semantic system affect the maintenance of
context-coherent event sequences? This can be explained in
terms of one of the general principles of PDP models.
During training, a PDP network finds a unique attractor state
(= unique abstract pattern in the hidden layer) associated
with each of the input patterns. Once an input value is fed
into the model, the activation gradually spreads, and the
internal activity of the hidden layer gradually settles onto
this unique status, as if it is falling into its unique attractor
basin. They are unique, but similar inputs are associated
with similar attractor basins. In the current model, the input
patterns that share the same context information will fall
into similar/neighbouring attractors, thus producing the
same context output information to keep a context-coherent
episode. However, if the internal representation of the model
changes due to an impaired computation at some part of the
model, then the network may settle into a wrong attractor
basin, generating a wrong output. The diagnostic analysis
suggests that this is certainly the case in our model.
Specifically, we presented six events in different contexts to
the network, and the activation pattern in the hidden layer
on which the network settled was measured with/without
semantics. Figure 4 shows the similarity structure of these
patterns found by a multi-dimensional scaling analysis. With
the intact semantic information (filled-markers), the network
settles onto the context-specific attractor basins such that the
network does not confuse one context with another.
However, when the semantic system was damaged (open-
markers), the network’s internal status drifted away from its
correct attractor, thus generating a different/wrong context
representation (e.g., The open-circle is closer to the filled-
diamond rather than filled-circle). In other words, semantic
representations contribute to “binding” a time-varying event
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Context 2 - with semantics
Cortext 3 - with semantics
Cortext 4 - with semantics
Context 5 - with semantics
Corntext 6 - with semantics
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Figure 4: The similarity structure in the activation patterns
of the hidden layer as a function of the input context
information and of with/without semantics.

sequence such that it forms a context-coherent episode. One
might describe this as a framework within which episodic
details are integrated (D’Argembeau & Mathy, 2011).
Interestingly, Schapiro et al. (2013) has recently
demonstrated that temporally-close stimuli that form one
coherent event are similarly represented (in terms of voxel-
based neural patterns) in the inferior/superior anterior
temporal lobe and inferior frontal gyrus, both of which are
the damaged areas in semantic dementia patients. Damage
in this area might disrupt in computation of such similar
neural patterns, and bound stimuli might fall apart.

Then, the question is why collapsed semantic knowledge
has little effect on episodic recognition accuracy, as was
demonstrate in this model as well as in patients with
semantic dementia (Irish et al., 2008). This is because
recognition of a particular event is both context-specific and
agent/action/object/instrument-specific. In other words, it is
crucial not to confuse a new event with an old one, even if
part of the information contained in that new event is
semantically familiar (e.g., you have ever used that
instrument before and/or have seen the same action
conducted by the same agent, yet in a different context).
Therefore, it is possible that event recognition is not
influenced by degradation of semantic knowledge (or at
least not detected with a standard test).

Admittedly, the ability to generate context-specific event
predictions could be simulated if the modules representing
schemas or scripts were explicitly built-in by a modeller a
priori. However, the model implemented symbolic system
must have assumptions about schematic knowledge
preliminarily (further discussions, Botvinick & Plaut, 2004).
The present sequential model did not have that symbolic
system and developed by learning the statistical structure in
the event sequence. This implies that learning sequential
structure enables the model to compute schema-like
representation (Botvinick & Plaut, 2004), and can capture
the behaviour of semantic dementia patients..

In summary, we have clarified the mechanism by which
semantics contribute to episodic future thinking. The
sequence prediction model (Elman, 1990) is a useful
computational framework that can be extended to an event
sequence triggered by a cue such that it successfully

captures the phenomenological and neuropsychological
features of episodic future thinking. Certainly, this model
does not capture the whole aspects of episodic future
thinking, and in this sense, this is a proto-episodic future
thinking model. In future work, implementation of essential
factors for episodic future thinking is required such as the
concepts of “self” or “temporal distance”.
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