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Abstract

Perceptual decision making is a fundamental cognitive process
widely studied in the behavioural sciences (Gold & Shadlen,
2007; Wang, 2008). We present a novel, biologically plausi-
ble model of visual motion processing and perceptual decision
making, which is independent of the number of choice cate-
gories or alternatives. The implementation is presented in the
form of a large-scale spiking neural circuit consisting of three
main processes: 1) a velocity filter that uses the principle of
oscillator interference to determine the direction and speed of
pattern motion using networks of V1 simple cells; 2) a retino-
topic representation of motion evidence in the middle temporal
area (MT); and 3) competition-less integration of sensory ‘ev-
idence’ over time by a higher-dimensional attractor network in
the lateral intraparietal area (LIP). The mechanisms employed
in 1) and 3) are new. We demonstrate the model by reproducing
behavioral and neural results from classic perceptual decision
making experiments that test the perceived direction of motion
of variable coherence dot kinetograms. Specifically, these re-
sults capture monkey data from two-alternative forced-choice
motion decision tests. We note that without any reconfigura-
tion of the circuit, the implementation can be used to make
decisions among a continuum of alternatives.

Keywords: perceptual decision making, continuous decision
making, motion processing

Introduction
An important function of the mammalian brain is the ability
to make decisions based on sensory input, and to take action
based on these decisions. Organisms are constantly receiv-
ing sensory stimuli from their environment, and in order to
choose sensible actions, they must sense and accumulate data
over time until enough information exists to make a decision.

In this work, we offer two primary contributions in the
computational modelling of a classic perceptual decision test.
First, we take as our modelling starting point the visual in-
tensity signals falling on the retina, from stimuli like those
used in mammalian studies. Second, we show that the struc-
ture of the decision task is not relevant to the structure of the
percept represented in the association cortex, and propose a
novel mechanism to make decisions based on this structure.

A start-to-finish visual motion and perceptual decision
circuit. We simulate the essential components of the pri-
mate motion perception and decision pathway using biologi-
cally plausible techniques at each stage of circuit modelling.
From random-dot motion movies we generate burst signals
known to occur in LGN (spatiotemporal derivatives of im-
age intensity with noise reduced), the model then extracts ve-
locity (direction and speed) information using a recurrently
connected network of V1 simple cells, it then generates maps
of optical flow in MT, and finally it integrates this evidence

in LIP using ann-dimensional integrator from which the
representation of perceived structure emerges, regardless of
task structure. Unlike motion energy models and some re-
lated proposals (Adelson & Bergen, 1985; Rust, Mante, Si-
moncelli, & Movshon, 2006; Simoncelli & Heeger, 1998),
the velocity selection mechanism we describe shows how
recurrently connected spiking neurons can generate the ob-
served spatiotemporal dynamics in V1 simple cells; that is,
we show where the phase evolution of separable and insep-
arable Gabor-like V1 tunings comes from. Also new is our
elimination of divisive normalization in the decoding of inte-
grated vector quantities (Simoncelli & Heeger, 1998), and the
use higher dimensional integration in MT. We are not aware
of any past spiking neural models that include all of these
stages of processing.

Decision making from the temporal integration of struc-
tured percepts. Past work employing integrators to explain
perceptual decision making assumes that scalar evidence is
integrated to a threshold (Wang, 2008). Many separate scalar
integrators are proposed to mutually inhibit one another to ex-
plain more complex tasks (e.g. deciding between two, four,
eight, etc. possible directions of motion). Here, we propose
that a single vector integrator can account for any number of
directions of motion. The concept of vector addition is sim-
ple: when two opposing vectors are added, they cancel; when
two similar ones are added, they reinforce. If the vectors are
time-dependent, then at any point in the time course of the
integration we have the current state of perception (a vec-
tor). Thus, ‘competition’ among alternatives is misleading—
there is no ‘race’ among ‘competing’ choice alternatives, as
is typical of past models (M. E. Mazurek & Shadlen, 2003).
Moreover, the percept vector isindependentof the decision
structure. In other words, the number of alternatives (two
choices,n choices, a continuum) is irrelevant to the evidence
accumulation process. Hence, the DV can be more gener-
ally interpreted as thedecision radius(‘DR’, perhaps) of a
percept vector evolving through integration in a higher di-
mensionalsphererather than a point on a line. The percept
evolves over time as evidence accumulates, eventually cross-
ing adecision surface(‘DS’, perhaps, rather than a decision
threshold) if enough sensory evidence is accumulated. In the
two-alternative forced choice task we use in our simulation,
motion signals are integrated in two dimensions (n = 2) yet
produce a binary decision, without reconfiguration of the cir-
cuit.

Our model suggests that the evidence that is accumulating
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for perceptual decisions is a task-independent,n-dimensional
percept structure(a vector) and not simply a task-dependent,
one-dimensional category value (or decision variable, ‘DV’).
Since the percept structure can be interpreted as any time-
dependent evidence state for any sensory modality, the cir-
cuit could provide a more general approach for the analysis of
integrate-to-threshold processes. It could thus be applicable
to arbitrary decision processes in the brain, of which the mo-
tion evidence domain is only one example. In what follows,
we provide a summary of the theoretical principles support-
ing the model, a description of the model itself, experimental
details and results.

Principles of model design

We use the leaky integrate-and-fire (LIF) neuron as our single
cell model. Theactivityof an LIF neuronai(J) can be thought
of as the steady state firing rate of a neuron under a constant
currentJ and is given by

ai(J) =
[
τre f − τRC ln

(
1−

Jth

J

)]−1

whereJth is the threshold current of the neuron,τre f is the re-
fractory period for the neuron, andτRC is the membrane time
constant for the neuron. To reduce computational demands,
we focus only on instantaneous firing rates, as opposed to the
precise spike time information, using what are known asrate
neurons. It has been shown, however, that the same compu-
tations can be performed with a slight increase in the number
of spiking neurons (Eliasmith & Anderson, 2003). Neurons
in our model are coupled by a model of synaptic dynamics to
give rise to biologically realistic dynamics, and hence empir-
ically constrained timing data.

The general modelling techniques we use for building our
simulation are collectively called theNeural Engineering
Framework(NEF). The NEF is a method for performing large
scale computations using any of a variety of simulated neu-
rons (Eliasmith & Anderson, 2003). The NEF characterizes
the encoding of vector values by populations of spiking neu-
rons, and computation of optimal decoders that allow the ap-
proximation of linear or nonlinear functions between ensem-
bles of neurons. This allows us to perform arbitrary com-
putations on vector or scalar quantities using simulated neu-
rons. The following paragraphs go on to describe our compu-
tational methods and the NEF in more detail.

Vector representation

Many empirical studies of mammals have found that popula-
tions of cortical neurons can encode real-world stimuli (Hebb,
2002). In the NEF, we encode vector-valued stimuli with pop-
ulations of simulated neurons, orensembles.

Encoding over neural populations. Each neuron in an en-
semble is tuned to receive more ionic currentJ when respond-
ing to a certain stimulus vectorei , known as that neuron’s
preferred direction vector, and receive less current the further

away the stimulus vectorx is fromei . So given a vector stim-
ulusx = (x1,x2, ...,xn), we can relate the firing rate of a single
neuron in the ensembleai to the stimulus by

ai(x) = Gi

[
J(x)

]
= Gi

[
αi(ei ∙x)+Jbias

i

]

whereGi is the nonlinear (spiking or non-spiking) function
specific to our neuron model,αi is a gain factor, andJbias

i is a
background bias current.

Decoding by optimal linear estimation. In addition to be-
ing able to encode stimulus values across neural ensembles,
we also would like to be able to recover the original stimu-
lus, given an ensemble’s firing pattern. Using this method,
we can build a representation for arbitrary stimuli with neu-
ral ensembles (Eliasmith & Anderson, 2003). The simplest
way to do this is to make the assumption that the stimulus is
a linear combination of the neural activities, which turns out
to be quite accurate given enough neurons in the representa-
tion (Eliasmith & Anderson, 2003). That is, we assume our
stimulus vector̂x can be represented by

x̂ =
N

∑
i=1

ai di

with N being the number of neurons in the ensemble anddi

being a vector of decoding weights for neuroni. If we know
x, it is possible to find the optimal set of linear decodersd
that minimize the squared error betweenx and x̂. This is a
common problem in linear algebra, and can be solved as fol-
lows:

d = Γ−1v

Γi j = ∑
x

aiaj

v j = ∑
x

ajx .

Solving for the optimal linear decoders,d, allows us to re-
cover an estimate of the original stimulus vector given a neu-
ral ensemble’s activity. As we will see, it also allows us to
directly compute the neural connection weights that perform
a computation between two or more ensembles.

Vector transformation
Now that we have defined a way of encoding and decoding
stimulus values, we can perform computations between neu-
ral ensembles using our encoding and decoding vectors. Sup-
pose we want to have an ensembley encode some function of
the value another ensemble is encoding,x. i.e. y = f (x). We
simply compute the decoders forx as above, only substituting
f (x) for x when computingv j . Then in order to encode our
desired function, we multiply our new functional decoding
weightsd by our encoding weights for populationy, yielding
a new set of weights between the populations that generate
the desired transformation.

ωi j = α j(di ∙ej)
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whereα j is a gain term associated with neuronj. Note that
this technique works well for nonlinear functions as well as
linear ones, as we are in effect projecting into a higher di-
mensional space than our representation, effectively turning a
nonlinear function into one that is linear in the weight space.

Population dynamics

The NEF also defines a way of computing functions de-
fined over time, ordynamicfunctions. Incorporating time-
dependance is important in understanding and modelling neu-
ral responses, since in the real world, neural activity is de-
pendant on time. In general, we describe a linear dynamic
function bydx/dt ≡ ẋ = A(x) + B(u), wherex is the value
currently being represented, andu is an input value from an-
other ensemble.

One useful example of such a function is a two-
dimensional oscillator, defined byA =

(
0 1
−1 0

)
. To have an

ensemble exhibit this behavior, we define arecurrentconnec-
tion from this population to itself as described in Eliasmith
and Anderson (2003). As shown there, it is possible to solve
for the connection weights that allow the ensemble to exhibit
the desired behavior, allowing for the implementation of ar-
bitrary dynamical systems.

Visual motion processing and perceptual
decision making

The circuit we propose has three main information process-
ing stages: 1) a velocity filter that uses the principle of
oscillator interference to determine the direction and speed
of pattern motion using networks of V1 simple cells; 2) a
retinotopic representation of motion evidence in MT; and 3)
competition-less integration of sensory evidence over time by
ann-dimensional vector integrator in LIP. A schematic circuit
diagram is depicted in Figure 1.

Velocity selection using oscillating networks of V1
simple cells

The extraction of direction of motion employs the oscillator
interference (OI) mechanism, depicted in Figure 2. The initial
translational motion of an edge in a local region of the visual
field is encoded in a burst signal att = t0 (φ = 0) to simulate
LGN output. The signal is filtered through an input filter to
control the initial phase of the oscillator. The input drives the
rotation of the neurally represented state,x(t) = (r(t),φ(t)),
through a progression of Gabor phase angles in the counter-
clockwise direction, with a rotation period intrinsic to the os-
cillator. Damping effects cause the neural representation of
x(t) to return quickly to zero without further input. Subse-
quent input bursts at timesti add vectorially to, and thusin-
terferewith, x(t). Constructive interference increases||x(t)||
while destructive interference decreases it. Thus, if the di-
rection and speed of the edge transiting the input gate of the
neural oscillator are sufficiently close to the magnitude and
phase ofx(t), a resonance response occurs andx(t) sustains
its magnitude and rotation. High responses from neurons

Figure 1: Unit circuit schematic for perceptual decision
circuit. This figure details the circuit associated with each
small patch of the visual field indexed byi. These units are
repeated for each preferred direction,θ. Each cluster of cir-
cles shown is a neural ensemble withN LIF neurons. Index
d is the dimensionality of the decoded quantity encoded by
the ensemble.T is the period of the natural (undamped) fre-
quency of the oscillator. Each MT ensemble pools the activi-
ties of several V1 ensembles with the sameθ andT; likewise
for LIP pooling of MT. The LIP ensemble is ann-dimensional
integrator whose activity represents the direction of motion
vectorthat emerges as motion evidence accumulates from all
directions. In these simulations,n = 2 as we are testing for
the perceived direction of motion in a plane.

tuned to states later in the period indicate strong velocity (di-
rection and speed) correlation for all earlier phase times after
t0. Summation of the activities of the late-phase neurons from
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Figure 2: Velocity selection mechanism based on oscilla-
tor interference (OI). The velocity filter is an array of recur-
rently connected ensembles of direction selective V1 simple
cells. The connection weights are determined using the NEF
to endow the ensemble with oscillatory phase sensitivity and
thusspeedselectivity. The systemstatehas components of
magnitude and phase,x(t) = (r(t),φ(t)). The initial (rest)
state isx(t) = (0,0). 1 An initial burst signal from the LGN
is triggered by the translational motion of an edge in the re-
ceptive field, shown as a bar moving to the right inside the
dotted circle, overlapping the input filter.x(t) begins to in-
crease in magnitude and rotate through the phase angles.2
Further input bursts at timest1 to t4 interfereconstructively
with the system state only ifx(t) ≈ x(ti). 3 The activity of
neurons tuned to phases late in the period will be high only
if correlation with visual input is similar earlier in the cycle.
The late-phase activities drive an associated direction vector
representation in MT. Other V1 oscillators associated with
the same patch but tuned to different directions contribute a
weight proportional to the component of motion velocity in
their preferred direction (bottom, grey arrows).

the oscillator produce a scalar weight of an associated vector
represented in a retinotopic field of motion evidence in area
MT. This is a generic mechanism that captures motion infor-
mation from any visual input.

Motion evidence map in MT
Figure 3 shows time snapshots of sample velocity maps rep-
resented in MT. These are depictions of the stimulus motion

Figure 3:Retinotopic velocity maps in MT.Samples of vec-
tor read-out (optical flow) maps in MT for a 7×7 array of
receptive fields for timest = 100,120,140 ms after stimulus
input. The response latency was 50-65 ms. Stimulus coher-
ence levels are categorized by column. For all coherence lev-
els, the stimulus produces a distribution of motion responses.
The target direction is not obvious from inspection and re-
quires temporal integration.

in the visual field for any number of directions (for clarity we
depict eight directions) at the given times. Each point in the
7x7 array represents the centre of a patch that is the domain
of visual signal input to each unit circuit. The scalar output
of each V1 oscillator provides the weight of an associated ve-
locity for a given patch in the field. It should be stressed here
that no task-dependent categorization of the motion field is
imposed.

For complex pattern motion like variable coherence dots,
even at high coherence levels (50-100%), the wide distribu-
tion of velocity response maps provides an indication as to
why temporal integration is required for the biased direction
to emerge.

Higher dimensional vector integration in LIP
An important contribution of the model is its employment of
a higher-dimensional vector integrator. The linear dynamical
equation is

ẋ = Ax+Bu(t)

whereA= 0, B= I (the identity matrix), andu(t) is the input
evidence. Using the NEF we can determine that the recurrent
matrix for neurons to implement this dynamical system is

ωi j = α j di(A+ I)ej = α j di ej
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wherei and j index the same population of neurons. Because
the NEF is defined for vector representations, these weights
will result in a neural state that represents the integration of
information in the dimensionality ofx (in this caseD = 2).
Multi-dimensional integrators of this sort have been previ-
ously employed in neural models of working memory (Singh
& Eliasmith, 2006), but not for decision making.

Experiment
Model implementation
The neural system simulation package used to implement
the circuit wasNengo, (http://nengo.ca). Table 1 pro-
vides the neurophysiological parameters used. A total of
2.9×105spiking LIF neurons were used. The random-dot mo-
tion movies were generated using thePsychtoolbox-3exten-
sions for MatlabR© (Kleiner, Brainard, & Pelli, 2007; Pelli,
1997; Brainard, 1997). The visual input signal was in the pre-
ferred directions of the associated V1 oscillators. To simulate
thalamic bursting (Butts et al., 2010), temporal derivatives of
spatial overlap between the stimuli and oscillator input filter
were taken at 2-ms pulse widths.

Decision test description
We performed a two-alternative, forced-choice, fixed du-
ration test of 1-second duration, using variable coherence
random-dot motion movies for a single patch. The decision
threshold value was held fixed and was the only parameter
adjusted to fit behavioural data. The length of the percept
state vector, when the average success rate of the circuit was
80%, was used as the decision radius (analogous to the deci-
sion threshold use by Gold and Shadlen for the same test in
monkey trials (Gold & Shadlen, 2007). The coherence level
(motion strength) was lowered progressively, decreasing mo-
tion information and stressing the signal-to-noise ratio resolv-
ing capability of the circuit. For each coherence level 10 tests
were run.

Results
The model was able to determine direction of motion in the
majority of cases down to about 5% coherency (Figure 5), and
showed similar characteristics to data collected from mon-
keys in (Gold & Shadlen, 2007). Particularly, as shown in
Figure 4, neuron responses in area MT stayed relatively con-
stant over time, with certain neurons showing stronger fir-
ing rates when given stronger motion evidence (higher co-
herency). At the same time, neuron responses in area LIP
got stronger over time, particularly when nearing the decision
threshold under medium to high coherency. Additionally, as
shown in Figure 5, the experimental results relating to the
percentage of correct decisions and time taken to make a de-
cision over varying coherency levels were in accordance with
experimental data.

Conclusion
In the TAFC visual decision task we have used to test our
model, we have shown the validity the OI velocity selection

Figure 4: Electrophysiology of MT and LIP neurons dur-
ing the decision task. Recreated from (Gold & Shadlen,
2007).

Figure 5: Psychometric performance.The circuit can dis-
cern motion direction reliably for coherence levels down to
10%, below which it drops to 50% success (random guess)
as motion strength approaches 0. The disparities in reaction
time between our model and the experimental data may be
attributable to motor reaction time and other behavioural fac-
tors for which we do not account. Monkey data plots recre-
ated from (Gold & Shadlen, 2007).
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Ensemble parameters Model Value Biological Value Reference
V1 RC constant(τRC) 20 10-20 (Shadlen & Newsome, 1994)

Post-synaptic constant(τpsc) 5.0 ∼6.6 (Faber & Korn, 1980)
Abs refractory period(τre f) 2 1† (Friedman-Hill, Maldonado, & Gray, 2000)
Max firing rate 100-250 ∼ 70-100 (Carandini & Ferster, 2000)

MT RC constant(τRC) 20 10-20 (McCormick, Barry W. Connors, & Prince, 1985)
Post-synaptic constant(τpsc) 5.0 ∼6.6 (Faber & Korn, 1980)
Abs refractory period(τre f) 5 1†† –
Max firing rate 100 100-200 (Felleman & Kaas, 1984)

LIP RC constant(τRC) 20 – –
Post-synaptic constant(τpsc) 5.0 – –
Abs refractory period(τre f) 5 – –
Max firing rate 70 70 (Gold & Shadlen, 2007)

Table 1:Neurophysiological parameters used.† = value based on a model estimate. †† = using V1 value. (– ) = not available.

mechanism and the effectiveness of integrating a percept vec-
tor over time, without any consideration of the number of
choice alternatives. The percept vector evolved over time,
toward the left or right direction in two dimensions, produc-
ing a binary decision. This was due to the nature of the in-
put, the sensory processing and integration mechanisms, and
not any imposed task structure. Since the OI mechanism is
isometric in the visual plane, identical results would result
from forced choice tasks in any direction. We have tested
the same model with additional forced-choice options (e.g.
4 and 8), and it performs similarly well (results not shown).
Predictably, fewer choice alternatives lead to faster decisions,
since the minimum detectable difference in signal level be-
tween two alternatives is greater than if that same magnitude
were distributed among 8 alternatives.

It is natural for us to consider the percept vector and its
temporal integration to a DS in much higher dimensions. The
approach we have presented here can likely be applied to
higher order sensory or non-sensory decision making that re-
quires integration of evidence over time.
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