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Abstract

Perceptual decision making is a fundamental cognitive process
widely studied in the behavioural sciences (Gold & Shadlen,
2007; Wang, 2008). We present a novel, biologically plausi-
ble model of visual motion processing and perceptual decision
making, which is independent of the number of choice cate-
gories or alternatives. The implementation is presented in the
form of a large-scale spiking neural circuit consisting of three
main processes: 1) a velocity filter that uses the principle of
oscillator interference to determine the direction and speed of
pattern motion using networks of V1 simple cells; 2) a retino-
topic representation of motion evidence in the middle temporal
area (MT); and 3) competition-less integration of sensory ‘ev-
idence’ over time by a higher-dimensional attractor network in
the lateral intraparietal area (LIP). The mechanisms employed
in 1) and 3) are new. We demonstrate the model by reproducing
behavioral and neural results from classic perceptual decision
making experiments that test the perceived direction of motion
of variable coherence dot kinetograms. Specifically, these re-
sults capture monkey data from two-alternative forced-choice
motion decision tests. We note that without any reconfigura-
tion of the circuit, the implementation can be used to make
decisions among a continuum of alternatives.
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in LIP using ann-dimensional integrator from which the
representation of perceived structure emerges, regardless of
task structure. Unlike motion energy models and some re-
lated proposals (Adelson & Bergen, 1985; Rust, Mante, Si-
moncelli, & Movshon, 2006; Simoncelli & Heeger, 1998),
the velocity selection mechanism we describe shows how
recurrently connected spiking neurons can generate the ob-
served spatiotemporal dynamics in V1 simple cells; that is,
we show where the phase evolution of separable and insep-
arable Gabor-like V1 tunings comes from. Also new is our
elimination of divisive normalization in the decoding of inte-
grated vector quantities (Simoncelli & Heeger, 1998), and the
use higher dimensional integration in MT. We are not aware
of any past spiking neural models that include all of these
stages of processing.

Decision making from the temporal integration of struc-
tured percepts. Past work employing integrators to explain
perceptual decision making assumes that scalar evidence is
integrated to a threshold (Wang, 2008). Many separate scalar
integrators are proposed to mutually inhibit one another to ex-
plain more complex tasks (e.g. deciding between two, four,
eight, etc. possible directions of motion). Here, we propose

An important function of the mammalian brain is the ability that a single vector integrator can account for any number of
to make decisions based on sensory input, and to take actighrections of motion. The concept of vector addition is sim-
based on these decisions. Organisms are constantly recef!®: When two opposing vectors are added, they cancel; when
ing sensory stimuli from their environment, and in order to W0 similar ones are added, they reinforce. If the vectors are
choose sensible actions, they must sense and accumulate difae-dependent, then at any point in the time course of the
over time until enough information exists to make a decisionintégration we have the current state of perception (a vec-
In this work, we offer two primary contributions in the Or). Thus, ‘competition’ among alternatives is misleading—
computational modelling of a classic perceptual decision testN€re is no ‘race’ among ‘competing’ choice alternatives, as
First, we take as our modelling starting point the visual in-1S typical of past models (M. E. Mazurek & Shadlen, 2003).
tensity signals falling on the retina, from stimuli like those Moreover, the percept vector isdependentf the decision

used in mammalian studies. Second, we show that the struglructure. In other words, the number of alternatives (two
ture of the decision task is not relevant to the structure of th&hoicesn choices, a continuum) is irrelevant to the evidence
percept represented in the association cortex, and proposefgcumulation process. Hence, the DV can be more gener-

novel mechanism to make decisions based on this structure@lly interpreted as thelecision radius(DR’, perhaps) of a
percept vector evolving through integration in a higher di-

A start-to-finish visual motion and perceptual decision mensionalsphererather than a point on a line. The percept
circuit. We simulate the essential components of the pri-eyglves over time as evidence accumulates, eventually cross-
mate motion perception and decision pathway using biologimg adecision surfac€'DS’, perhaps, rather than a decision
cally plausible techniques at each stage of circuit modellingihreshold) if enough sensory evidence is accumulated. In the
From random-dot motion movies we generate burst signalgyo-aiternative forced choice task we use in our simulation,
known to occur in LGN (spatiotemporal derivatives of im- motion signals are integrated in two dimensions=(2) yet

age intensity with noise reduced), the model then extracts Vésroduce a binary decision, without reconfiguration of the cir-
locity (direction and speed) information using a recurrentlygit.

connected network of V1 simple cells, it then generates maps oyr model suggests that the evidence that is accumulating
of optical flow in MT, and finally it integrates this evidence

2590



for perceptual decisions is a task-independestimensional  away the stimulus vectoris frome. So given a vector stim-
percept structuréa vector) and not simply a task-dependent,ulusx = (X1, X2, ..., X»), we can relate the firing rate of a single
one-dimensional category value (or decision variable, ‘DV’).neuron in the ensembég to the stimulus by

Since the percept structure can be interpreted as any time-

dependent evidence state for any sensory modality, the cir- a(x) =G {J(x)} =G [ai(a -X) 4 Jpias

cuit could provide a more general approach for the analysis of

integrate-to-threshold processes. It could thus be applicabMhereG; is the nonlinear (spiking or non-spiking) function
to arbitrary decision processes in the brain, of which the mospecific to our neuron mode; is a gain factor, and®®s is a
tion evidence domain is only one example. In what follows,background bias current.

we provide a summary of the theoretical principles support-

ing the model, a description of the model itself, experimentalDeCOdIng by optimal I_|near estimation. I addition to be-
details and results. Ing able to encode stimulus values across neural ensembles,

we also would like to be able to recover the original stimu-
lus, given an ensemble’s firing pattern. Using this method,
we can build a representation for arbitrary stimuli with neu-
We use the leaky integrate-and-fire (LIF) neuron as our singleal ensembles (Eliasmith & Anderson, 2003). The simplest
cell model. Theactivity of an LIF neurorg;(J) can be thought  way to do this is to make the assumption that the stimulus is
of as the steady state firing rate of a neuron under a constaatlinear combination of the neural activities, which turns out

Principles of model design

currentd and is given by to be quite accurate given enough neurons in the representa-
) tion (Eliasmith & Anderson, 2003). That is, we assume our
a(d) = {Tref —Treln (1_ @)} stimulus vectok can be represented by
N
whereJy, is the threshold current of the neurapss is the re- X= Zlaa di
i=

fractory period for the neuron, argc is the membrane time

constant for the neuron. To reduce computational demandgii, N being the number of neurons in the ensemble &nd
we focus only on instantaneous firing rates, as opposed 10 thg,ing 4 vector of decoding weights for neurorf we know
precise spike time information, using what are knowmas it is possible to find the optimal set of linear decoders
neurons It has been shown, however, that the same COMPUhat minimize the squared error betweeand%. This is a

tations can be performed with a slight increase in the numbegy mon problem in linear algebra, and can be solved as fol-
of spiking neurons (Eliasmith & Anderson, 2003). Neuronsqc-

in our model are coupled by a model of synaptic dynamics to d=r-1v

give rise to biologically realistic dynamics, and hence empir-

ically constrained timing data. Fij = z aa;
The general modelling techniques we use for building our X

simulation are collectively called thBleural Engineering Vi = Zajx-

Framework(NEF). The NEF is a method for performing large

scale computations using any of a variety of simulated neuSolving for the optimal linear decoderd, allows us to re-
rons (Eliasmith & Anderson, 2003). The NEF characterizesover an estimate of the original stimulus vector given a neu-
the encoding of vector values by populations of spiking neural ensemble’s activity. As we will see, it also allows us to
rons, and computation of optimal decoders that allow the apelirectly compute the neural connection weights that perform
proximation of linear or nonlinear functions between ensem-a computation between two or more ensembles.

bles of neurons. This allows us to perform arbitrary com- )

putations on vector or scalar quantities using simulated neu\_/ector transformation

rons. The following paragraphs go on to describe our compulNow that we have defined a way of encoding and decoding

tational methods and the NEF in more detail. stimulus values, we can perform computations between neu-
_ ral ensembles using our encoding and decoding vectors. Sup-
Vector representation pose we want to have an ensemyplencode some function of

Many empirical studies of mammals have found that popula'Ehe value another ensemble is encodig,e. y = f(x). We

tions of cortical neurons can encode real-world stimuli (Hebb,Slmply compute the decoders foas above, only substituting

2002). In the NEF, we encode vector-valued stimuli with pop-:;(x), fodr :f Wh?n Comp“t'r;g’il- Then in o;der t.o enlc((j)de ZW
ulations of simulated neurons, ensembles. esired function, we multiply our new functional decoding

weightsd by our encoding weights for populatignyielding

Encoding over neural populations. Each neuroninanen- 3 new set of weights between the populations that generate
semble is tuned to receive more ionic currémthen respond-  the desired transformation.

ing to a certain stimulus vecta;, known as that neuron’s
preferred direction vector, and receive less current the further wij=aj(d-e)
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whereaq is a gain term associated with neurpnNote that variable coherence dots

over entire visual field

this technique works well for nonlinear functions as well as
linear ones, as we are in effect projecting into a higher di-
mensional space than our representation, effectively turning a
nonlinear function into one that is linear in the weight space.

Population dynamics

The NEF also defines a way of computing functions de-
fined over time, odynamicfunctions. Incorporating time-
dependance is important in understanding and modelling neu-
ral responses, since in the real world, neural activity is de-
pendant on time. In general, we describe a linear dynamic
function bydx/dt = X = A(x) + B(u), wherex is the value
currently being represented, ands an input value from an-
other ensemble.

One useful example of such a function is a two-
dimensional oscillator, defined by = (% §). To have an
ensemble exhibit this behavior, we defineaurrentconnec-
tion from this population to itself as described in Eliasmith
and Anderson (2003). As shown there, it is possible to solve
for the connection weights that allow the ensemble to exhibit V1.,
the desired behavior, allowing for the implementation of ar- d=2
bitrary dynamical systems.

burst signals from LGN
(spatiotemporal derivative of input)

' _ motion extraction _!

Visual motion processing and perceptual
decision making MT,. .,

The circuit we propose has three main information process- d=1
ing stages: 1) a velocity filter that uses the principle of

oscillator interference to determine the direction and speed

of pattern motion using networks of V1 simple cells; 2) a

retinotopic representation of motion evidence in MT; and 3) LIP,.o (<),
competition-less integration of sensory evidence over time by d=2 ! gidenes integration. !
ann-dimensional vector integrator in LIP. A schematic circuit
diagram is depicted in Figure 1.

1 _correlation readout s

Velocity selection using oscillating networks of V1
simple cells Figure 1: Unit circuit schematic for perceptual decision

The extraction of direction of motion employs the oscillator circuit. This figure _details_ the_ circuit a_ssociated With each
interference (Ol) mechanism, depicted in Figure 2. The initialsmall patch of the visual field .|nde.xed nyThese units are
translational motion of an edge in a local region of the visuaIere""’[ecj for_ each preferred directi@n, Each cluster of cir-
field is encoded in a burst signaltat to (¢ = 0) to simulate CI?S shown IS a.neur'al ensemble WNFLIF neurons. Index
LGN output. The signal is filtered through an input filter to dis the d|mens!onallty Of. the decoded quantity encoded by
control the initial phase of the oscillator. The input drives thethe ensembleT is the period of the natural (undamped) fre-

rotation of the neurally represented statét) — (r (t), o(t quency of the oscillator. Each MT ensemble pool; thg activi-
yIep ) = (r(t), o(1)), ﬁj_es of several V1 ensembles with the sarendT; likewise

through a progression of Gabor phase angles in the counte LIP i ¢ MT. The LIP blei di ional
clockwise direction, with a rotation period intrinsic to the os- for pooling o - 1he ensemble IS andimensional
ptegrator whose activity represents the direction of motion

cillator. Damping effects cause the neural representation torthat " ” lates f I
X(t) to return quickly to zero without further input. Subse- vectorthat emerges as motion evidence accumuiates tfrom a
directions. In these simulations,= 2 as we are testing for

guent input bursts at timesadd vectorially to, and thum- . L T

terferewith, x(t). Constructive interference increagest)|| the perceived direction of motion in a plane.

while destructive interference decreases it. Thus, if the di-

rection and speed of the edge transiting the input gate of the

neural oscillator are sufficiently close to the magnitude anduned to states later in the period indicate strong velocity (di-
phase of(t), a resonance response occurs &ftd sustains rection and speed) correlation for all earlier phase times after
its magnitude and rotation. High responses from neurong. Summation of the activities of the late-phase neurons from
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2D oscillator
network in V1
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Figure 3:Retinotopic velocity maps in MT. Samples of vec-
i , . , , tor read-out (optical flow) maps in MT for ax#7 array of
Figure 2: Velocity selection mechanism based on oscilla- receptive fields for times—= 100,120,140 ms after stimulus
tor interference (Ol). The velocity filter is an array of recur- input. The response latency was 50-65 ms. Stimulus coher-
rently connected ensembles of direction selective V1 simple,, e |evels are categorized by column. For all coherence lev-

cells. The connection weights are determined using the NEEg the stimulus produces a distribution of motion responses.
to endow the ensemble with oscillatory phase sensitivity angrp,o target direction is not obvious from inspection and re-
thus speedselectivity. The systerstatehas components of quires temporal integration.

magnitude and phase(t) = (r(t),@t)). The initial (rest)

state isx(t) = (0,0). (D An initial burst signal from the LGN

is triggered by the translational motion of an edge in the redin the visual field for any number of directions (for clarity we
ceptive field, shown as a bar moving to the right inside thedepict eight directions) at the given times. Each point in the
dotted circle, overlapping the input filtek(t) begins to in-  7x7 array represents the centre of a patch that is the domain
crease in magnitude and rotate through the phase arfges. of visual signal input to each unit circuit. The scalar output
Further input bursts at times to t4 interfereconstructively  of each V1 oscillator provides the weight of an associated ve-
with the system state only #(t) ~ x(t;). (3) The activity of  locity for a given patch in the field. It should be stressed here
neurons tuned to phases late in the period will be high onlythat no task-dependent categorization of the motion field is
if correlation with visual input is similar earlier in the cycle. imposed.

The late-phase activities drive an associated direction vector For complex pattern motion like variable coherence dots,
representation in MT. Other V1 oscillators associated witheven at high coherence levels (50-100%), the wide distribu-
the same patch but tuned to different directions contribute &éion of velocity response maps provides an indication as to
weight proportional to the component of motion velocity in why temporal integration is required for the biased direction
their preferred direction (bottom, grey arrows). to emerge.

Higher dimensional vector integration in LIP

the oscillator produce a scalar weight of an associated vectgkn important contribution of the model is its employment of

represented in a retinotopic field of motion evidence in area higher-dimensional vector integrator. The linear dynamical
MT. This is a generic mechanism that captures motion inforequation is .
X = Ax+Bu(t)

mation from any visual input.

i ) ) whereA =0, B =1 (the identity matrix), andi(t) is the input
Motion evidence map in MT evidence. Using the NEF we can determine that the recurrent
Figure 3 shows time snapshots of sample velocity maps repnatrix for neurons to implement this dynamical system is
resented in MT. These are depictions of the stimulus motion wij=ajdi(A+1)e = ajdie
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wherei and | index the same population of neurons. Because motion

the NEF is defined for vector representations, these weights 70 moen s‘j“i'; _______ 500
will result in a neural state that represents the integration of i — s b 10.0
information in the dimensionality af (in this caseD = 2). 0 0

Multi-dimensional integrators of this sort have been previ- 60
ously employed in neural models of working memory (Singh
& Eliasmith, 2006), but not for decision making.
50 F
Experiment
M odel implementation

The neural system simulation package used to implement 40 / monkey i model
the circuit wasNengo, (http://nengo.ca). Table 1 pro- LN |

vides the neurophysiological parameters used. A total of \/ £
2.9x1Pspiking LIF neurons were used. The random-dot mo- 30 f

. . . 5| 45
tion movies were generated using tRsychtoolbox-®xten- i — N
sions for Matlal® (Kleiner, Brainard, & Pelli, 2007; Pelli, / MT [ i T
5 L L5

1997; Brainard, 1997). The visual input signal was in the pre- 20 2' 4' — 2' 4' L
ferred directions of the associated V1 oscillators. To simulate 0 ootim:o(mse)oo 800 0 200 400 000 800
thalamic bursting (Butts et al., 2010), temporal derivatives of

spatial overlap between the stimuli and oscillator input fiIterFigure 4: Electrophysiology of MT and LIP neurons dur-
were taken at 2-ms pulse widths. ing the decision task. Recreated from (Gold & Shadlen,
Decision test description 2007).

spikes/s

We performed a two-alternative, forced-choice, fixed du- ! o
ration test of 1-second duration, using variable coherence
random-dot motion movies for a single patch. The decision s 08F
threshold value was held fixed and was the only parameter <
adjusted to fit behavioural data. The length of the percept S
state vector, when the average success rate of the circuit was ® 06F
80%, was used as the decision radius (analogous to the deci- r
sion threshold use by Gold and Shadlen for the same test in 04l pp—u L P
monkey trials (Gold & Shadlen, 2007). The coherence level —— monkey
(motion strength) was lowered progressively, decreasing mo- 900 e model
tion information and stressing the signal-to-noise ratio resolv- 800¢
ing capability of the circuit. For each coherence level 10 tests 200k
were run. -
E 600t

Results E w0l
The model was able to determine direction of motion in the £ ]
majority of cases down to about 5% coherency (Figure 5), and £ 400
showed similar characteristics to data collected from mon- 300}
keys in (Gold & Shadlen, 2007). Particularly, as shown in 200k I
Figure 4, neuron responses in area MT stayed relatively con- I
stant over time, with certain neurons showing stronger fir- wor ) T
ing rates when given stronger motion evidence (higher co- 0_/’ 25 5 10 20 40
herency). At the same time, neuron responses in area LIP motion strength (% coh)

got stronger over time, particularly when nearing the decision
thresho_ld upder medium to h'gh coherency. Add|t|pnally, asFigure 5: Psychometric performance. The circuit can dis-
shown in Figure 5, the experimental results relating to the

o : cern motion direction reliably for coherence levels down to
percentage of correct decisions and time taken to make a de- S
= : . .- 10%, below which it drops to 50% success (random guess)
cision over varying coherency levels were in accordance with i . i :
. as motion strength approaches 0. The disparities in reaction
experimental data.

time between our model and the experimental data may be
Conclusion attributable to motor reaction time and other behavioural fac-

In the TAFC visual decision task we have used to test ouForS for which we do not account. Monkey data plots recre-

model, we have shown the validity the Ol velocity selectionated from (Gold & Shadlen, 2007).
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Ensemble parameters Model Value | Biological Value | Reference
V1 | RC constantTt,.) 20 10-20 (Shadlen & Newsome, 1994)
Post-synaptic constait psc) 5.0 ~6.6 (Faber & Korn, 1980)
Abs refractory periodtef) 2 1f (Friedman-Hill, Maldonado, & Gray, 2000)
Max firing rate 100-250 ~ 70-100 (Carandini & Ferster, 2000)
MT | RC constan{t,.) 20 10-20 (McCormick, Barry W. Connors, & Prince, 1988)
Post-synaptic constaift psc) 5.0 ~6.6 (Faber & Korn, 1980)
Abs refractory periodtef) 5 17t -
Max firing rate 100 100-200 (Felleman & Kaas, 1984)
LIP | RC constan{t,.) 20 - -
Post-synaptic constart psc) 5.0 - -
Abs refractory periodter) 5 - -
Max firing rate 70 70 (Gold & Shadlen, 2007)

Table 1:Neurophysiological parameters usedt = value based on a model estimate. 1 = using V1 value. () = not available.

mechanism and the effectiveness of integrating a percept vec-ties of neurons in middle temporal visual area (MT) of owl
tor over time, without any consideration of the number of monkeys.Journal of Neurophysiolog?2, 488-513.

choice alternatives. The percept vector evolved over timekriedman-Hill, S., Maldonado, P. E., & Gray, C. M. (2000).
toward the left or right direction in two dimensions, produc- Dynamics of striate cortical activity in the alert macaque:
ing a binary decision. This was due to the nature of the in- I. Incidence and stimulus-dependence of gamma-band neu-
put, the sensory processing and integration mechanisms, andronal oscillationsCerebral Cortex10, 1105-1116.

not any imposed task structure. Since the Ol mechanism i§old, J. I., & Shadlen, M. N. (2007). The neural basis of
isometric in the visual plane, identical results would result decision makingAnnual Review of Neuroscien@d, 535-
from forced choice tasks in any direction. We have tested 74.

the same model with additional forced-choice options (e.gHebb, D. O. (2002). The organization of behavior: A neu-
4 and 8), and it performs similarly well (results not shown). ropsychological theory. In (new ed.). Psychology Press.
Predictably, fewer choice alternatives lead to faster decisiongleiner, M., Brainard, D., & Pelli, D. (2007). What's new in
since the minimum detectable difference in signal level be- Psychtoolbox-37Perception36. (ECVP Abstract Supple-
tween two alternatives is greater than if that same magnitude ment)

were distributed among 8 alternatives. McCormick, D. A., Barry W. Connors, J. W. L., & Prince,

It is natural for us to consider the percept vector and its D. A. (1985). Comparative electrophysiology of pyrami-
temporal integration to a DS in much higher dimensions. The dal and sparsely spiny stellate neurons of the neocortex.
approach we have presented here can likely be applied to Journal of Neurophysiologyp4(4).
higher order sensory or non-sensory decision making that reM. E. Mazurek, J. D., J. D. Roitman, & Shadlen, M. N.

quires integration of evidence over time. (2003). A role for neural integrators in perceptual decision
making. Cerebral Cortex3(11).
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