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Abstract

Recognition of motion is vitally important to any animal.
Vision research has proposed a number of algorithms
applicable to action recognition. However, unlike successes in
early visual perception, the past studies have not yet
established the computational theory of action recognition. In
the present study, we employ a dynamical systems approach
and hypothesize that motions are encoded cognitively as a
topological structure abstracted from physical particulars. We
investigated whether a common topological nature could be
found in a type of rhythmic movement. The topological
nature of action dynamics showed a striking similarity, which
could not have been identified with other analyses where
physical properties were retained. The result suggests that the
dynamical perspective serves as a theoretical basis in
studying complex human movements.
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Recognition of Actions

Recognition of motion is vitally important to any animal.
Detection of another animal, whether predator or prey, or a
conspecific, and subsequent detailed identification of the
other and how it may behave is essential to taking any
emergent actions (Johnson, Bolhuis, & Horn, 1985). Not
surprisingly, our visual system is highly specialized to
recognize others’ actions. How do we recognize bodily
movements? Our main focus is that, despite much of the
advances, we still miss a parsimonious explanation of “what
is an action” or a computational theory of actions. The goal
of the present study is, thus, to propose a computational-
theory level description of actions which abstract identities
beyond physical particulars. We briefly review
psychophysical findings and theoretical works on action
recognition.

The past experimental literature has explored the capacity
of motion perception using point-light displays (Johansson,
1973) in which the point-lights attached to major joints are
only visible in the dark background. The available
information is point-wise kinematic motion of multiple
body parts. Despite the limited information, people can
recognize identity (Troje, Westhoff, & Lavrov, 2005),
gender (Kozlowski & Cutting, 1977; Troje, 2002), emotions
(Pollick et al., 2001; Atkinson; 2009; Hobson & Lee, 1999),
dynamics such as the weight of a lifted object (Bingham,
1987) of actions from point-light displays. Accumulating
empirical studies on action perception have suggested that
velocity and its higher order derivatives in single or multiple
body parts characterize actions: duration of action (Pollick
et al., 2001), velocity (DeMeijer, 1989), acceleration (force

or the second order time derivatives) (Chang & Troje, 2008;
2009), jerk or the third order time derivatives (Cook, Saygin,
Swain, & Blakemore, 2009), and pairwise counter-phase
oscillation (Chang & Troje, 2008; 2009).

Consistent with these empirical findings, most of the
theoretical approach employs statistical regularities among
motion profiles (Hidaka, 2012). According to a recent
review (Troje, 2008), perception of biological motion
involves multi-level processing on local and global motion
properties. Feature processing consists of four layers from
early (low-level) to late (high-level) processing: life
detection, structure-from-motion, action recognition, and
style recognition. The system detects an autonomous agent,
and constructs body structure from its detailed analysis, then
is followed by more detailed action analysis.

A couple of models have been proposed for structure-
from-motion and action recognition (Giese & Poggio, 2003;
Lange & Lappe; 2006). In the model of structure-from-
motion and action recognition, the model identifies body
structure, and subsequently recognizes actions from the
pixel-based visualization of point-light displays. In Giese &
Poggio (2003), the model was built based on neuro-
physiological findings in the visual cortex, and was applied
to recognition of action types and action direction in normal,
masked, or scrambled point-light displays.

Despite the accumulated empirical evidence and
theoretical works, its computational level account attributed
to Marr (1982) — a description of function, i.e., set of input-
output pairs in action recognition — is still missing. The two
models above constructed algorithms which recognize a
class of actions or properties of actions through processing
the features of human bodily movements. However, in
general, algorithmic models formalize specific procedures,
but their meaning is not often readily apparent. First, a
complex model typically loses transparency of mechanism
as a cost of generality (For example, multi-layered
physiologically-plausible model, Giese & Poggio, 2003). A
drawback of complex models (using nonlinear filters or
feature decomposition technique) is that the estimated
parameters do not necessarily offer a clear interpretation on
which attributes are informative in the recognition processes.
Second, such a complex model often outperforms human
recognition (Troje, 2002; Davis. & Geo, 2004; Pollick &
Paterson, 2008) rather than explaining it. It is thus dubious
whether those models can explain the action recognition of
human beings.

We are interested in the computational level of action
recognition rather than in the algorithmic level. We study
actions, that is, how our multiple body parts are coordinated
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in performing particular tasks. Our human body consists of
over two hundreds bones, numerous muscles, and billions of
neurons in the central and peripheral nerve systems
controlling them with feedback loops. Obviously, making a
smooth action requires integrated control across all levels of
these interactive systems. Given this complexity in motor
control process, it is unrealistic to compute the inverse
transformation (as supposed in early vision) from end-point
visible actions to its intrinsic motor control patterns.
Therefore, instead of such inverse computation, we
hypothesize that the goal of action recognition is to compute
“dynamical invariances” under smooth transformation. This
hypothesis views motor control underlying human
movements as a set of dynamical systems, that is, a
sequence of interactions between elements involved in
controlling movements such as body joints, muscles, neural
systems, etc. Our hypothesis can be best understood in the
context of the dynamical system perspective on the motor
coordination (Shaw et al., 1996; Turvey, 1998; Smith &
Thelen, 2003). The properties retained in dynamical systems
for long term can be captured with invariant measures such
as attractor dimension or Lyapnov exponent (Kantz &
Schreiber, 1997).

We define a higher dimensional space, i.e., phase space,
within which all possible combinations between elements
involved in controlling movements can be found. An action
is then defined as a trajectory on the space. Trajectories can
be projected onto lower dimensional spaces, e.g., actual
movements observable from outside. In our study, we
collect motion data to reconstruct the dynamical systems by
embedding the time series in a higher dimensional space.
For graphical examples, Figure 1 illustrates attractors, or
the state space which the system may take in the three
theoretical dynamical systems, the Hennon map, Rossler
system, and Lorenz system (Figure 1 (a-1), (a-2), (a-3)). A
univariate time series (as imperfect observation of the
system) is shown in Figure 1 (b) for each of these systems.
Since the original systems live in two or more dimensions,
these univariate time series do not have full information due
to missing dimensions. Thus, we need to “reconstruct” the
phase space instead of studying the degenerated patterns. By
taking the time delay vector (e.g., {x(t), x(t+5)}), the
topological nature of the phase space is reconstructed
(Figure 1c). In Figure 1 (c-1)-(c-3), the time-delay
embedding (a map from low to high dimensional space)
successfully recovers similar topological structure shown in
Figure 1 (a-1)-(a-3) only from the degenerated data Figure 1
(b-1)-(b-3). Although the original phase space is unknown
for empirical bodily movements, we expect the intrinsic
topological nature can be reconstructed in the same way as
the theoretical dynamical systems (Figure 1 (b-4) and (c-4)).
See Kantz and Schreiber (1997) for a detailed description of
these procedures for nonlinear time series analysis.

To study dynamical invariances, we investigated
topological similarities of motor coordination. The rationale
for the approach is found in observations such that one can
mimic other’s behaviors no matter how different their

individual appearances. Topology abstracts over physical
particulars such as distance, speed, etc., to extract some
dynamical invariances independent of these physical
properties. Specifically, we examined the dynamical
properties of rhythmic movements for two main reasons.
First, rhythmic movements are not just a period but with
fluctuating accents, and this is expected to show complexity
to some extent neither too simple nor too complex. Second,
actions which an actor can maintain continuously and
produce a substantial amount of datasets are necessary for
characterization of dynamical invariances.

(a-1) Hennon map (a-2) Rossler System (a-3) Lorenz System (a-4) Body model
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Figure 1: Phase space of (a-1) the Hennon map, (a-2) the
Rossler system, (a-3) Lorenz System, and (a-4) the body
model and attached markers (filled circles: analyzed, open
circles: attached but not reported in this study). (b1-3) A
univariate time series from the original phase space in (al-3)
(b-4) An x-axis phase of the Shaker 1 in the expert player in
the 60-bpm trial (blue circles) with the estimated noise-
reduced time series (black dots). (c1-4) The reconstructed
phase space from the low dimensional observed time series
in (b1-4).

Chacterizing Complex Rhythmic Actions

The data was originally obtained in order to analyze the
levels of expertise in the samba music plays (Yamamoto,
Ishikawa, & Fujinami, 2006; Yamamoto & Fujinami, 2008).
The dataset consists of five players, and each player
performed basic samba shaking actions in five different
tempos (60, 75, 90, 105, and 120 beats per minute, and each
trial lasted 97.4 seconds on average) by being cued with a
metronome. While playing, three dimensional motions of 18
markers, attached on body parts and musical instruments,
were recorded at 86.1Hz of sampling rate (Figure 1a-4). As
well as the original study, here we aim to find the
relationship between dynamical properties among bodily
actions. For simplicity, we limited ourselves to analyze a
subset of the original datasets, 3190 samples (74.1
seconds long) of four markers attached on the right wrist,
right elbow, and two sides of the musical instrument
(shaker), having the right shoulder as a reference point
(Figure 1a-4). These were the essential parts of
the samba actions making sounds directly, and we
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expected that dynamic coordination among them would be
crucial to characterize the dynamical properties of the
samba.
Preprocess and phase space reconstruction

In the analysis, after down-sampling the original data to
46.05 Hz, the first 250 samples (5.81 second long from the
beginning of the recording) were excluded as initial setup of
the actions, and 3250 samples (75.5 second long) of
velocities were analyzed for each subject. In order to reduce
measurement noise, for each movement of the markers, the
local linear projective method was performed after phase
space reconstruction of each time series on the 31
dimensional time delay space with 46 msec (i.e., { t,t+ At, t
+2At, ..., t+ 30At } where At = 46 msec) (Takens, 1981).
This technique is a nonparametric and unsupervised method
which, in principle, reduces observation noise independent
of the time series intrinsically generated from a nonlinear
dynamical system. Figure 1 (b-4) shows the original data
(open circles) and its noise-reduced data (filled circles) after
applying the local linear projective method. Due to
digitalization in the motion capture system, the original data
only takes certain discrete values which may be potential
sources of observational noise in the measurement. As the
result of the noise reduction, we obtained the 31
dimensional phase space of 3220 points for each coordinate
of three dimensional positions of each marker movement in
each subject and trial. An example of the reconstructed
phase space is shown in Figure 1 (c-4).
Estimating symbolic dynamics

For each estimated phase space (Figure 1c-4 and Figure
3), a symbolic dynamic is estimated by the symbolic false
nearest neighbor method (Buhl & Kennel, 2005; See also
Hidaka & Yu, 2010). In this algorithm, a symbolic state is
assigned to each data point in the given phase space by
minimizing the error in the one-to-one correspondence
between spatial nearest neighborhood and symbolic nearest
neighborhood.  After convergence of the iterative
minimization procedure, we obtained the series of binary
symbolic states for the trajectory in the high dimensional
phase space. Each symbolic series of length 5 (e.g., the
subsequence “01100” as a state) is reported as a state in the
present study, but we found the similar results consistently
with the symbol length from 5 to 8. It means that the state
transition in each phase space is analyzed by partitioninig
into 32 (i.e. 2%) distinct states.

Results

In order to see the rhythmic properties as phase shifts in
repeating actions, we analyzed the temporal profiles of the
velocities in the right arm and wrist. Figure 2 shows the
histogram of phase differences between body parts with the
right shoulder as the reference point. Since the right elbow
and wrist are the major body parts playing the shaker, their
temporal structure was expected to reflect the rhythmic
charateristics. However, not as expected, the five musicians
showed quite different distributions in terms of phase shifts
among body parts, even for the right wrist and elbow

movement to play the shakers to the same tempo. The peaks
found for the elbow and wrist are sharp for musicians A and
D, compared with those found in the other musicians. As for
A, the peaks of the elbow and wrist come to the same phase,
but the peak is less visible for the wrist. As for D, the peaks
of the elbow and wrist come later than that of the shoulder.
For the other musicians, no obvious feature is found. The
frequency uniformly varying over the phase angle shows
large fluctuations in arm movements for each musician. The
histograms revealed both within-musician fluctuations and
individual differences rather than similarity among actions.
The results suggest that charaterization of the “same” action
(i.e., playing to the samba rhythm) on the levels of physical
properties may lead quite different patterns across subjects.
Needless to say, changing physical properties such as
tempos also directly changes phase differences. The level of
physical properties is not sufficient for characterizing
actions even if the major parameter of the actions (i.e.,
tempo) is well controlled.

Next, we analyzed the properties of actions by looking
into the dynamical systems underneath body movements. A
basic technique to characterize dynamical properties from
an empirical time series is phase space reconstruction. A
phase space reconstructed by time-delay embedding is
visualied as a three dimensional subspace projection (Figure
1c-4). The phase space is originally a set of velocity vectors
of the four markers including two sides of the shakers, right
wrist and elbow. The trajectory on the reconstructed phase
space shows an attractor or the state space the system may
take. The phase space is 124 dimensional space consisting
of 31 time-delay copies of the four dimensional time series.
First we analyzed the dimensionality of the attractors as one
of invariance for the dynamical system. It is formally
measured by correlation dimensions (Kantz & Schreiber,
1997), and we found the correlation dimensions varying
from 1.8 to 2.4 across five musicians and five conditions.
These results suggested the state space of the samba rhythm
is rather restricted on a low dimensional space.

Since the dimensions of the attractors are lower than three,
it allows us to visualize them in the three dimensional space
without losing much information. Figure 3 shows the
attractors estimated for all five musicans on the five
conditions. Visual inspection of the samba attractors grasps
the gist of commonalities among the attractors. Consistently
across most of the attractors, they share a similar shape of
trajectories — a twisted double circle (which may appear
different due to a specific visual angle of each attractor).
These similar “shapes” of trajectories indicate that the
topological nature of the attractors is similar.

In order to quantify the similarity among attractors, we
performed analysis based on symbolic dynamics (Buhl &
Kennel, 2005). Symbolic dynamics offers a way to analyze
a topological property of a dynamical system by
constructing a homeomorphism (map preserving the
topological nature) from the original space to a symbolic
space. If two state spaces are homeomorphic (topologically
identical), we find identity between their symbolic dynamics
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as well. Importantly, it is easier to compute similarity
between two symbolic spaces than that between two high-
dimensional phase spaces. This mathematical property is
applied in our data analysis. By estimating the symbolic
dynamics for each of the samba attractors, we estimated the
probability of state space transition on the estimated
symbolic space (Figure 4). Each of the top left two-by-two
panels shows a probabilistic distribution (stationary
distribution) of the symbolic states for each musician and
condition. Each symbolic state is defined by a binary
symbol series of length 5 (e.g., “01100”), and the
distribution over its 32 possible states is shown in the figure.

In Figure 4, we show the analysis concerning a pair of
musicians and conditions as representative results. Each
distribution of symbolic states reflects the topological nature
of the underlying dynamical systems — transitivity or
connectivity of states in the system. As shown in Figure 4,
the distribtions of state spaces are quite similar across
subjects (R=0.784 and R=0.962) shown in the panels of
Figure 3 and across conditions (R=0.959 and R=0.803)
shown in the panels in Figure 2. Across all the pairs of five
subjects and five conditions, the average correlation of
distiribution is 0.831. This means that the topological nature
of the complex actions as dynamical systems were quite
robust across different musicians and different playing
tempos.

As a baseline comparison, we performed cross correlation
analysis of the physical movements of the shaker (the major
axis of the 3D motions with the most variance). By taking a
time lag maximizing correlation, the average cross
correlation was 0.453 across musicians and trials (0.462
across musicians (the same tempo) and 0.478 across tempos
(the same musicians)). These results showed the temporal
correlation of the shaker movements were not as high as the
correlation of the symbolic state space (0.831) even with the
time lag optimally adjusted and the playing tempo being
held constant. This result means that the similarity of
movements as physical properties cannot explain the
topological similarities shown above.
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Flgure 2: The distribution of phase shift (radian) of right
elbow (gray) and right wrist (white).
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Figure 3: The reconstructed phase space embeddlng in
three dimensional time delay space in Musician A-E playing
at tempo 60, 75, 90, 105, and 120 BPM. The velocity of the
trajectory in the three dimensional space is shown as RGB
color code for its visibility.
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Figure 4. Stationary distributions of states in each of
symbolic dynamics (four top left panels) and their
correlations between musicians and conditions (four right
side and bottom panels).

The result -- higher similarity between topolgoical
properties of the state space -- is quite surprising with
consideration to the individual differences on the physical
level charateristics (Figure 2) and low cross correlations in
the physical movements. The results suggest that the
topological properties of the attractors were quite similar
across different musicians and tempos, while their physical
realizations of the actions differed from person to person.

Discussion

One of the challenges to the theory of action recognition is
formalizing the possible attributes of characteristic actions.
In the present study, we hypothesize that an intrinsic
topological nature of actions as dynamical systems
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characterizes a similarity between actions. This is meant to
describe actions on the basis of invariances under nonlinear
transformations, rather than the specific features (coordinate
systems) the actions have. In other words, this is to abstract
the actions from their physical properties. In order to test the
hypothesis, we investigated the samba playing action, which
is repetitive rhythmic movement. The samba rhythm
fluctuates within a certain range, showing a complex accent
pattern, even if an auditory cue is given to keep the tempo
constant (Figure 2). No common property was found in
movements across musicians in physical movements of the
right arm.

Subsequently, we analyzed the same data from a
perspective of actions as dynamical systems. In the analysis,
we define a higher dimensional space in which the action is
mapped as a trajectory. We analyzed time-delay vectors,
which embed the time series of movements, i.e., lower
dimensional data, into higher dimensional space.

The analyses revealed topological similarities in the
reconstructed phase space among the musicians and among
the different playing conditions. The analyses using the
symbolic dynamics quantified the similarities in terms of
their topological structures. In sum, these results supported
our hypothesis that human actions can be characterized on
the basis of invariances as dynamical systems. This
invariant nature of the dynamical property can serve as a
possible basis for our perception of actions, and offers an
explanation of why we perceive them as “the same actions.”
Interestingly, the patterns revealed in the current analysis
(Figure 3) are not just abstract-level depiction, but they also
correspond with the introspective view of the samba rhythm
(Figure 5: obtained from the most experienced musician A
in the post-experiment interview). His drawing represents a
general periodic motion with accents at a particular part of
the trajectory. The geometric shape of the trajectory closely
corresponds with the reconstructed phase space (Figure 3).

Finally, we briefly mention the implications to the two
relevant research fields. One is the imitation of bodily
movements. It is necessary to map from the body of the self
to the body of the other in order to imitate the other’s
actions (Breazeal & Scassellati, 2002). One of the
traditional approaches to this problem is to compute inverse
kinematics (estimating the motor control parameters from
the perceived actions) upon which a number of robotics
applications have been based (for example, Wolpert, Doya,
& Kawato, 2003). This approach, however, does not offer a
sufficient explanation for neonatal imitations (Melzoff &
Moore, 1977) and how actions are identified, because
neonate do not have opportunity to learn the cross-modal
identity of the action (i.e., visual patterns of the other’s
action and motor control of the self). In turn, topological
similarity of actions revealed in the present study may
potentially offer a cross-body identity of actions regardless
of their differences in physical particulars.

The present study proposes the dynamical perspective of
actions in which it is essential to characterize topological
similarities of actions as attractors. It is viewed as a

paradigm shift from cognition as inverse computation for an
ill-posed problem to the computation of invariances under
smooth transformations.

~ Figure 5: A drawing by the expert in his introspective
explanation of the samba rhythm.
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