Expert Blind Spot in Pre-Service and In-Service Mathematics Teachers: Task
Design moderates Overestimation of Novices’ Performance

Katharina Hellmann (katharina.hellmann@ezw.uni-freiburg.de)
Matthias Nuckles (matthias.nueckles@ezw.uni-freiburg.de)
University of Freiburg, Department of Educational Science, Instructional and School Research
Rempartstralie 11, 79098 Freiburg, Germany

Abstract

To act efficiently in the classroom, teachers need to be able to
judge the difficulty of problems from a novice’s perspective.
However, research suggests that experts use their own
knowledge as an anchor, adjust estimations for others to their
own knowledge and thus underestimate the difficulty that a
problem may impose on novices. Similarly, experts should
underestimate the benefit for novices of task designs derived
from Cognitive Load Theory (CLT), as - following the
expertise reversal effect — these should be rather
disadvantageous for experts. We investigated pre-service and
in-service teachers’ competencies in estimating the difficulty
of mathematical tasks for novices. Thirty-four pre-service
teachers and thirteen experienced teachers solved tasks that
varied in instructional design (optimized for novices
following CLT versus non-optimized). Participants solved
each task and then estimated how many students of a fictional
9™ grade class would be able to solve that task. Solution
frequencies were collected from fifty-two 9" grade students.
In both expert groups, overestimation was clearly more
pronounced for non-optimized than optimized tasks,
suggesting an expert blind spot that can be explained in terms
of an expertise-reversal effect. The experts failed to
adequately take into account the benefits of didactic task
variation for novice learners. However, whereas pre-service
teachers’ overestimations of student performance were large
and significant both for non-optimized and optimized tasks,
in-service teachers’ overestimations were generally small and
failed to approach statistical significance. In contrast to pre-
service teachers, in-service teachers seem to have a better
mental model of what a student is able to achieve, thus
making better judgments of student performance.

Keywords: expert blind spot; perspective taking; expertise
reversal effect.

Theoretical Background

Expert Blind Spot

Peoples’ judgements of others are very often based on their
self-assessment and are therefore cognitively biased (e.g.
Tversky & Kahneman, 1974). In line with this, research in
the area of expertise has repeatedly shown that experts tend
to misjudge novices’ knowledge, achievement, or time on
task, amongst others, to a certain degree (e.g. Herppich,
Wittwer, Niickles & Renkl, 2010; Hinds, 1999; Lentz & de
Jong, 2006). This effect has also been found to apply to
teachers (e.g. Nathan & Koedinger, 2000). Teachers, usually
referred to as being domain experts in their content area, as
they possess a high level of specialized knowledge, are
considered to be prone to an expert blind spot (Nathan &

Petrosino, 2003) when evaluating
mathematical problems for students.

Following Nickerson’s (1999) anchoring model, teachers
may be inclined to use their specialized knowledge as an
anchor when assessing the difficulty of problems for
students. As a result, they are not able to take the student
perspective adequately.
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Figure 1: The process of perspective taking through
anchoring and adjustment (adapted from Nickerson, 1999)

Model of one‘s
own knowledge

According to Nickerson (1999, see Figure 1), people tend to
build an inaccurate mental model of the potential knowledge
of general or specific others. They fail to take into account
the specificity or exclusivity of their own knowledge,
therefore unconsciously using it as an anchor when
estimating other persons’ knowledge. As a result, teachers
might underestimate the difficulty that a problem will
impose on a student, and overestimate students’
performance.

However, the ability to adequately assess the difficulty of
tasks for students is a crucial aspect of teaching expertise. It
is necessary for communicating efficiently with students as
well as for adapting teaching behaviour in and outside the
classroom (e.g. selecting problems for homework, lessons or
exams). Teachers should be able to take a novice’s
perspective and judge task attributes independently of their
own perception of difficulty or effortlessness (Helmke,
Hosenfeld & Schrader, 2004).

Cognitive Load Theory

Cognitive Load Theory (CLT; e.g. Sweller, 2005; Sweller,
van Merrienboer & Paas, 1998) can help to understand how
and why experts and novices differ in their perceptions of
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task difficulty and how one could deal with these
discrepancies.

Working Memory Capacity And Perceived Task
Difficulty According to CLT, every learning process is
associated with cognitive mental load. The extent, to which
a learner experiences this mental load, depends on the
degree of the learner’s expertise regarding the subject.
Experienced learners use already existing knowledge
structures, so called schemas. Schemas serve as patterns that
help to structure and integrate incoming information
(Sweller, 1994). But often, new information is being
processed that needs the learner’s full working memory
capacity. If cognitive schemas do not exist and yet have to
be built, working memory, the capacity of which is limited,
is loaded to a high extent.

Perceived task difficulty according to CLT should mainly
be a function both of the intrinsic mental load imposed on
the learner (i.e., the complexity or difficulty of a task) and
the amount of extraneous mental load (i.e., the load induced
by an ineffective instructional design of the task). Generally,
extraneous load has been shown to be an important factor
hindering effective learning (e.g. Paas & van Merrienboer,
1994). Intrinsic load cannot be influenced, as it is inherent
to the task itself and can only be moderated by the amount
of a learner’s prior knowledge. In contrast, extraneous load
can and should be reduced. Once working memory is
disburdened of extraneous load, more working memory
capacity is available for understanding and schema
acquisition.

Instructional Techniques Reducing Extraneous Mental
Load Novice learners should be provided with learning
material designed according to principles derived from
CLT. The main principles are: integrated-format (Sweller,
2005), step-by-step-guidance (Kalyuga, Chandler &
Sweller, 2001) or worked examples (Renkl, 2005). Tasks
following these design principles substantially reduce the
amount of extraneous load imposed on the learner.

An integrated-format in task design as compared to a
split-attention design (Sweller, 2005) facilitates learning, as
the learner does not have to search and integrate relevant
information by himself, before passing on to the solution.
With this procedure, information is presented close to each
other and allows for an easier processing. A step by step
guidance (e.g., Kalyuga, Chandler & Sweller, 2001) helps
the learner to solve a problem without struggling to find all
needed solution steps in a correct order. Instead, a
processing guideline is given, leaving more working
memory capacity available for the understanding of the
single steps. Worked examples (e.g., Renkl, 2005), as
compared to traditional problem solving techniques, consist
of a problem, elaborated solution steps and the solution
itself. Again, working memory capacity is free from
extraneous load, as no potentially irrelevant trial and error
processes are performed. This, once again, results in better
schema acquisition and deeper understanding.

Expertise Reversal Effect It is important to emphasize that
the effects of the just mentioned CLT principles are only
prevailing with regard to novice learners. The positive
learning outcome of material that is designed for novice
learners may, in contrast, be reversed for experts. The
guidance or additional information given by optimized
learning material (from now on, the term optimized will be
used with regard to learning tasks that are designed in
favour of novice learners) can interfere with experts’
advanced cognitive structures and schemas that have already
been built. Kalyuga (2007) named this phenomenon
expertise reversal effect. He described that an optimized
learning tasks is experienced as being more difficult to
process and causes a redundancy effect, when presented to
expert learners. This results in increased extraneous load
and worse performance.

From this follows that the same learning material may cause
reversed effects for novice and experienced learners.
However, as experts may perceive optimized tasks as being
more difficult than non-optimized tasks, they may also be
subject to an expert blind spot when assessing the potential
difficulty of the tasks for novice learners. This prediction is
in line with Nickerson’s anchoring and adjustment model
(1999). Experts judge optimized learning material as being
difficult to solve, use that judgement as an anchor for
estimating novices’ performance and thus underestimate
novices’ performance on these tasks. The opposite is true
for non-optimized items, resulting in an overestimation of
novices’ performance.

Teachers as domain experts and educators should be
knowledgeable of this expertise reversal effect and able to
estimate the difficulty of tasks for students as novice
learners independently of their own experienced mental
load. In the present study we investigated whether this
assumption is true for two groups of mathematics experts.

Research Questions and Predictions

In the present study, we investigated whether pre-service as
well as in-service mathematics teachers are subject to an
expert blind spot when judging the difficulty of problems
for students and whether the two expert groups differ in
their estimations. Differences in estimations can be expected
due to different levels of teaching experience. The tasks
presented to the expert groups varied in instructional design
according to CLT, but were comparable in complexity, thus
keeping intrinsic cognitive load stable.

Following our theoretical assumptions, both pre-service
and in-service teachers should use their expert knowledge as
an anchor and underestimate the difficulty of the tasks for
novice students in general.

1) Therefore, we predicted that both expert groups
would generally overestimate the amount of tasks
that novice students would be able to solve
correctly (overestimation hypothesis).

An anchoring effect should manifest itself in highly
correlated ratings of one’s own perceived mental load and
estimated task performance of novice learners.
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2) Hence, we predicted that the correlation between
the experts’ self-rated mental load and estimated
task performance of novice learners is significantly
larger than the correlation between estimated
student performance and students’ actual
performance (anchoring hypothesis).

Following expertise reversal effect, we further expected that
the experts would experience less mental load when solving
non-optimized than optimized tasks.

3) Consequently, the overestimation of novices’
performance should be significantly larger with
regard to non-optimized tasks as compared with
optimized tasks (expertise reversal hypothesis).

Method

Participants

Thirty-four pre-service teachers majoring in mathematics
(mean study time being 6.12 semesters, SD = 3.18) and 13
in-service mathematics teachers (mean time of working
experience being 12.85 years, SD = 9.13) participated in the
study. Two different expert groups were chosen to allow for
possible conclusions regarding experience levels. Whereas
pre-service teachers usually do not have school teaching
experience, the amount of in-service teachers’ teaching
experience could become evident in their ratings of students
performance.

Both expert groups’ estimations were compared to
solution frequencies collected from 54 9" grade high school
students (mean age being 14.26, SD = .52). All participants
attended the study on a voluntary basis and received
financial compensation.

Study design

We used level of expertise (pre-service teachers vs. in-
service teachers vs. novices) and the instructional design of
the task (non-optimized vs. optimized mathematical
problems) as independent variables. Dependent variables
encompassed experts’ perceived mental load and
performance, their estimations of novices’ performance and
novices’ actual performance on a number of mathematical
tasks. Estimations were compared to students’ actual
performance

Instrument and measures

Two mathematics experts created ten tasks on algebra,
geometry and trigonometry. To achieve a high level of
curriculum validity, contents of the tasks were chosen to
meet the requirements expected from pupils on that 9"
grade school level (e.g. calculation of area, theorem of
Pythagoras, angular sum). Each task was designed in a non-
optimized and optimized version. Tasks without didactic
optimization were adapted from mathematics problems
currently used in school. Tasks optimization was achieved
by using one of the following CLT design principles (the
latter being the optimized design): either split-attention-
format vs. integrated-format; or traditional problem solving

vs. step-by-step-guidance; or traditional problem solving vs.
worked examples. A task on angular sum, for example, was
either designed with help of a diagram and angular degrees
being spread over the working sheet making it difficult to
match needed information, or presented with a diagram and
angular degrees being close to each other (optimized,
integrated format). So, whereas each task covered exactly
the same mathematical problem (keeping intrinsic cognitive
load stable), the design of the task (extraneous cognitive
load) varied, allowing for the measurement of differences in
mental load and performance due to task design.

Perceived mental load was assessed by the following
question adapted from cognitive load literature: “How
difficult did you find working on the task?”, and measured
on a six-point rating-scale ranging from “not at all difficult”
to “very difficult”.

Teachers’ estimations of student performance were
collected by using a prototype description of a fictional 9"
grade high school class: “Imagine that you are the teacher
of a class with 30 students, all having different achievement
levels; there are very good, average and very poor students.
Now, you want to use the same task that you have just
worked on for an exam. How many students of this class will
presumably solve the task correctly?”

Participants’ task performance was measured as the
number of correctly solved tasks (the maximum score being
ten). Each of the participants’ solutions was rated by two
independent mathematics experts as being correctly or
falsely solved. When no accordance could be initially found,
the two experts discussed their different ratings and agreed
on one in a second step.

Procedure

Each participant received a booklet with ten tasks. Five of
the tasks were presented in a non-optimized version and five
were presented in an optimized version, balanced within the
booklet. Furthermore, each task presented in its non-
optimized version (e.g. angular sum, split-attention-format)
had a corresponding item in its optimized version (e.g.
analogous angular sum task, integrated-format), placed
elsewhere in the booklet. Using this method, repetition
effects by having the participants solving the same task
twice were avoided, but still estimations based on both task
designs were collected.

The participants solved each mathematical problem
within a fixed period of time. The time constraint should
prevent ceiling effects from occurring. Experts, given
unlimited time to solve the tasks, perceive only little to no
mental load, as enough working memory capacity is free for
solving most tasks correctly, no matter which design is
presented. Under these circumstances, an effect of task
design on experienced mental load can no longer be
detected (Paas, Renkl & Sweller, 2003).

After having solved each task, participants rated their
perceived mental load on a six-point rating scale. Then, they
estimated how many students of the fictional 9"-grade class
would be able to solve the tasks they have just worked on
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correctly. After having finished the rating process,
participants continued with the next mathematical problem.
At the end, demographic data was collected.

Results

In a first step, we compared pre-service teachers’ and in-
service teachers’ perceived mental load and performance for
both item types. For this purpose, each participant’s ratings
and performance data was aggregated (five for non-
optimized and five for optimized tasks) and then compared
with a paired t-test.

In line with CLT, pre-service teachers experienced
significantly more mental load when solving optimized (M
= 2.33, SD = 0.67) than non-optimized tasks (M = 2.11, SD
= 0.58), t(33) = -2.08, p < .05. However, pre-service
teachers did not significantly perform worse on optimized
(M = 75.88%, SD = 20.17%) than on non-optimized tasks
(M =78.82% SD = 16.29%), t(33) = 0.82, ns.

In-service teachers experienced no significantly different
degree of mental load for optimized (M = 2.72, SD = 0.72)
and non-optimized tasks (M = 2.59, SD = 0.94), t(12) = -
1.13, ns. Also, performance for optimized (M = 76.92%, SD
= 17.97%) and non-optimized tasks (M = 73.85%, SD =
18.94%) did not differ significantly, t(12) = -.56, ns.

In a second step, students’ solution frequencies were
analysed. In line with CLT, the 9"-grade students solved
more optimized (M = 51.11%, SD = 26.51%) than non-
optimized tasks (M = 44.07%, SD = 24.69%), t(53) = 2.38, p
< .05 (all performance data are presented in Figure 2).

Finally, performance data between the participant groups
were compared in a repeated measures ANOVA. Both pre-
service (F(1,86) = 44.08, p<.01) and in-service teachers
(F(1,65) = 16.69, p<.01) solved significantly more tasks
than students did, whereas performance between the expert
groups (F(1,45) = .16, ns) did not differ significantly.

Overestimation Hypothesis

To test the overestimation hypothesis, we computed
difference scores. Students’ real solution frequencies for
each item were subtracted from pre-service and in-service
teachers’ estimations of how many students would be able
to solve this corresponding task correctly. A positive
difference score thus indicated an overestimation and a
negative score indicated an underestimation. Each
participant’s difference scores were then aggregated for item
type (five scores for non-optimized and five for optimized
tasks) and used for further analysis.

As predicted, pre-service teachers overestimated students’
performance both on non-optimized tasks, t (33) = 6.29, p <
.01, and optimized tasks, t (33) = 2.34, p < .05 (one-sample
t-test). However, in-service teachers’ general overestimation
of student performance did not reach statistical significance
both for non-optimized (t (12) = 1.21, ns) and optimized
tasks (t (12) = -.13, ns). Overestimation scores between the
expert groups did not differ significantly, F(1,45)=3.19, ns.
(estimation data for pre-service and in-service teachers are
presented in Figure 2).
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Figure 2: Pre-service teachers’ (P) and in-service teachers
(1) performance and estimation of student performance and
students’ (S) performance as function of task design (%)

Anchoring Hypothesis

To test for an anchoring effect, we computed and compared
Fisher z transformed individual correlations. Pre-service and
in-service teachers’ mental load ratings for each item were
correlated with their estimation of student performance for
that particular item. Further, the estimation of student
performance for each item was correlated with students’
actual performance on that item. This procedure allowed
analysing whether experts’ estimations were closer to their
perceived mental load or to students’ actual performance.
Experts’ perceived mental load (as compared to experts’
actual performance on each task) was used for the analysis.
Whereas performance on a task cannot be determined
immediately by the participants (as it remains unclear
whether they solved a task correctly or not), mental load
served as adequate and approximate measure of task
difficulty. The individual correlations were aggregated (five
correlations for non-optimized and five for optimized tasks)
and then compared in a repeated measures ANOVA.

As predicted, results showed a significant difference
between both correlation types, thus indicating an anchoring
effect. Pre-service teachers’ estimations of students’
performance were significantly more strongly correlated
with own perceived mental load than with students’ actual
performance, F(1,33) = 169.45, p<.01. A very similar
pattern was found for in-service teachers’ correlations,
F(1,12) = 35.64, p<.01 (correlation coefficients for both
expert groups are depicted in Figure 3). It can be concluded
that both expert groups used their own perceived mental
load as an anchor to estimate the difficulty that the tasks
would impose on the students.
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Figure 3: The anchoring effect in both expert groups

Expertise Reversal Hypothesis

As predicted by the expertise reversal hypothesis, both
expert groups’ overestimations were moderated by the
instructional design of the tasks. Pre-service teachers’
overestimation of student performance was significantly
larger for non-optimized (M = 15.88%, SD = 14.74%) than
optimized tasks (M = 7.15%, SD = 17.81%), t (33) = 4.21; p
< .01. Also, in-service teachers’ overestimation was
significantly larger for non-optimized (M = 5.63%, SD =
16.82%) than optimized items (M = -.62%, SD = 16.77%), t
(12) = 2.54; p < .05 (see Figure 2 for mean scores). Both
expert groups seem to have failed to take into account the
benefits of didactic optimization of the learning material for
novice learners. As was already described in the
“Overestimation  Hypothesis” section, differences in
overestimation scores did not to reach statistical significance
for both expert groups.

Discussion

In the present study, we investigated whether pre-service
and in-service mathematics teachers are subject to an expert
blind spot, when judging the difficulty of tasks for students.
The tasks were designed in accordance with didactic
principles derived from CLT, which have differential effects
on the learning outcome of experts and novices. Whereas
novice learners experience a relief from extraneous mental
load when being presented optimized learning material, thus
having more working memory capacity available for schema
acquisition and therefore performing better on those tasks,
the opposite is true for expert learners. These learners, being
presented with optimized tasks, experience increased
extraneous mental load (due to a redundancy effect) and
judge those tasks not only as being more difficult to work
on for themselves, but also as being more difficult to solve
for novice learners. The reason for this misjudgement lies in
an anchoring effect, as experts generally use their own
knowledge base and estimations as ground for judging the
difficulties that other persons (in this case: novices) may
have. To test these assumptions, experts’ mental load ratings
while working on mathematical tasks and their estimations
of novice performance were compared to real solution
frequencies obtained from novices.

Results indicate an egocentric bias, as the experts’ general
estimations for student performance were highly correlated
with their own experienced mental load. Especially, the
overestimation of students” task performance was
significantly larger for non-optimized than optimized items,

indicating an expert blind spot that can be interpreted in
terms of an expertise reversal effect. Experts failed to
adequately take into account the beneficial or detrimental
effects of didactical variation in task design. Rather, they
judged both non-optimized and optimized mathematical
tasks as being equally difficult for students, which in fact
was not the case in our student sample.

However, only  pre-service  teachers’  general
overestimation of student performance was significant,
whereas in-service teachers’ overestimation failed to reach
statistical significance. Relating to Nickerson’s (1999)
anchoring and adjustment model, in-service teachers seem
to have a more accurate mental model of students’
knowledge than pre-service teachers do. Teaching
experience seems to have had a debiasing effect on an
egocentric bias, thus resulting in better judgements of
student performance.

Nevertheless, there are certain limitations to the present
study. The first one concerns the yet small sample size of in-
service teachers compared to pre-service teachers. The
results obtained so far should be further consolidated by
equalizing sample sizes for both expert groups, thus
allowing for a better comparability and generalizability.
This would allow for a detailed analysis of the variability in
teaching experience between in-service teachers and its
effects on the estimations of student performance. Also,
though in-service teachers showed no different estimation
pattern for both item types than pre-service teachers do, the
overall level of overestimation was a different one. With a
bigger sample size, this issue could be further investigated
and possible influencing variables could be detected.

Another limitation concerns the actual level of expertise
in both teacher groups. As presented in the results section,
pre-service and in-service teachers solved significantly more
tasks correctly that students did. This allows the conclusion
that both teacher groups have more specialized knowledge
as compared to students and can indeed be called experts.
Also, it is not necessarily surprising that pre-service
teachers, not yet having gained teaching experience and
being presented with learning tasks obtained from school
books, do not solve the mathematical tasks in large part.
However, it remains unclear why in-service teachers with a
high level of specialized knowledge as well as teaching
experience only show similar performance rates on the
mathematical problems instead of solving almost all of them
correctly.

Finally, the present study does not allow for a detailed
insight into participants’ estimation processes. After having
rated each mathematical task, participants had the
opportunity to answer an open-format question and give
additional information on what they thought made each
tasks difficult or easy. This possibility was barely used, thus
not allowing for any further insights into participants’
cognitive processes while judging the difficulty of the tasks
for students.

Future research will address the just mentioned issues and
explore ways in which teachers’ ability to see the difficulty
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of tasks from a student’s perspective can be improved and
be emphasized already in teacher education. To the authors’
knowledge, no research so far has examined experts
estimations of novices’ performance using instructional
design principles derived from CLT. Subsequent studies
with different participant groups shall shed more light on
anchoring and adjustment processes in experts. Experts’
cognitive processes while solving the mathematical tasks
shall be further investigated. Also, longitudinal designs
could be conducted in order to analyse effects of
intervention programs on teachers’ perception of learning
material.
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