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Abstract 

To act efficiently in the classroom, teachers need to be able to 
judge the difficulty of problems from a novice’s perspective. 
However, research suggests that experts use their own 
knowledge as an anchor, adjust estimations for others to their 
own knowledge and thus underestimate the difficulty that a 
problem may impose on novices. Similarly, experts should 
underestimate the benefit for novices of task designs derived 
from Cognitive Load Theory (CLT), as – following the 
expertise reversal effect – these should be rather 
disadvantageous for experts. We investigated pre-service and 
in-service teachers’ competencies in estimating the difficulty 
of mathematical tasks for novices. Thirty-four pre-service 
teachers and thirteen experienced teachers solved tasks that 
varied in instructional design (optimized for novices 
following CLT versus non-optimized). Participants solved 
each task and then estimated how many students of a fictional 
9th grade class would be able to solve that task. Solution 
frequencies were collected from fifty-two 9th grade students. 
In both expert groups, overestimation was clearly more 
pronounced for non-optimized than optimized tasks, 
suggesting an expert blind spot that can be explained in terms 
of an expertise-reversal effect. The experts failed to 
adequately take into account the benefits of didactic task 
variation for novice learners. However, whereas pre-service 
teachers’ overestimations of student performance were large 
and significant both for non-optimized and optimized tasks, 
in-service teachers’ overestimations were generally small and 
failed to approach statistical significance. In contrast to pre-
service teachers, in-service teachers seem to have a better 
mental model of what a student is able to achieve, thus 
making better judgments of student performance. 

Keywords: expert blind spot; perspective taking; expertise 
reversal effect. 

Theoretical Background 

Expert Blind Spot  
Peoples’ judgements of others are very often based on their 
self-assessment and are therefore cognitively biased (e.g. 
Tversky & Kahneman, 1974). In line with this, research in 
the area of expertise has repeatedly shown that experts tend 
to misjudge novices’ knowledge, achievement, or time on 
task, amongst others, to a certain degree (e.g. Herppich, 
Wittwer, Nückles & Renkl, 2010; Hinds, 1999; Lentz & de 
Jong, 2006). This effect has also been found to apply to 
teachers (e.g. Nathan & Koedinger, 2000). Teachers, usually 
referred to as being domain experts in their content area, as 
they possess a high level of specialized knowledge, are 
considered to be prone to an expert blind spot (Nathan & 

Petrosino, 2003) when evaluating the difficulty of 
mathematical problems for students.  

Following Nickerson’s (1999) anchoring model, teachers 
may be inclined to use their specialized knowledge as an 
anchor when assessing the difficulty of problems for 
students. As a result, they are not able to take the student 
perspective adequately. 
 

 
Figure 1: The process of perspective taking through 

anchoring and adjustment (adapted from Nickerson, 1999) 
 
According to Nickerson (1999, see Figure 1), people tend to 
build an inaccurate mental model of the potential knowledge 
of general or specific others. They fail to take into account 
the specificity or exclusivity of their own knowledge, 
therefore unconsciously using it as an anchor when 
estimating other persons’ knowledge. As a result, teachers 
might underestimate the difficulty that a problem will 
impose on a student, and overestimate students’ 
performance. 

However, the ability to adequately assess the difficulty of 
tasks for students is a crucial aspect of teaching expertise. It 
is necessary for communicating efficiently with students as 
well as for adapting teaching behaviour in and outside the 
classroom (e.g. selecting problems for homework, lessons or 
exams). Teachers should be able to take a novice’s 
perspective and judge task attributes independently of their 
own perception of difficulty or effortlessness (Helmke, 
Hosenfeld & Schrader, 2004). 

Cognitive Load Theory 
Cognitive Load Theory (CLT; e.g. Sweller, 2005; Sweller, 
van Merrienboer & Paas, 1998) can help to understand how 
and why experts and novices differ in their perceptions of 
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task difficulty and how one could deal with these 
discrepancies. 
 
Working Memory Capacity And Perceived Task 
Difficulty According to CLT, every learning process is 
associated with cognitive mental load. The extent, to which 
a learner experiences this mental load, depends on the 
degree of the learner’s expertise regarding the subject. 
Experienced learners use already existing knowledge 
structures, so called schemas. Schemas serve as patterns that 
help to structure and integrate incoming information 
(Sweller, 1994). But often, new information is being 
processed that needs the learner’s full working memory 
capacity. If cognitive schemas do not exist and yet have to 
be built, working memory, the capacity of which is limited, 
is loaded to a high extent. 

Perceived task difficulty according to CLT should mainly 
be a function both of the intrinsic mental load imposed on 
the learner (i.e., the complexity or difficulty of a task) and 
the amount of extraneous mental load (i.e., the load induced 
by an ineffective instructional design of the task). Generally, 
extraneous load has been shown to be an important factor 
hindering effective learning (e.g. Paas & van Merrienboer, 
1994). Intrinsic load cannot be influenced, as it is inherent 
to the task itself and can only be moderated by the amount 
of a learner’s prior knowledge. In contrast, extraneous load 
can and should be reduced. Once working memory is 
disburdened of extraneous load, more working memory 
capacity is available for understanding and schema 
acquisition. 

 
Instructional Techniques Reducing Extraneous Mental 
Load Novice learners should be provided with learning 
material designed according to principles derived from 
CLT. The main principles are: integrated-format (Sweller, 
2005), step-by-step-guidance (Kalyuga, Chandler & 
Sweller, 2001) or worked examples (Renkl, 2005). Tasks 
following these design principles substantially reduce the 
amount of extraneous load imposed on the learner.   

An integrated-format in task design as compared to a 
split-attention design (Sweller, 2005) facilitates learning, as 
the learner does not have to search and integrate relevant 
information by himself, before passing on to the solution. 
With this procedure, information is presented close to each 
other and allows for an easier processing. A step by step 
guidance (e.g., Kalyuga, Chandler & Sweller, 2001) helps 
the learner to solve a problem without struggling to find all 
needed solution steps in a correct order. Instead, a 
processing guideline is given, leaving more working 
memory capacity available for the understanding of the 
single steps. Worked examples (e.g., Renkl, 2005), as 
compared to traditional problem solving techniques, consist 
of a problem, elaborated solution steps and the solution 
itself. Again, working memory capacity is free from 
extraneous load, as no potentially irrelevant trial and error 
processes are performed. This, once again, results in better 
schema acquisition and deeper understanding. 

Expertise Reversal Effect It is important to emphasize that 
the effects of the just mentioned CLT principles are only 
prevailing with regard to novice learners. The positive 
learning outcome of material that is designed for novice 
learners may, in contrast, be reversed for experts. The 
guidance or additional information given by optimized 
learning material (from now on, the term optimized will be 
used with regard to learning tasks that are designed in 
favour of novice learners) can interfere with experts’ 
advanced cognitive structures and schemas that have already 
been built. Kalyuga (2007) named this phenomenon 
expertise reversal effect. He described that an optimized 
learning tasks is experienced as being more difficult to 
process and causes a redundancy effect, when presented to 
expert learners. This results in increased extraneous load 
and worse performance. 
From this follows that the same learning material may cause 
reversed effects for novice and experienced learners. 
However, as experts may perceive optimized tasks as being 
more difficult than non-optimized tasks, they may also be 
subject to an expert blind spot when assessing the potential 
difficulty of the tasks for novice learners. This prediction is 
in line with Nickerson’s anchoring and adjustment model 
(1999). Experts judge optimized learning material as being 
difficult to solve, use that judgement as an anchor for 
estimating novices’ performance and thus underestimate 
novices’ performance on these tasks. The opposite is true 
for non-optimized items, resulting in an overestimation of 
novices’ performance. 

Teachers as domain experts and educators should be 
knowledgeable of this expertise reversal effect and able to 
estimate the difficulty of tasks for students as novice 
learners independently of their own experienced mental 
load. In the present study we investigated whether this 
assumption is true for two groups of mathematics experts. 

Research Questions and Predictions 
In the present study, we investigated whether pre-service as 
well as in-service mathematics teachers are subject to an 
expert blind spot when judging the difficulty of problems 
for students and whether the two expert groups differ in 
their estimations. Differences in estimations can be expected 
due to different levels of teaching experience. The tasks 
presented to the expert groups varied in instructional design 
according to CLT, but were comparable in complexity, thus 
keeping intrinsic cognitive load stable. 

Following our theoretical assumptions, both pre-service 
and in-service teachers should use their expert knowledge as 
an anchor and underestimate the difficulty of the tasks for 
novice students in general.  

1) Therefore, we predicted that both expert groups 
would generally overestimate the amount of tasks 
that novice students would be able to solve 
correctly (overestimation hypothesis).  

An anchoring effect should manifest itself in highly 
correlated ratings of one’s own perceived mental load and 
estimated task performance of novice learners.  
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2) Hence, we predicted that the correlation between 
the experts’ self-rated mental load and estimated 
task performance of novice learners is significantly 
larger than the correlation between estimated 
student performance and students’ actual 
performance (anchoring hypothesis).  

Following expertise reversal effect, we further expected that 
the experts would experience less mental load when solving 
non-optimized than optimized tasks.  

3) Consequently, the overestimation of novices’ 
performance should be significantly larger with 
regard to non-optimized tasks as compared with 
optimized tasks (expertise reversal hypothesis).  

Method 

Participants 
Thirty-four pre-service teachers majoring in mathematics 
(mean study time being 6.12 semesters, SD = 3.18) and 13 
in-service mathematics teachers (mean time of working 
experience being 12.85 years, SD = 9.13) participated in the 
study. Two different expert groups were chosen to allow for 
possible conclusions regarding experience levels. Whereas 
pre-service teachers usually do not have school teaching 
experience, the amount of in-service teachers’ teaching 
experience could become evident in their ratings of students 
performance. 

Both expert groups’ estimations were compared to 
solution frequencies collected from 54 9th grade high school 
students (mean age being 14.26, SD = .52). All participants 
attended the study on a voluntary basis and received 
financial compensation. 

Study design 
We used level of expertise (pre-service teachers vs. in-
service teachers vs. novices) and the instructional design of 
the task (non-optimized vs. optimized mathematical 
problems) as independent variables. Dependent variables 
encompassed experts’ perceived mental load and 
performance, their estimations of novices’ performance and 
novices’ actual performance on a number of mathematical 
tasks. Estimations were compared to students’ actual 
performance 

Instrument and measures 
Two mathematics experts created ten tasks on algebra, 
geometry and trigonometry. To achieve a high level of 
curriculum validity, contents of the tasks were chosen to 
meet the requirements expected from pupils on that 9th 
grade school level (e.g. calculation of area, theorem of 
Pythagoras, angular sum). Each task was designed in a non-
optimized and optimized version. Tasks without didactic 
optimization were adapted from mathematics problems 
currently used in school. Tasks optimization was achieved 
by using one of the following CLT design principles (the 
latter being the optimized design): either split-attention-
format vs. integrated-format; or traditional problem solving 

vs. step-by-step-guidance; or traditional problem solving vs. 
worked examples. A task on angular sum, for example, was 
either designed with help of a diagram and angular degrees 
being spread over the working sheet making it difficult to 
match needed information, or presented with a diagram and 
angular degrees being close to each other (optimized; 
integrated format). So, whereas each task covered exactly 
the same mathematical problem (keeping intrinsic cognitive 
load stable), the design of the task (extraneous cognitive 
load) varied, allowing for the measurement of differences in 
mental load and performance due to task design.  

Perceived mental load was assessed by the following 
question adapted from cognitive load literature: “How 
difficult did you find working on the task?”, and measured 
on a six-point rating-scale ranging from “not at all difficult” 
to “very difficult”. 

Teachers’ estimations of student performance were 
collected by using a prototype description of a fictional 9th 
grade high school class: “Imagine that you are the teacher 
of a class with 30 students, all having different achievement 
levels; there are very good, average and very poor students. 
Now, you want to use the same task that you have just 
worked on for an exam. How many students of this class will 
presumably solve the task correctly?” 

Participants’ task performance was measured as the 
number of correctly solved tasks (the maximum score being 
ten). Each of the participants’ solutions was rated by two 
independent mathematics experts as being correctly or 
falsely solved. When no accordance could be initially found, 
the two experts discussed their different ratings and agreed 
on one in a second step. 

Procedure 
Each participant received a booklet with ten tasks. Five of 
the tasks were presented in a non-optimized version and five 
were presented in an optimized version, balanced within the 
booklet. Furthermore, each task presented in its non-
optimized version (e.g. angular sum, split-attention-format) 
had a corresponding item in its optimized version (e.g. 
analogous angular sum task, integrated-format), placed 
elsewhere in the booklet. Using this method, repetition 
effects by having the participants solving the same task 
twice were avoided, but still estimations based on both task 
designs were collected. 

The participants solved each mathematical problem 
within a fixed period of time. The time constraint should 
prevent ceiling effects from occurring. Experts, given 
unlimited time to solve the tasks, perceive only little to no 
mental load, as enough working memory capacity is free for 
solving most tasks correctly, no matter which design is 
presented. Under these circumstances, an effect of task 
design on experienced mental load can no longer be 
detected (Paas, Renkl & Sweller, 2003).  

After having solved each task, participants rated their 
perceived mental load on a six-point rating scale. Then, they 
estimated how many students of the fictional 9th-grade class 
would be able to solve the tasks they have just worked on 
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P: performance 

P: estimation of  
student performance 

I: performance 

I: estimation of  
student performance 

S: performance 

correctly. After having finished the rating process, 
participants continued with the next mathematical problem. 
At the end, demographic data was collected. 

Results 
In a first step, we compared pre-service teachers’ and in-

service teachers’ perceived mental load and performance for 
both item types. For this purpose, each participant’s ratings 
and performance data was aggregated (five for non-
optimized and five for optimized tasks) and then compared 
with a paired t-test. 

In line with CLT, pre-service teachers experienced 
significantly more mental load when solving optimized (M 
= 2.33, SD = 0.67) than non-optimized tasks (M = 2.11, SD 
= 0.58), t(33) = -2.08, p < .05. However, pre-service 
teachers did not significantly perform worse on optimized 
(M = 75.88%, SD = 20.17%) than on non-optimized tasks 
(M = 78.82% SD = 16.29%), t(33) = 0.82, ns. 

In-service teachers experienced no significantly different 
degree of mental load for optimized (M = 2.72, SD = 0.72) 
and non-optimized tasks (M = 2.59, SD = 0.94), t(12) = -
1.13, ns. Also, performance for optimized (M = 76.92%, SD 
= 17.97%) and non-optimized tasks (M = 73.85%, SD = 
18.94%) did not differ significantly, t(12) = -.56, ns.  

In a second step, students’ solution frequencies were 
analysed. In line with CLT, the 9th-grade students solved 
more optimized (M = 51.11%, SD = 26.51%) than non-
optimized tasks (M = 44.07%, SD = 24.69%), t(53) = 2.38, p 
< .05 (all performance data are presented in Figure 2). 

 Finally, performance data between the participant groups 
were compared in a repeated measures ANOVA. Both pre-
service (F(1,86) = 44.08, p<.01) and in-service teachers 
(F(1,65) = 16.69, p<.01) solved significantly more tasks 
than students did, whereas performance between the expert 
groups (F(1,45) = .16, ns) did not differ significantly. 

Overestimation Hypothesis 
To test the overestimation hypothesis, we computed 
difference scores. Students’ real solution frequencies for 
each item were subtracted from pre-service and in-service 
teachers’ estimations of how many students would be able 
to solve this corresponding task correctly. A positive 
difference score thus indicated an overestimation and a 
negative score indicated an underestimation. Each 
participant’s difference scores were then aggregated for item 
type (five scores for non-optimized and five for optimized 
tasks) and used for further analysis. 

As predicted, pre-service teachers overestimated students’ 
performance both on non-optimized tasks, t (33) = 6.29, p < 
.01, and optimized tasks, t (33) = 2.34, p < .05 (one-sample 
t-test). However, in-service teachers’ general overestimation 
of student performance did not reach statistical significance 
both for non-optimized (t (12) = 1.21, ns) and optimized 
tasks (t (12) = -.13, ns). Overestimation scores between the 
expert groups did not differ significantly, F(1,45)=3.19, ns. 
(estimation data for pre-service and in-service teachers are 
presented in Figure 2). 

 
 

 
 
 

 
 

Figure 2: Pre-service teachers’ (P) and in-service teachers 
(I) performance and estimation of student performance and 

students’ (S) performance as function of task design (%) 

Anchoring Hypothesis 
To test for an anchoring effect, we computed and compared 
Fisher z transformed individual correlations. Pre-service and 
in-service teachers’ mental load ratings for each item were 
correlated with their estimation of student performance for 
that particular item. Further, the estimation of student 
performance for each item was correlated with students’ 
actual performance on that item. This procedure allowed 
analysing whether experts’ estimations were closer to their 
perceived mental load or to students’ actual performance. 
Experts’ perceived mental load (as compared to experts’ 
actual performance on each task) was used for the analysis. 
Whereas performance on a task cannot be determined 
immediately by the participants (as it remains unclear 
whether they solved a task correctly or not), mental load 
served as adequate and approximate measure of task 
difficulty. The individual correlations were aggregated (five 
correlations for non-optimized and five for optimized tasks) 
and then compared in a repeated measures ANOVA. 

As predicted, results showed a significant difference 
between both correlation types, thus indicating an anchoring 
effect. Pre-service teachers’ estimations of students’ 
performance were significantly more strongly correlated 
with own perceived mental load than with students’ actual 
performance, F(1,33) = 169.45, p<.01. A very similar 
pattern was found for in-service teachers’ correlations, 
F(1,12) = 35.64, p<.01 (correlation coefficients for both 
expert groups are depicted in Figure 3). It can be concluded 
that both expert groups used their own perceived mental 
load as an anchor to estimate the difficulty that the tasks 
would impose on the students. 
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Figure 3: The anchoring effect in both expert groups 

Expertise Reversal Hypothesis 
As predicted by the expertise reversal hypothesis, both 
expert groups’ overestimations were moderated by the 
instructional design of the tasks. Pre-service teachers’ 
overestimation of student performance was significantly 
larger for non-optimized (M = 15.88%, SD = 14.74%) than 
optimized tasks (M = 7.15%, SD = 17.81%), t (33) = 4.21; p 
< .01. Also, in-service teachers’ overestimation was 
significantly larger for non-optimized (M = 5.63%, SD = 
16.82%) than optimized items (M = -.62%, SD = 16.77%), t 
(12) = 2.54; p < .05 (see Figure 2 for mean scores). Both 
expert groups seem to have failed to take into account the 
benefits of didactic optimization of the learning material for 
novice learners. As was already described in the 
“Overestimation Hypothesis” section, differences in 
overestimation scores did not to reach statistical significance 
for both expert groups. 

Discussion 
In the present study, we investigated whether pre-service 
and in-service mathematics teachers are subject to an expert 
blind spot, when judging the difficulty of tasks for students. 
The tasks were designed in accordance with didactic 
principles derived from CLT, which have differential effects 
on the learning outcome of experts and novices. Whereas 
novice learners experience a relief from extraneous mental 
load when being presented optimized learning material, thus 
having more working memory capacity available for schema 
acquisition and therefore performing better on those tasks, 
the opposite is true for expert learners. These learners, being 
presented with optimized tasks, experience increased 
extraneous mental load (due to a redundancy effect) and 
judge those tasks not only as being more difficult to work 
on for themselves, but also as being more difficult to solve 
for novice learners. The reason for this misjudgement lies in 
an anchoring effect, as experts generally use their own 
knowledge base and estimations as ground for judging the 
difficulties that other persons (in this case: novices) may 
have. To test these assumptions, experts’ mental load ratings 
while working on mathematical tasks and their estimations 
of novice performance were compared to real solution 
frequencies obtained from novices.  

Results indicate an egocentric bias, as the experts’ general 
estimations for student performance were highly correlated 
with their own experienced mental load. Especially, the 
overestimation of students’ task performance was 
significantly larger for non-optimized than optimized items, 

indicating an expert blind spot that can be interpreted in 
terms of an expertise reversal effect. Experts failed to 
adequately take into account the beneficial or detrimental 
effects of didactical variation in task design. Rather, they 
judged both non-optimized and optimized mathematical 
tasks as being equally difficult for students, which in fact 
was not the case in our student sample.  

However, only pre-service teachers’ general 
overestimation of student performance was significant, 
whereas in-service teachers’ overestimation failed to reach 
statistical significance. Relating to Nickerson’s (1999) 
anchoring and adjustment model, in-service teachers seem 
to have a more accurate mental model of students’ 
knowledge than pre-service teachers do. Teaching 
experience seems to have had a debiasing effect on an 
egocentric bias, thus resulting in better judgements of 
student performance. 

Nevertheless, there are certain limitations to the present 
study. The first one concerns the yet small sample size of in-
service teachers compared to pre-service teachers. The 
results obtained so far should be further consolidated by 
equalizing sample sizes for both expert groups, thus 
allowing for a better comparability and generalizability. 
This would allow for a detailed analysis of the variability in 
teaching experience between in-service teachers and its 
effects on the estimations of student performance. Also, 
though in-service teachers showed no different estimation 
pattern for both item types than pre-service teachers do, the 
overall level of overestimation was a different one. With a 
bigger sample size, this issue could be further investigated 
and possible influencing variables could be detected. 

Another limitation concerns the actual level of expertise 
in both teacher groups. As presented in the results section, 
pre-service and in-service teachers solved significantly more 
tasks correctly that students did. This allows the conclusion 
that both teacher groups have more specialized knowledge 
as compared to students and can indeed be called experts. 
Also, it is not necessarily surprising that pre-service 
teachers, not yet having gained teaching experience and 
being presented with learning tasks obtained from school 
books, do not solve the mathematical tasks in large part. 
However, it remains unclear why in-service teachers with a 
high level of specialized knowledge as well as teaching 
experience only show similar performance rates on the 
mathematical problems instead of solving almost all of them 
correctly. 

Finally, the present study does not allow for a detailed 
insight into participants’ estimation processes. After having 
rated each mathematical task, participants had the 
opportunity to answer an open-format question and give 
additional information on what they thought made each 
tasks difficult or easy. This possibility was barely used, thus 
not allowing for any further insights into participants’ 
cognitive processes while judging the difficulty of the tasks 
for students.  

Future research will address the just mentioned issues and 
explore ways in which teachers’ ability to see the difficulty 
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of tasks from a student’s perspective can be improved and 
be emphasized already in teacher education. To the authors’ 
knowledge, no research so far has examined experts 
estimations of novices’ performance using instructional 
design principles derived from CLT. Subsequent studies 
with different participant groups shall shed more light on 
anchoring and adjustment processes in experts. Experts’ 
cognitive processes while solving the mathematical tasks 
shall be further investigated. Also, longitudinal designs 
could be conducted in order to analyse effects of 
intervention programs on teachers’ perception of learning 
material.  
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