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Abstract 

Memory reconsolidation, the re-stabilization of consolidated 
memories after reactivation-induced destabilization, has 
received considerable attention in recent years. Nevertheless, 
the neural processes underlying the phenomenon remain 
elusive. With the aim of contributing to the development of a 
theory in this area, we here present a computational model of 
reconsolidation at the “systems” level. The model is an 
extension of TraceLink, which has previously been used to 
account for a range of memory phenomena related to 
consolidation. 

Keywords: Memory reconsolidation, neural network, 
connectionism. 

Introduction 
The phenomenon of memory reconsolidation, the re-
stabilization of consolidated memories after reactivation-
induced destabilization, has received considerable attention 
in recent years with the publication of a series of studies on 
both animals and human subjects (Nader & Einarsson, 
2010; Nader & Hardt, 2009). While several computer 
simulations have modeled consolidation after initial 
learning, (McClelland, McNaughton, & O’Reilly, 1995; 
Murre, 1996), only one model of cellular reconsolidation 
has been published (Osan, Tort, & Amaral, 2011), and – to 
our knowledge – no simulation of systems reconsolidation 
(Debiec, LeDoux, & Nader, 2002). In order to fill this gap, 
we developed an extended version of a previously published 
computational model of memory consolidation, TraceLink 
(Murre, 1996), incorporating features that enable it to also 
account for reconsolidation. 

We begin with a brief introduction to the phenomenon of 
memory consolidation, followed by a description of the 
TraceLink model. We then discuss the mechanisms believed 
to underpin systems memory reconsolidation, describe how 
we implemented them in the model, and, finally, report our 
simulation results. 

Memory Consolidation 
Forgetting and amnesia. The ability to recall acquired 
memories normally diminishes with time elapsed since 
learning. Although there is disagreement about the precise 
shape of the forgetting curve (Anderson & Tweney, 1997), 
it is often represented as an exponential so-called 
Ebbinghaus (1885) forgetting curve, as in Figure 1. 
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Figure 1: Idealized normal forgetting curve. 

 
In contrast with normal forgetting, memory loss after 

trauma affects recent memories more than remote ones 
(McClelland et al., 1995; Scoville & Milner, 1957; Squire & 
Alvarez, 1995), resulting in a curve with the opposite slope, 
as in Figure 2. 
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Figure 2: Idealized Ribot gradient. 

 
This graph shows that the ability to recall material learned 

shortly before onset of amnesia is strongly impaired, 
whereas older memories are relatively spared. The curve is 
commonly known as the “Ribot gradient”, after the French 
psychologist Ribot who first postulated it (Ribot, 1882). 
This temporally graded amnesia gave rise to the idea that a 
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consolidation process stabilizes newly acquired memories – 
older memories were less affected in amnesia because they 
had had more time to stabilize. 

Types of consolidation. Researchers distinguish between 
two types of memory consolidation, “systems” 
consolidation and “synaptic” or “cellular” consolidation 
(Dudai & Morris, 2000). Systems consolidation is a process 
that transitions initially hippocampus-dependent memories 
to a hippocampus-independent state. In the mammalian 
brain, the hippocampal formation is involved with the 
consolidation of “episodic” memories, explicit memories of 
experienced events. Animal studies as well as human cases 
of brain damage have shown that memories initially depend 
on the hippocampus, but gradually become hippocampus-
independent. According to the “standard model of systems 
consolidation” (McClelland et al., 1995; Squire & Alvarez, 
1995), hippocampal memory traces are quickly created but 
only persist for a limited time, during which they support 
the more time-consuming construction of neocortical 
memories. On this view, the temporally graded amnesia 
observed after hippocampal lesions is due to the fact that 
older memories have had more time to consolidate in the 
neocortex, while newer memories are still only weakly 
represented there (McClelland et al., 1995; Squire & 
Alvarez, 1995). This process is called “systems 
consolidation” because it involves interaction between two 
brain systems, the hippocampus and the neocortex. In 
contrast, the so-called “cellular” or “synaptic” consolidation 
process concerns the stabilization of memories within a 
single system.  

The TraceLink Model of Memory Consolidation 
TraceLink is a connectionist model of systems memory 
consolidation (Meeter & Murre, 2005; Murre, 1996). The 
model has two layers representing hippocampus (HC) and 
neocortex (NC), respectively. The HC layer has 42 units and 
the NC layer has 200 units. Each layer is fully connected, 
i.e. there are independent (asymmetric) connections in both 
directions between each pair of units, and the two layers are 
also fully interconnected. Connection weights have values 
in the range 0.0 to 1.0. The units have discrete activation 
levels, either 0.0 (inactive) or 1.0 (active), and a stochastic 
asigmoid activation function: 
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where Pj is the probability that unit j will become (or 
remain) active, netj is the net input to unit j and temp is a 
parameter that controls the steepness of the asigmoid 
function, i.e. the amount of randomness in the model. (For 
small values of temp, Pj(neti) approaches a deterministic 
step function; for large temp, Pj(neti) is close to 0.5 
everywhere, i.e. equal probability of becoming active or 
inactive regardless of neti.). A temp value of 0.2 was used in 
all simulations. The net input netj in equation [1] is 
calculated according to the following formula: 

∑ −=
i

Liijj inhibitionawnet    [2] 

where wij is the weight of the connection from unit i to unit 
j, and  ai is the activation level of unit i. The term inhibitionL 
is a layer-specific inhibition quantity that simulates the 
effect of inhibitory synapses. It is calculated by a feedback 
algorithm that drives the number of active units in each 
layer towards a configured equilibrium value, which is also 
the number of active units in training patterns for the layer. 
For example, each training pattern for the NC layer has ten 
active units, and the inhibition mechanism makes the layer 
preferentially settle into states with that number of active 
units. 

The learning rule is Hebbian with an anti-Hebbian 
“interference” term that accelerates forgetting of previously 
learned patterns, especially in the smaller HC layer, where 
there is more pattern overlap: 

( ) ( ) jiTjiTijij aaaatwtw )1(1 −−+=+ −+ µµ
 

 [3] 

where wij(t) is the connection weight between units i and j at 
time t, ai is the activation level of unit i, +

Tµ  is the Hebbian 
learning rate, and −

Tµ  is the interference or “unlearning” 
rate. The learning rule strengthens connections between 
units that are both active, and weakens connections from 
inactive to active units. Learning rates are specified per 
“tract” (hence the T subscript). A tract is a set of 
connections with the same source and destination layers: all 
the connections from HC units to NC units form one tract, 
all connections internal to the NC layer form another tract, 
etc. A tract’s learning rates (+Tµ  and −

Tµ ) may take on 
different values during initial acquisition versus 
consolidation. This simulates the effect of neuromodulation, 
for example, an increased learning rate in hippocampus in 
the presence of novel stimuli (Meeter & Murre, 2005; 
Murre, 1996). 

Initial acquisition. The TraceLink system is trained by 
presenting a training pattern to both layers1 and applying the 
learning rule to adjust connection weights. The intra-HC and 
NC-HC tracts have high learning rates and learn patterns 
well in a single presentation. The intra-NC tract has a much 
lower learning rate, and as a result a single training cycle 
only creates a weak trace there. 

Recall. To test recall of a training pattern, a subset of the 
pattern’s active NC units (a “cue pattern”) are held 
(“clamped”) in the “on” state, and the rest of the units in 
both layers are randomly set to either the active or inactive 
state, with equal probability. The whole system is then 
repeatedly cycled by executing the activation function for 
all the unclamped units in random order and updating their 
activation levels accordingly. At the end of each cycle, the 
inhibition algorithm adjusts the inhibition coefficients of 
both layers. After a configurable number of such cycles (we 

                                                           
1 It would be more realistic to present only the NC pattern, and 

let the model discover an HC representation autonomously. This is 
the subject of a planned enhancement of the present model. 
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used 70 in all simulations), the activation pattern into which 
the system has settled is compared to the original training 
pattern. Recall accuracy is measured as the percentage of 
non-cued NC units in the training pattern that have been 
successfully turned on.  

Lesioning. Hippocampal lesion is simulated by simply 
disconnecting the HC layer (setting all inter-layer 
connections weights to zero). After initial training, the intact 
system can normally recall patterns quite well, because the 
NC-HC and HC-HC connections provide linkage between 
the pattern’s NC units, but after virtual lesioning recall is 
poor, because the NC-NC connections are not strong enough 
to independently enable the system to complete the pattern 
correctly. 

Consolidation. Memory consolidation is simulated by 
randomly setting each unit’s activation level to either 0.0 or 
1.0, letting the system “settle” in the same manner as for 
recall  (but without any cue pattern), and reinforcing 
whatever state it settles into by applying the learning rule in 
the NC layer. Because the system is more likely to settle 
into trained patterns (Hopfield, 1982), this procedure 
gradually strengthens those patterns in the NC layer. After a 
pattern has been reinforced in this manner a sufficient 
number of times, its NC connections become strong enough 
that the pattern can be recalled even after HC lesioning. 

Simulations. In a typical TraceLink simulation, a series of 
training patterns are presented, one per simulated “day”, 
each followed by a number of consolidation cycles (Meeter 
& Murre, 2005; Murre, 1996). Because of interference, 
especially in the smaller HC layer where patterns overlap 
more, earlier patterns are gradually overwritten by newer 
ones. When recall is tested after training a number of 
patterns, a forgetting curve can be observed: older patterns 
are recalled less successfully than newer ones. The model is 
thus able to account for normal forgetting (the idea that 
interference plays a major role in hippocampal forgetting 
may be debatable (Hardt, Nader, & Nadel, 2013)). 

While patterns are slowly forgotten in the HC layer, they 
are gradually strengthened in the NC layer due to 
consolidation. If the HC layer is “lesioned” after a number 
of days, the earlier training patterns, which have had more 
time to consolidate and therefore have a stronger NC 
representation, are recalled more successfully than the 
newer ones. The model is thus also able to account for the 
Ribot gradient observed after hippocampal lesion. See 
Meeter & Murre (2005), for more details about the 
TraceLink model, including accounts of simulations that 
reproduce a range of human memory phenomena. 

Memory Reconsolidation  
It has been shown that reactivating a consolidated memory 
can return it to a labile state, from which it needs to 
reconsolidate in order to persist (Nader & Hardt, 2009). 
During the period of instability, the so-called 
“reconsolidation window”, memory impairments may be 

produced by the same types of intervention that can interfere 
with initial consolidation, such as lesions and protein 
synthesis inhibition (Debiec et al., 2002; Nader, Schafe, & 
Le Doux, 2000). Some have suggested that that such post-
reactivation plasticity allows knowledge to be modified 
when new information is acquired (Hardt, Einarsson, & 
Nader, 2010; Lee, 2009). As is the case with memory 
consolidation, memory reconsolidation has been 
documented at both the systems and cellular level. The 
former type, systems reconsolidation, is “the demonstration 
that reactivation of a remote memory returns the trace to 
being hippocampus dependent again for a period of time 
before once again becoming independent of hippocampus” 
(Debiec et al., 2002).  

Method 
Although the physiological events underlying systems 
memory reconsolidation are not known, researchers have 
proposed hypothetical mechanisms that could explain the 
observed phenomena. The present work is a neural-network 
model of such a hypothesis (Debiec et al., 2002; Hardt et al., 
2010; Nadel & Hardt, 2010; Nader et al., 2000). According 
to this hypothesis, (1) consolidation renders remote 
memories hippocampus-independent; (2) reactivation of a 
consolidated neocortical memory creates a temporary 
hippocampal trace (or strengthens the existing but decaying 
trace); (3) the hippocampal trace stimulates the neocortical 
trace through back-projections; (4) this stimulation has the 
effect of initially destabilizing the neocortical synapses, 
making them susceptible to decay and/or modification; (5) 
continued hippocampal reinforcement prevents decay of (or 
even strengthens) the neocortical trace while it restabilizes. 
The model thus provides an explanation for the observed 
fact that reactivation followed by hippocampal lesion 
produces amnesia, but neither reactivation nor lesion alone 
causes memory loss.  

Implementation 
In order to model this hypothesis, we implemented a two-
layer network along the lines of TraceLink, but with a few 
additional features: (a) connections have a plasticity 
attribute; (b) connection weights are subject to time-based 
decay (Hardt et al., 2013); and (c) the simulation now 
includes a “reactivation” phase to trigger memory 
reconsolidation. 

Plasticity. The plasticity attribute has a value between 0.0 
and 1.0, representing minimum and maximum plasticity, 
respectively. Our new learning rule takes plasticity into 
account: 

( ) ( ) ))1((1 jiTjiTijijij aaaaptwtw −−+=+ −+ µµ  [4] 

where pij is the plasticity of the connection from unit i to 
unit j. Thus the plasticity affects a connection’s sensitivity 
to training and also its susceptibility to interference. 

Connections are created with a pij value of 1.0 (fully 
plastic), which subsequently decreases exponentially over 
simulated time, as expressed by the following formula: 
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( ) ( ) )1(1 Tijij pdrtptp −⋅=+   [5] 

where pdrT is a plasticity decay rate specific to the tract to 
which connection ij  belongs. In the simulations reported 
here, the pdrT value was 0.1 for the NC-NC tract, and 0.0 for 
the other tracts, i.e. plasticity variations in hippocampus 
were not simulated. 

Decay. Connection weights are subject to exponential decay 
at a rate that is configurable on a per-tract basis. A 
connection’s weight decays by its decay rate modulated by 
its plasticity, according to the following formula: 

( ) ( ) )1(1 Tijijij wdrptwtw −⋅=+  [6] 

where wdrT is the weight decay rate specified for the tract to 
which the connection belongs.  Thus, as a connection 
becomes less plastic, it becomes more resistant to decay 
(Hardt et al., 2013). 

Reactivation. In addition to TraceLink’s “Acquisition” and 
“Consolidation” phases, our model has a “Reactivation” 
phase, during which one or more previously trained patterns 
are activated, the learning rule [4] is applied, and the 
plasticity between active units is restored to its maximum 
value 1.0. Following reactivation, a number of consolidation 
periods may be executed, as after initial learning.  

Simulations 
The following simulations were carried out: 
A. Consolidation 

1. Train a single pattern. 
2. Execute 40 consolidation periods (simulated 

“days”). At each day, test recall in the intact system 
and with “lesioned” (deactivated) HC layer. 

B. Reactivation/Reconsolidation 
Same procedures for training, consolidation and testing 
as in simulation A, but on day 20, reactivate the trained 
pattern, then continue daily consolidation and testing. 

C. Reactivation and HC lesion 
Same procedure as in simulation B, but on day 21, 
permanently lesion the HC layer. 

The same parameter settings were used in all three 
simulations, as indicated in Table 1. 

An explanatory note about the daily recall tests with intact 
and “temporarily lesioned” HC: these tests are performed 
without affecting the continued evolution of the system. No 
learning or (re)consolidation takes place, and HC is turned 
back on after testing. The simulation then continues as if the 
tests had not taken place. Researchers with live subjects, of 
course, do not have this luxury; in an analogous experiment, 
they would only be able to get one data point from each 
subject.

Table 1: Parameter values used in the simulations 
 

Parameter Values 
 NC HC 
Learning rate during initial acquisition 0.06 0.4 
Learning rate during consolidation 0.02 0.0 
Learning rate during reactivation 0.0 0.2 
Unlearning rate 75% of learning 

rate 
Weight decay rate 0.1 0.1 
Plasticity decay rate 0.1 0.0 
Number of units 200 42 
Active units at equilibrium (=pattern size) 10 7 
Cue pattern size (units) 5 0 

The values in the “NC” column apply to the NC layer and 
intra-NC tract. The values in the “HC” column apply to the 

HC layer, intra-HC tract and inter-layer tracts. 

Results 

A. Consolidation 
Figures 3a and 3b show the weight and plasticity of a 
representative individual connection in the HC-HC and NC-
NC tracts, respectively, during the consolidation simulation. 
Each of the two monitored connections joined two units that 
were simultaneously active in the training pattern, i.e. they 
were connections where significant Hebbian learning took 
place. 

 
Figure 3: Consolidation. a) Connection weight of a 

hippocampal connection. b) Weight and plasticity of a 
neocortical connection. c) Recall performance (averaged 

results from fifty simulations). Each point on the “lesioned” 
curve shows the performance with deactivated HC, i.e. as if 

HC had been lesioned on that day. Vertical bars show 
standard error. 
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As expected, HC connections quickly learn the presented 
pattern, and then decay exponentially. NC connections, on 
the other hand, quickly become very plastic, but learn only 
gradually. Around day 17 the HC trace has become too faint 
for any further consolidation to take place, and the NC trace 
starts to decay somewhat, but the decay slows down as the 
plasticity diminishes further and the trace becomes 
stabilized. 

Figure 3c shows the recall performance during the 
simulation. The upper curve, representing recall in the intact 
system, shows normal forgetting. The lower curve, recall 
performance with disabled HC layer, shows a gradient 
during the consolidation “window”, followed by constant 
performance. These results are similar to those obtained 
with the original TraceLink model (Meeter & Murre, 2005); 
the difference is that forgetting there was purely 
interference-based, whereas in this simulation it is caused by 
a combination of interference and decay. (Interference plays 
a role even though only a single pattern is trained, because 
the patterns reinforced during (re)consolidation may differ 
from the trained pattern.) 

B. Reconsolidation 
As shown in Figure 4, if the pattern is reactivated on day 20, 
then (a) the hippocampal trace is rapidly strengthened, (b) 
the necocortical trace is quickly destabilized and then 
gradually strengthened and restabilized in a round of 
reconsolidation, and (c) the recall performance is somewhat 
improved after the reminder. 

 

 
Figure 4: Reconsolidation. a) Connection weight of a 
hippocampal connection. b) Weight and plasticity of a 

neocortical connection. c) Recall performance (averaged 
results from fifty simulations). 

C. Reactivation followed by HC lesion 
When the HC layer is permanently lesioned after memory 
reactivation, the results are as illustrated in Figure 5: (a) The 

hippocampal trace decays after initial training as in the 
previous simulation and is boosted by the reactivation 
 

 
Figure 5: HC lesioning following reactivation. a) 

Connection weight of a hippocampal connection. b) Weight 
and plasticity of a neocortical connection. c) Recall 

performance (averaged results from fifty simulations). The 
points on the “intact” curve after day 21 show the 

performance of the lesioned system. 
 
on day 20. The plot ends at the hippocampal lesion on day 
21. (b) The neocortical trace evolves as in experiment B 
until day 20, the day of reactivation. Following the HC 
lesion on day 21, instead of being strengthened by 
reconsolidation, the destabilized NC trace rapidly decays. 
(c) The recall performance shows rapid onset of amnesia 
after the hippocampal lesion. 

Discussion 
In spite of a growing number of studies on both humans and 
animals, the neural mechanisms underlying memory 
reconsolidation are not well understood. The present paper 
seeks to contribute to the development of a theory by 
introducing a computational model of reconsolidation.  

The key finding in system memory reconsolidation 
studies is that lesioning after reactivation produces amnesia, 
whereas neither reactivation alone nor lesioning alone 
causes memory impairment (Debiec et al., 2002; Nader & 
Hardt, 2009). With this in mind, it is interesting to compare 
Figures 3-5. Figure 3c shows that, once a memory is 
consolidated in the model, hippocampal lesions without 
preceding memory reactivation have little effect on it, 
whereas Figure 5c illustrates that post-reactivation lesions 
lead to a dramatic drop in recall performance. The cause of 
this difference is that, after reactivation, the plasticity of the 
neocortical trace is high, allowing for rapid decay. In Figure 
4c, on the other hand, where hippocampus is left intact after 
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reactivation, reconsolidation more than compensates for the 
decay, resulting in moderate strengthening of the memory 
trace after reactivation. 

The neural network model presented here is able to 
reproduce the empirical results by simulating micro-
processes that have been hypothesized to underlie memory 
reconsolidation - controlled variability in synaptic plasticity 
and plasticity-dependent synaptic decay rates – and thus 
demonstrates that these mechanisms in fact can account for 
the observed effects. 

An interesting aspect of this model is that it introduces 
decay-driven forgetting, in contrast with the TraceLink 
simulations, where all forgetting was due to interference 
(Meeter & Murre, 2005). It is likely that both types of 
mechanism play important roles in the consolidation and 
maintenance of memories (Hardt et al., 2013), and we are 
planning to apply the model to further investigate the 
relationship between the two. In particular, work in progress 
includes simulations with multiple training patterns, which 
will allow us to study the combined effects of decay and 
even greater interference. 

Another direction in which we are planning to extend this 
work is to apply the model to manifestations of 
reconsolidation other than amnesia after hippocampal 
lesions. These include the effects of protein synthesis 
inhibition (Debiec et al., 2002; Nader et al., 2000) and 
interference training in the reconsolidation window 
(Hupbach, Gomez, Hardt, & Nadel, 2007; Hupbach, Gomez, 
& Nadel, 2009; Walker, Brakefield, Hobson, & Stickgold, 
2003). 
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