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Abstract

Verbal overshadowing refers to a phenomenon whereby
verbalization of a non-verbal stimulus (e.g., he had slant eyes)
impairs subsequent non-verbal recognition accuracy. In order
to understand the mechanism by which this phenomenon
occurs, we constructed a computational model that was
trained to generate an individual-face-specific representation
upon input of a noise-filtered retinotopic face (i.e., face
recognition). When the model verbalized the facial features
before receiving the retinotopic input, the model incorrectly
recognized a new face input as one of the different, yet
visually-similar, trained items (that is, a false-alarm occurred).
In contrast, this recognition error did not occur without prior
verbalization. Close inspection of the model revealed that
verbalization changed the internal representation such that it
lacked the fine-grained information necessary to discriminate
visually-similar  faces. This supports the view that
verbalization causes unavailability/degradation of fine-

grained  non-verbal  representations, thus  impairing
recognition accuracy.
Keywords: verbal overshadowing; face recognition;

computational modeling; verbalization

Introduction

Language is the principal medium for carrying out daily
communications. This is still true when communicating our
non-verbal experiences, such as recounting a crime scene
we have witnessed, or describing the physical appearance of
a criminal. Particularly, if we do not have a record of the
event such as a picture or video, then conveying an
eyewitness memory relies on language. A crucial question
in cognitive science, therefore, is the influence of
verbalization on non-verbal memory. Many studies have
revealed that language has extra-communicative functions,
in that it affects such cognitive functions as perception,
learning, and memory. For example, in a seminal study by
Schooler and Engstler-Schooler (1990), participants
watched a video of a bank robbery for 30 seconds and
following which half of the participants described the
appearance of the bank robber. Subsequently, all of the
participants were shown a line-up that consisted of the bank
robber’s photo and seven distractors. Results revealed that
participants who had verbalized the bank robber’s
appearance were worse at recognizing the target individual
than those who had not, a phenomenon known as verbal
overshadowing. The procedure of these experiments can be
experienced beyond an experimental setting. For example,
during criminal investigations, an eyewitness may provide a
statement describing the appearance of a criminal and

subsequently identify them from a line-up. In such
situations, it is crucial to prevent a false accusation and to
examine the credibility of the eyewitness’s testimony.
Therefore, it is both theoretically and practically important
to clarify the mechanism by which verbal overshadowing
occurs. For this purpose, we constructed a parallel-
distributed processing (PDP) model to simulate the effect of
verbalization on subsequent visual recognition.

A closer review of the literature allows us to gain further
insight into this phenomenon and therefore to establish a
more specific aim for our model. First, although not all of
the past studies have split the recognition scores into
positive and negative trials, false alarm is sometimes more
susceptible to verbalization before recognition than hit rates;
that is, participants often inaccurately identify distractors as
a target rather than miss a correct target (Meissner, Brigham,
& Kelley, 2001). Furthermore, recognition accuracy in this
study was positively correlated with accuracy of the verbal
description prior to recognition. Based on these observations,
Meissner et al. proposed a recording interference account
that assumed verbalization rendered the representations less
accurate (compared to visual representations), thus
impairing subsequent visual recognition.

Second, Kitagami, Sato, & Yoshikawa (2002) revealed
that verbal overshadowing is also sensitive to the degree of
similarity between targets and distractors (manipulated with
a morphing technique). Specifically, verbalization impaired
subsequent visual recognition only when distractors were
highly similar to the target (using a 9-alternative choice task
with a “not present” response choice), but the impairment
disappeared when similarity was low. It is also worth noting
that this manipulation involved a change in the distractors,
but not in the target picture itself. We revisited the original
data and revealed that accuracy was impaired due to the
more frequent choice of a distractor (a false alarm) rather
than an incorrect choice of “not present” (a miss). Schooler
(2002) explained this result with the transfer inappropriate
processing shift hypothesis. This hypothesis assumes that
verbalization induces a processing shift from visual to
verbal, and that a shift to verbal processing makes fine-
grained non-verbal information about faces unavailable.
This non-verbal information is crucial for discriminating the
target from others (see also, Maurer, LeGrand, & Mondroch,
2002), especially in a high-similarity condition (Kitagami et
al., 2002). Although Schooler’s hypothesis does not
necessarily assume a correlation between recognition
accuracy and verbal description accuracy (see also Kitagami
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et al., 2002; Fallshore & Schooler, 1995), this hypothesis
and the recording interference hypothesis by Meissner et al.
(2001) share two ideas: First, both assume that fine-grained
non-verbal information is necessary for face recognition.
Second, both expect that a verbal representation which is
generated during verbalization lacks such fine-grained
information, thus impairing visual recognition.

More recently, Clare and Lewandowsky (2004)
introduced an alternative hypothesis, arguing that
verbalization shifts the criterion threshold such that
participants say “The target is not present in the display”
more frequently when in fact the target is present. Although
this account can explain a range of existing data, two issues
deserve consideration. First, even when a “not present”
response was disallowed (that is, responses were forced
choice), verbal overshadowing was observed in some
studies, especially when elaborative verbalization was
encouraged (Fallshore & Schooler, 1995). Second, the
shifting criterion hypothesis cannot explain the fact that
false alarm is more susceptible to verbalization than hit rate
(Kitagami et al., 2002; Meissner et al., 2001). Thus, as Clare
and Lewandowsky also speculated, there may be two
mechanisms by which verbalization impairs subsequent
visual recognition: One is shifting-criterion (Clare &
Lewandowsky, 2004), and the other is degradation
(Meissner et al., 2001) or unavailability (Schooler, 2002) of
fine-grained non-verbal representations crucial for face
recognition, especially when a distractor is visually
confusing. This study focused on the latter possibility, and
investigated how the nature of representations changes upon
verbalization, and how this affects subsequent visual
recognition. Computational modeling is an effective
approach for this purpose. An explicitly implemented
computational model allows a modeler to directly look at
the nature of computations/representations that are
underpinning a simulated behavior. The PDP model here
was trained for three facial processing tasks: One was to
represent the retinotopic input of a face in a non-verbal
format (visual encoding/recognition); a second was to
activate the correct units for verbal labels upon the same
retinotopic input of a face (verbal encoding); the third was
to represent a face in a non-verbal format upon verbal inputs
(the mental imagery of a face upon verbal cues). After being
trained for these tasks, the model was forced to activate
some verbal units (i.e., verbalization), and we investigated
how this forced activation changed the nature of the
computed representation in the model, and how it affected
subsequent visual encoding of a retinotopic input.

Method

Model Architecture

Figure 1 shows the architecture of the PDP model, built
with LENS software (http://tedlab.mit.edu/~dr/Lens/). Three
peripheral layers were connected bi-directionally with a
single hidden layer. In order to reduce the computational

Hidden layer (20 units)
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Verbal layer i

(6 units)

Visual image layer
(70*60 units)

Retinotopic layer
(70%60 units)
Figure 1: Architecture of the model (Hinton diagram).

demand in this large model, units between layers were
connected sparsely, such that a unit was not connected with
others if the external input/target value of that unit was
always zero (e.g., a unit in the top-left corner). The bottom
layer was named the retinotopic layer, and its activation
patterns represented a filtered (Gaussian noise) face
stimulus. The left layer was named the verbal layer, and
each unit in this layer represented a verbal label for facial
features in a localist manner. The right layer was named the
visual image layer, and its activation pattern represented a
non-filtered (without Gaussian noise) face stimulus. With
this architecture and the representations in each layer, we
trained the model for the three tasks described below.

Tasks

Visual encoding of a face from a retinotopic input (visual
recognition). In this task, retinotopic face pattern was hard-
clamped onto the retinotopic layer. Then, the network was
trained to activate the non-filtered, unique visual face
information of the same person in the visual image layer
(individuation or visual recognition — see later).

Verbal encoding of facial features from a retinotopic
input (verbalization). In this task, the input was the same
as the previous visual recognition task, but the network was
trained to activate the correct verbal units for each presented
face. For example, if the face had slanted eyes, then the
model had to turn on the unit for “slant eyes”, and had to
turn off the unit for “drooping eyes”.

Mental imagery upon verbal cues. In this task, the verbal
labels of facial features were presented onto the verbal layer,
and the network was trained to activate the visual face
information in the visual image layer. As we will explain
later, the accuracy for this task never reached 100% because
different faces sometimes shared the same verbal labels (i.e.,
different targets from the same input pattern).

Recognition. A standard experimental task on human
recognition memory employs a N-alternative forced choice
task to probe recognition process, particularly when
examining verbal overshadowing. The model, however, was
not trained for making an explicit N-alternative forced
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“choice”. Therefore, we should adopt a proper measure to
probe the model’s recognition. It is one of the most
debatable issues in cognitive psychology regarding what
process/mechanism is underpinning recognition. Following
previous studies (e.g., Plaut & Behrmann, 2011), we
examined whether the model could represent item-specific
information (i.e., unique face) as an approximation of
recognition process. If the model computes item-specific
information of an “old” face in the visual layer from a “new”
retinotopic (noisy) input, then it can be considered the
model identifies this input as old face by mistake (especially
after a verbal label for the old face was activated). In this
way, we can at least measure false alarm safely, which is the
target of the current study with this procedure.
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Drooping eyes (thin/big) Slant eyes (thin/big)
Verbal labels Long nose (high/small) Button-shaped nose (big/small)

Thick-lip (bottom/top big) Downturned mouth (parallel/down)

Figure 2: Four examples of the training patterns. Note that
two examples within each half share the same verbal labels,
and thus the same pattern activations in the verbal layer.
(However, they are different faces with different specific
features as shown in the parentheses).

Representations (face stimuli)

Figure 2 shows examples of the face pictures that we
created using montage software
(http://www1.mahoroba.ne.jp/~matumoto/nitaroS.html).
Sixty-four face pictures were created by combining four
types of eyes, four types of nose, and four types of mouth
(see the bottom row of Fig.2 for the possible features) in the
following steps. First, we selected two verbal labels for each
part of the face — slant eyes, drooping eyes, long nose,
button-shaped nose, downturned mouth, and thick lips. Next,
we selected two specific types for each verbal label (e.g.,
slant -eyes [thin] and slant eyes [big] for the label slant eyes,
as shown in the right two faces in Fig. 2). In this way, we
created four types of eyes, nose, and mouth, resulting in 64
different faces by combining 4 by 4 by 4. In order to make
the model trainable, we did not include other features such
as hair. Finally, the size of each picture was 70*60 pixels,
and the color information in each pixel was binarized (i.e.,
black pixel — 1; white pixel — 0). The resultant 4200-bit
vector pattern was used as the target pattern of the visual
image layer in the visual recognition tasks (see second row
of Fig. 2).

The original bit patterns were transformed into the
retinotopic input pattern by smoothing with Gaussian
convolution (SD = 0.5) ( Plaut & Behrmann, 2011). The
original bit patterns were smoothed by Gaussian
convolution (SD = 0.5). In summary, the model had to map
a noise-filtered retinotopic input (top row of Fig. 2) into a
clearer visual representation (second row of Fig. 2), which is
necessary for visual recognition.

The pattern activations in the verbal layer represented the
verbal labels in a localist manner (third row of Fig. 2). For
example, when presented with a retinotopic pattern of the
drooping-eyes, long-nose, and thick-lip face, then the model
had to activate the first, second, and third units of the verbal
layer (the left two cases of Fig. 2 show these examples). In
the mental imagery upon verbal cues task, the same units in
the verbal layer were turned on, and the network was trained
to activate the visual images in the internal image layer. The
accuracy in this task can never be 100% because sometimes
a different target should be generated from the same input
pattern (i.e., the same verbal labels). For example, slant eyes
(thin) and slant eyes (big) shared the same verbal label, slant
eyes. Therefore, the same unit (slant eyes) was turned on for
these two cases, but different output patterns (thin or big
eyes) should be generated in the visual image layer. This is
true to humans: We can imagine various kinds of faces but
cannot specify a unique face by simply hearing “slant eyes,
long nose, and thick lips”. A small amount of Gaussian
noise (SD = 0.2) was added to the input for the hidden layer
to encourage this layer to adopt more polarized outputs.

Training

Among the 64 face patterns, only 55 patterns were presented
during training, and the remaining nine untrained patterns
were used to evaluate the network’s generalization
performance. Furthermore, this allowed us to investigate
how differently the model behaved with the trained faces
(‘old’ items) and untrained faces (‘new’ items), as it was
crucial for us to investigate the effect of verbalization before
the recognition phase (described later in more detail).

In each trial, units in the corresponding layer (retinotopic
or verbal layer) were hard-clamped to their input values, and
the network was allowed to cycle 10 times. In each time
step, the activation spread to the next layer, gradually being
scaled by the values of the interconnecting weights, and
then the network would settle into the steady state (an
attractor). After 10 cycles of updates, the discrepancy
between the output activation pattern generated by the
network and the correct target pattern was calculated, and
the connection strength was adjusted to reduce the
discrepancy. The model was trained with a learning rate of
0.05, and with a decay parameter set to 0.0000001. When
we evaluated the final performance, we used a strict
criterion such that the output was scored correct if the
discrepancy was within 0.5 in every unit of the target layer
(i.e., the activation was less/more than 0.5 if the target was
zero/one for each unit respectively).
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Given that young infants recognize their parents easily, it
would be natural to assume that visual recognition skills are
acquired earlier than an ability to verbalize facial features,
or to imagine a face upon verbal cues.Thus, all 55 of the
face stimuli were first trained for the visual recognition task.
After learning to generate a steady state for more than 50%
of the training items in this task, the other two language-
related tasks were included in the training schedule.

Results

Training tasks

Five independent simulations were run with different
random seeds, and we confirmed consistent results across
five cases. The training finished after 2837 epochs of
training (in each epoch an item appeared once for each task
in a random order), at which point the network’s
performance reached 100% in both the visual recognition
and the verbalization tasks from a retinotopic input for both
trained and untrained items (i.e., generalization). The
accuracy in the visualization task from verbal labels was 0%
(see above for the reason).

Visual recognition with/without verbalization

In order to investigate the visual recognition process of a
retinotopic input after/without verbalization, we recorded
the activation patterns in the visual image layer (right
column of Fig. 3) when the network settled on 10 cycles
after the retinotopic input presentation (left column of Fig.
3). The upper two rows of Fig. 3 show the pattern
activations for a trained (‘old”) face (drooping eyes [thin],
long nose [high], and thick lip [bottom big]) and for a
visually-similar, yet untrained (‘new’) face (drooping eyes
[big]l, long nose [high], and thick lip [bottom big]),
respectively. Both retinotopic inputs were correctly mapped
onto every unit of the visual image layer. This means that
two visually-similar faces were successfully discriminated
(see the bigger eyes represented in the second row), unless
they were preceded by the verbalization process (100%
accuracy in computation of the individual-specific face
information for all the nine untrained items). Next, the
middle two rows of Fig. 3 show the activations for the same
two items as the upper rows but after verbalization.
Specifically, we simulated the following situation: Imagine
that the network had encountered the ‘old” face shown in
top row of Fig. 3 (drooping eyes [thin], long nose [high],
and thick lip [bottom big]), and the network had verbalized
the correct labels (drooping eyes, long nose, and thick lip).
To simulate this situation, the three verbal units for these
labels were manually turned ‘on’ (generating the outputs of
1.0) and the network was allowed to cycle 10 times, during
which the activations spread into the other layers (it updated
its internal status 10 times). After 10 cycles, a retinotopic
input for the trained face (‘target’) and that for the visually-
similar, yet untrained face (‘new’) were presented
respectively, and the network was allowed to update its
status 10 times until each input pattern was mapped onto a

Without verbalization
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Figure 3: Activation patterns in the visual image layer
(right) upon retinotopic inputs (left) for trained ‘old’ face
and for untrained ‘new’ face in the visual recognition task.
Upper two rows: without verbalization. Middle two rows:
after verbalization of a similar ‘old’ face. Bottom row: after
verbalization of a dissimilar ‘old’ face.

steady pattern in the visual image layer (right column). A
visual inspection reveals the retinotopic input for the
visually-similar ‘new’ face (drooping eyes [big]) was
mapped onto the pattern for the ‘old” face (slant eyes [thin])
in the visual image layer (false alarm). Euclid distance of
the output pattern from the target “new” face was larger
than that from the lure “old” face (i.e., similar to the “old”
face pattern). This means that the model actually computed
the item-specific information of the “old” face (false alarm).
The same analysis was conducted for all the nine “new”
items (against its visually-similar “old” face, respectively),
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Activations during recognition (without prior verbalization)
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Figure 4: Internal activation patterns in the hidden layer
(Hinton diagram: more white units denote higher activation

values than black units) at the various kinds of time point
(see main text).

Correct recognition

and averaged across the five individual simulations. The
resultant recognition accuracy was 60% (40% false alarm),
SD = 14.9%, which was significantly lower than 100% (t (4)
= 5.99, p = .003). This confirms that the example result in
Figure 3 is generalized across other patterns. In contrast, the
retinotopic input for the ‘old’ item was mapped onto the
correct pattern (drooping eyes [thin]) in the visual image
layer, though less weakly than when presented without
verbalization (top row). Taken together, these results
confirm that false alarm was more susceptible to
verbalization than hit rate. Finally, the bottom row of Fig. 3
shows the simulated result in the condition where the
distractor was dissimilar to the target. Specifically, the
activation patterns were taken from the same untrained ‘new’
face (drooping eyes [big], long nose [high], and thick lip
[bottom big]), but after activations of the irrelevant verbal
units (slant eyes, button-shaped nose, and downturned
mouth). Thus, the model had encountered a dissimilar
person, and verbalized the dissimilar labels before visual
recognition of a ‘new’ item. As a result, the network did not
settle into the pattern of the dissimilar target face (slant eyes
and downturned mouth), but the represented pattern was
more similar to the correct pattern (drooping eyes and thick
lip). In other words, the model did not confuse the presented
retinotopic input (the ‘new’ face) with the previously
encountered ‘old’, yet dissimilar face, thus avoiding false
alarm in this low-similarity condition (Kitagami et al., 2002).

Finally, in order to understand the mechanism of verbal
overshadowing, the pattern activation in the hidden layer
was measured at the various kinds of time point (Figure 4).
First, the Hinton diagrams at the top row of Figure 4 show

the internal activation patterns when the network
successfully discriminated two visually similar ‘old’ and
‘new’ faces, respectively (shown in the upper panels of Fig.
3). A visual inspection reveals these two representations are
very similar. This concurs with the idea that fine-grained
representations are crucial in face recognition (Maurer et al.,
2002), without which one would be easily mapped to the
other, incorrect, face pattern in the visual image layer (i.e.,
incorrect recognition).

Next, the left diagram of the middle row of Figure 4
shows the activation pattern immediately after verbalization
of ‘drooping eyes, high nose, and thick lips’. As a result,
this internal representation immediately after verbalization
was neither identical with that for visual recognition of the
‘old” face (top left) nor that for visual recognition of the
‘new’ face (top right), concurring with the idea that
verbalization generates the representation that lacks fine-
grained information crucial for face recognition (Maurer et
al., 2002). Though lacking such detailed information, it was
nonetheless closer to the representation for the ‘old” face
(top left) than that for the ‘new’ face (top right). In other
words, the model’s internal status had already moved
towards the pattern for the ‘old’ face. We will explain later
why this representation increased the false alarm of the
model when the distractor was similar to the target.

Discussion

The present computer simulation examined how internal
representations changed upon verbalization and how this
affected  subsequent  visual  recognition.  Without
verbalization, the model represented the correct and unique
pattern activation for each old face and for a visually-similar
new face, respectively, in the visual image layer. This
confirms that the model did not confuse two visually-similar
retinotopic inputs. On the other hand, the model failed to
represent the correct pattern for a new face following the
forced activation of verbal units for an ‘old’, visually-
similar face (i.e., verbalization). Instead, the represented
pattern in the visual layer assimilated to that for the
visually-similar ‘old” face, suggesting that the model could
not differentially recognize the ‘new’ face from the ‘old’
face (a false alarm). Importantly, this assimilation was
weakened when the preceding verbalization included the
features of an ‘old’, yet dissimilar face. Therefore, these
results mirrored Kitagami et al. (2002), who found that
participants’ false alarm increased upon verbalization when
the distractors were similar to the target.

Explicit implementation of a computer model allowed us
to directly look at the internal representations to understand
why the model behaved in this way. In a normal situation
(without verbalization), the model computed very similar,
yet unique, internal representations for retinotopic inputs of
visually-similar faces. This fact is consistent with the idea
that fine-grained representation is necessary for visual
recognition of faces (Maurer et al., 2002), especially when
discriminating a target from similar distractors. When the
model verbalized the facial features, this internal
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representation changed such that it was neither identical to
that of an ‘old’ face, nor that of a “‘new’ face, supporting
the argument that verbalization either degrades the fine-
grained representation (Meissner et al., 2001), or renders it
unavailable (Schooler, 2002). Nonetheless, it was closer to
the representation for the verbalized ‘old” face than to that
of a ‘new’ face. In order to understand why this
representation induced a false alarm for a visually-similar
face, it is useful to describe the general activity of PDP
models here. During training, a PDP network finds a unique
attractor state (a unique abstract pattern in the hidden layer)
associated with each input pattern. Therefore, generating a
correct output is sometimes described as if the internal
activity of the hidden layer falls into its unique attractor
basin. Though they are unique, similar inputs are associated
with similar/neighboring attractor basins (as shown in the
top two panels of Fig. 4). Consequently, if the internal
representation of the model is degraded for some reason, a
similar input can incorrectly drift and fall into the wrong
attractor basin, generating an incorrect output. In the current
model, verbalization generated the internal representation
that lacked fine-grained information crucial for visual
recognition (middle-left row of Fig. 4). Though it lacked
such information, it was nonetheless closer to the
representation of the ‘old’ face (the top and middle left rows
are similar in Fig. 4). In other words, the model’s internal
status had moved towards the attractor basin for the ‘old’
face by wverbalization. In such a situation, a similar
retinotopic input, which would have settled into a unique,
yet similar/neighboring attractor basin without verbalization
(top-right of Fig. 4), was easily captured by the attractor for
the ‘old” face. The resultant (captured) internal activation
pattern is shown in the left bottom row of Fig. 4, which was
more similar to the top-left pattern than the top-right pattern
(i.e., incorrect recognition). This is the mechanism by which
verbalization impairs subsequent recognition, especially
when the distractor is similar to the ‘old’ face. In contrast,
when the dissimilar (inconsistent) labels were verbalized
before visual recognition, the hidden layer activation pattern
was very different to that for a subsequent ‘new’ face (i.e.,
the top and middle right rows are not similar). In this case,
the network is not captured by this dissimilar attractor basin,
as is shown in the bottom right diagram of Fig. 4.

In summary, as the present study has demonstrated, a
computer simulation is a useful tool for investigation of
verbal overshadowing. It is difficult to examine verbal
overshadowing empirically, given that the standard
paradigm involves a single-trial measurement. Therefore,
many participants are necessary for detecting a reliable
effect, and it is difficult to systematically manipulate a
variable as a within-subject factor. In such a situation, it is
worthy to implement a computational model in order to
understand the mechanism and to provide a theory-driven
question that can be empirically testable in human
experiments. Of course, any computational modeling should
be concerned whether the model’s representation/process is
the same as the human’s, but previous studies have

demonstrated that investigating the internal representation
of a model is a useful approach to advance the cognitive
theory (e.g., Plaut & Behrmann 2011). Furthermore, the
current model can be extended to other types of perceptual
stimuli (not just face). Thus, we expect that the present
study would be an important step to clarify the relationship
between language and perception in general. Finally, one
issue deserves consideration: The current model simulated
the increase in false alarm upon verbalization (Kitagami et
al., 2002; Meissner et al., 2001), rather than a missed
response. Although some studies failed to detect a
significant difference between these two measures (Schooler
& Engstler-Schooler, 1990, a recent experimental and
computational study (Clare & Lewandowsky, 2004)
suggested that it was actually the increase in “not present”
responses, a response type that was not implemented in the
current model. A future modeling target would be to
understand the mechanism by which verbalization increases
both “not present” responses and false alarms, of which the
latter particularly occurs when the distractors and targets are
similar.
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