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Abstract
Quantification plays a central role in human reasoning and 
models thereof, but the discovery and development of 
quantification remains an open question. We present  a theory 
of how such concepts are learned from experience in the 
DORA model, a neurally-plausible computational model of 
relational learning and reasoning (Doumas et  al., 2008). The 
same theory accounts  for how concepts of number are 
acquired in this  class of model. We are unaware of any prior 
model that accounts for the development of both 
quantification and number from unstructured (e.g., 
perceptual) input.

Keywords: number;  quantification; relational discovery; 
computational modeling.

Introduction
Quantification and number are key representational 
constructs in human cognition. These concepts are 
foundational in science, mathematics, music,  and many 
other domains of human achievement. Many models of 
cognition rely on these representational primitives (e.g., any 
symbolic model that relies on first-order predicate calculus, 
many Bayesian models such as Piantadosi, Tenenbaum, & 
Goodman’s (2013) model of quantifier discovery, etc.), but 
as Carey (2009, p.  456) notes, “There is no proposal I know 
for a learning mechanism available to non-linguistic 
creatures that can create representations of objects, number, 
agency, or causality from perceptual primitives.”

These concepts share significant semantic overlap ranging 
from their function as predicates over sets of objects 
(Barwise & Cooper, 1981) to innate, scalar ordering (e.g., 
one, two, three & some, many, most; Horn, 1972).  Both sets 
of concepts can be derived from a small set of axioms via 
set theory (i.e., set membership, identity; Van Heijenoort, 
1977). It does not seem unreasonable to consider the 
problem of their acquisition jointly. While there have been 
attempts to explain their acquisition in terms of a 
developmental trajectory from number to quantifiers or vice 
versa (e.g., Gelman & Gallistel, 1978; Carey, 2004), we are 
unaware of any existing model that accounts for the 
development of representations of both quantification and 
number from unstructured (i.e., perceptual) input.

Behavioral Data

Quantification Facts
Behavioral evidence suggests that there are three broad 
areas of difficulty with the acquisition of quantification:  
quantifier spreading,  mapping issues,  and superlative 
quantifiers. 

Quantifier Spreading Philip and his colleagues (1991a, 
1991b) popularized the term quantifier spreading to 
describe a phenomenon first reported by Inhelder & Piaget 
(1964). Children aged six to seven were unable to restrict 
universal quantifiers to a subset of items present in an array 
based on a shared feature. When presented with three purple 
triangles and a purple circle and asked “Are all the triangles 
purple?” the children would respond in the negative. When 
asked for an explanation, a typical response was “The circle 
is purple, too.”

Mapping Issues Brooks & Braine (1996) demonstrated that 
children have more rigid mappings for the quantifiers all 
and each than adults. Children preferred a grouped 
interpretation of all in scenarios such as “All of the roses are 
in a vase” and a distributed, one-to-one interpretation of 
each in scenarios such as “Each of the roses is in a vase”. 
They interpreted scenes where roses were distributed over 
more than one vase as false for the all quantifier and scenes 
where there was not a one-to-one mapping of roses-to-vases 
(e.g., more roses than vases, more vases than roses) as false 
for the each quantifier. Children achieve adult-like 
performance reasoning about all at around age five but do 
not reach adult-like performance reasoning about each until 
age nine.

Superlative Quantifiers Scalar quantifiers can be divided 
into two types: superlative quantifiers that include their 
endpoints (e.g., at most three, three or more) and 
comparative quantifiers that exclude their endpoints (e.g., 
less than four,  more than two). Musolino (2004) showed that 
five-year-old children performed worse on tasks relying on 
superlative quantifiers versus comparative quantifiers. 
Geurts et al. (2010) investigated this phenomenon further 
and showed that the difficulty of acquiring superlative 
quantifiers extended to 11-year-old children. Geurts et al. 
also showed that superlative quantifiers were more difficult 
for adults to process (as shown by higher RTs). Hurewitz et 
al. (2006) found that three-year-olds interpret some as 
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inclusive of all. This result suggests that some undergoes a 
transition from a superlative quantifier to a comparative 
quantifier at some point in development.  

Number Facts
Our discussion of the behavioral data on the acquisition of 
number will focus on three areas: numerosity and counting, 
the linear shift, and operational momentum.

Numerosity and Counting Children as young as two-years-
old can subitize, or determine the numerosity of small sets 
without counting (Gelman & Gallistel,  1978). However, 
three-year-olds struggle with the foundations of counting 
(Grinstead et al., 1997), and have difficulty with cardinality 
(Wynn 1990, 1992). By three-and-a-half, most children 
demonstrate exact judgments of numbers up to four and the 
ability to count to similar magnitudes (Gelman & Gallistel, 
1978; Hurewitz et al., 2006).

The Linear Shift Children initially estimate numerical 
quantities based on a logarithmic scale before undergoing a 
shift to using a linear scale at approximately 12 years of age 
(Siegler & Opfer,  2003). Logarithmic estimations of 
quantity are consistent with a perceptual system that obeys 
the Weber-Fechner law (Fechner, 1860).

Operational Momentum McCrink et al. (2007) showed 
that adults overestimate sums and underestimate differences, 
a phenomenon referred to as operational momentum.  The 
pattern of errors fits a Gaussian distribution if magnitudes 
are represented logarithmically rather than linearly.

Summary of Behavioral Data
Children struggle with the acquisition of concepts of 
quantification and number. Some abilities are present early 
(e.g., subitization at two years) and others develop quickly 
(e.g., developing counting between ages three and three-
and-a-half). Other abilities develop more gradually (e.g., 
restriction of quantifiers) and some developmental 
trajectories extend into adolescence (e.g., the linear shift).  In 
some cases earlier points on the developmental trajectory 
are more compatible with formal logic than the adult norm 
(e.g., some as a superlative quantifier).

Developmental Accounts

Theories of Quantification
Existing accounts of the development of quantification can 
be grouped into three broad categories: connectionist 
models, symbolic models, and Bayesian models (e.g., Clark, 
1996; Carey, 2004; and Piantadosi, Tenenbaum, & 
Goodman, 2013, respectively). Existing connectionist 
models model the association of externally supplied 

symbols such as words with first-order quantifiers. We have 
not found an account that does not assume pre-existing 
symbolic representations such as number1 (Carey, 2004) or 
the set theoretic equivalents of number, the existential 
quantifier, the universal quantifier, or formally equivalent 
items (i.e., cardinality,  non-exhaustion,  exhaustion, and 
membership & identity, respectively; Piantadosi et al., 2013; 
Van Heijenoort, 1977).

Theories of Number
We will examine four classes of models of the acquisition of 
number: connectionist models, spiking-neuron models, 
symbolic models, and Bayesian models.

Connectionist Models of Number Existing connectionist 
models provide an excellent account for the development of 
subitization via associative learning or summation encoding 
(e.g., Ahmad, Casey, & Bale, 2002; Dehaene & Changeux, 
1993; and Verguts & Fias, 2004).  Various models have 
provided an account for innate ordering via unsupervised 
competitive recurrent back-propagation networks (e.g., 
Ahmad et al., 2002) and the association of external symbols 
with existing representations of number via co-occurrence 
(Verguts & Fias, 2004). These models do not address 
phenomena that occur later in development, nor do they 
provide an account for the emergence of symbolic 
representations. 

Spiking-Neuron Models of Number These models focus 
on tying specific abilities or developmental processes to 
what is known about neuronal behavior. Examples include 
modeling number as a consequence of gamma oscillations2 
that predicts subitization behavior that obeys the Weber-
Fechner law (Miller & Kenyon,  2007) and a tuning function 
based on neuronal spike trains that accounts for both 
operational momentum and the linear shift (Prather, 2012).

Symbolic Models of Number Existing symbolic accounts 
either require “explicit external symbols” (e.g., Carey,  2009) 
or assume an existing set of quantifier representations (e.g., 
Gelman & Gallistel,  1978). While these models account for 
many developmental phenomena, they openly assume a pre-
existing cache of symbolic currency to build upon.

Bayesian Models of Number Extant Bayesian models of 
the acquisition of number share the flaws of Bayesian 
models of quantification – they assume set theoretic 
equivalents of number, the existential quantifier, the 
universal quantifier, or formally equivalent items (i.e., 
cardinality, non-exhaustion, exhaustion, and membership & 
identity, respectively; Piantadosi, Tenenbaum, & Goodman, 
2012; Van Heijenoort, 1977).

1 Set theory has demonstrated that quantifiers can be derived from number, and vice versa (Van Heijenoort, 1977).

2 Gamma-band oscillations have been advanced as a candidate for carrying binding information in object representations (Knowlton et al., 
2012).
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Summary of Developmental Accounts
Existing accounts of the development of quantification and 
number can be grouped into connectionist, symbolic,  and 
Bayesian models. While each class of model has strengths, 
all existing models fail to account for the development of 
the symbolic currency such as predicates or set operations 
that they either map to or build upon. Furthermore, no 
existing model has accounted for both domains of concepts 
or all of the key developmental trajectories within a single 
domain.

The DORA Model

Overview

The DORA model is a symbolic connectionist architecture: 
a computational model using a neural network to store and 
manipulate structured representations.  DORA represents 
objects and roles in a distributed fashion - that is, as patterns 
of simultaneous activation over units (analogous to groups 
of neurons) that represent the semantic features of the item 
being encoded.

DORA learns structured representations of properties 
shared between objects by comparing them. Features shared 
between objects receive input from multiple sources and are 
isolated via simple Hebbian learning. The resulting 
representations are comprised of these shared features, are 
independent of any specific objects, and can be bound to 
novel objects encountered in the future.3  When DORA 
compares instances of objects searching for another (e.g., a 
cat searching for a mouse and a sister searching for her 
brother) it learns representations of searcher (comparing the 
cat and sister) and sought (comparing the mouse and the 
brother). When observing a new instance of searching the 
existing representation of sought can apply (i.e., be bound) 
to the sought object.

The representations DORA learns are functionally 
equivalent to single-place predicates that take novel 
arguments. Although the initial representations that DORA 
learns contain extraneous features (e.g., the shared features 
of the cat and sister irrelevant to searcher), comparisons 
between different instances produce representations that are 
progressively more refined (i.e.,  comparing representations 
searcher learned from different instances causes context-
specific features to wash out).

The DORA model represents multi-place relations by 
combining sets of these single-place predicates - e.g.,  after 
learning representations of searcher and sought they can be 
combined to form a representation of the multi-place 
relation searching.  If there is anything invariant about a 
concept (and there must be for us to recognize it), DORA 

can learn a structured representation of it.

Discovery of Quantification and Number
The DORA model learns new representations through a 
process of iterated comparison of items in the object and 
role layer,  where featural overlaps4  are learned as new 
representations.  This process allows for refinement of 
existing representations by comparing them to other existing 
representations or new input.

All quantifiers are learned by comparing instances of 
countable items and extracting numerosity features. There 
are many accounts of how a connectionist model can 
acquire basic numerosity features (e.g., Ahmad et al.,  2002; 
Dehaene & Changeux, 1993; and Verguts & Fias, 2004); 
DORA implements a version of the Metric Array Module 
(Hummel & Holyoak,  2001) which extracts magnitude 
features for any metric dimension, such as numerosity or 
length.

Figure 1: An example of comparing instances of 
countable items. Note that the featural representation of 
3ness is active for higher cardinality sets, at least in 
quantities where subitization is an effective strategy to 
extract numerosity features.

Initial comparisons, especially when the arity of 
compared sets differ, will result in representations of 
quantifiers such as the all node in Figure 1. Note that the 
initial representation in this example contains the 3ness 
node as well. This process allows for the extraction of 
quantifiers such as all, and through additional experience, 
quantifiers such as some. The nodes 3ness and all 
referenced here are purely expository and stand in for the 
perceptual features that map to these concepts just as the 

3 DORA binds representations of roles to fillers (e.g., objects) dynamically (i.e., the  binding of a role to a filler is temporary so that the 
same role can be bound to different fillers in different contexts) via systematic asynchrony of firing (Doumas et al., 2008). In asynchrony-
based binding, roles are bound to their fillers by proximity of firing, with bound roles and fillers firing in direct sequence. For example, to 
bind searcher to cat, and sought to mouse, the units coding the searcher role fire, followed by the units coding cat. Next, the units coding 
the sought role fire followed by the units coding for mouse.

4 As well as non-overlaps, though not as quickly.
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nodes for catness and dogness are collapsed representations 
of the featural invariants present in cats and dogs.

Figure 2: Extraction of the quantity 3.

The same process accounts for the extraction of number 
representations.  As a consequence of this process, concepts 
that are encountered more frequently (all, one, some) will be 
learned before concepts that are encountered less frequently 
(fifteen, at least),  and previously learned concepts can be 
used to bootstrap the learning of future concepts. 
Eventually, pure conceptual representations of frequently 
encountered quantifiers and numbers are extracted through 
repeated comparison.

Figure 3: The resulting representations for frequently 
encountered quantities.

Representational Consequences
The representations shown in Figure 3 are pure set 
representations,  suitable for set operations. They can be 
bound to other relations to create bound sets (solving the 
quantifier spreading problem, assuming that the cognitive 
system has developed both these representations and scope-
limiting representations and has enough WM to bind them 
together). There are some other significant consequences of 
this manner of representation.

Cardinality of the Universal Quantifier All quantifiers are 
learned through experience; there is never a time when a 
quantifier is perceived without being predicated over some 
set. Consequently, the universal quantifier is cardinal.  While 
the cardinality of the universal (and other quantifiers) will 
change based on the specific context it is experienced or 
represented in, it will always possess cardinality. This 
underscores the results from set theory that suggest that 
numbers and quantifiers are formally equivalent (Van 
Heijenoort, 1977).

Place-Value Notation Numeral Systems Commonly 
encountered quantities will be explicitly represented in such 
a system. It is likely that specific quantifiers for the numbers 
one through ten exist in such a system. However, it is 
extremely unlikely that such a system learns a specific 
representation for quantities such as 347.  However, such 
representations can be built form the representational 
currency of lower-order numbers such as three, four,  and 
seven, and a representation for place that takes on features 
of the base of the numeral system (e.g.,  10 for Arabic 
numerals) and magnitude of the base (e.g., two for the 
hundreds place), and so on.

The Way Forward - Count on DORA to 
Quantify Development

Our theory of quantification and number development 
handles three major issues not addressed in current models. 
First, we account for both domains within a single model 
using a small set of principles (e.g.,  comparison-based 
learning, building complex representations from single-
place predicates) and processes. Furthermore, we provide an 
account for how these symbolic representations are 
developed and structured as a consequence without drawing 
from an existing cache of symbolic currency. Finally, our 
model accounts for a wide variety of developmental 
trajectories within each domain using the same set of basic 
parameters and processes,  as well as a wide variety of other 
developmental trajectories.

Unifying Quantification and Number
One of the core goals of framing the acquisition of 
quantification and number within the DORA framework is 
to provide a unified account of their development. Unifying 
both domains as opposite endpoints of a developmental 
trajectory has been attempted (e.g., Gelman & Gallistel, 
1978; Carey, 2004) but such attempts fail to account for the 
intertwined developmental trajectories as they are built on 
assumptions of mastery within a domain as a foundation on 
which to build mastery of the other. The most successful 
Bayesian modeling attempts to account for the development 
of quantification and number are currently instantiated as 
separate Bayesian models built on the same set of priors 
(Piantadosi et al., 2012, 2013).  While unifying Bayesian 
models built on the same set of priors is relatively simple , it 
remains to be done.

Our account of the development of quantification and 
number captures key developmental trajectories in both 
domains as a consequence of comparison-based learning 
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iterating over previously learned concepts and new 
experience. The interactions between the developmental 
trajectories of quantification and number are captured 
because they arise as a natural consequence of learning both 
domains at the same time. These interaction effects forced 
us to deal with both domains simultaneously as modeling 
either quantification or number learning in isolation failed to 
account the developmental facts for either domain. DORA 
cannot model either quantification or number in isolation as 
successfully as it can account for both together.

Symbolic Structure Developed, Not Borrowed
Most accounts of cognition fail to explain where the 
structured symbolic representations they use to solve 
problems come from. Such structures range from predicates, 
set operators, and even quantifiers and cardinality. The core 
function of the DORA model is to extract invariance from 
unstructured (e.g., perceptual) input via comparison. Using a 
comparison-based learning mechanism not only explains 
how such structure arises,  but also what this structure looks 
like. This mechanism creates the representations that many 
models rely upon.

Bayesian models of development rely on an external 
source of structured symbols to build a foundation upon. 
While Bayesian models provide an excellent way to model 
competency, when modeling development they run into 
more fundamental issues than failing to account for where 
the structures they rely on come from. The most successful 
Bayesian models of the development of quantification and 
number competency in people (i.e., Piantadosi et al., 2012, 
2013) rely on priors that are a superset of the concepts they 
claim to develop.  Put simply, they start with the assumption 
that people can already count to three and use the quantifiers 
for existence, some, all, and none. We find it difficult to 
characterize a model as developmental when it assumes its 
outputs as priors.

Modeling Developmental Trajectories
We have provided a brief overview of how DORA learns 
cardinality and number from experience, but we have not 
yet laid out how our model handles the developmental 
trajectories at play.

DORA begins subitizing using the Metric Array Module, 
a simple, neurally plausible mechanism that could easily be 
available to two-year-old children. This mechanism outputs 
magnitude judgments that obey the Weber-Fechner law. 
Logarithmic judgments of magnitude explain why children 
treat numbers and analogous quantifiers such as some as 
superlative quantifiers initially because a point on a 
logarithmic scale corresponds to a range on a linear scale. 
As DORA is exposed to many instances of small sets (as 
children are) it quickly learns to represent small cardinal 
numbers explicitly. These explicit representations do not 
rely on logarithmic magnitude features; consequently, 
children no longer treat these numbers as superlative 
quantifiers.

Children gain working memory as the prefrontal cortex 
matures. Quantifier spreading disappears as children are 
able to marshall the working memory needed to build the 
complex representations required to simultaneously bind a 

quantifier to a scope-limiting representation and match that 
representation to a particular situation. The representations 
for cardinal numbers continue to develop throughout 
childhood as larger and larger numbers become explicitly 
represented, accounting for the linear shift in early puberty.

We account for all of these developmental facts with a 
single set of parameters and simple processes. DORA also 
accounts for over 35 findings surrounding the development 
of relational thinking (Doumas & Hummel, 2010; Doumas 
et al., 2006; Doumas et al., 2008; Sandhofer & Doumas, 
2008), including the relational shift (Rattermann & Gentner, 
1991), the development of relational representations (Smith, 
1984), and the development of shape bias (Abecassis et al., 
2001).

Conclusion
Our proposal is a promising account of how concepts of 
quantifiers and number can be learned from perceptual 
input.  The DORA model’s working memory constraints 
allow a developmental trajectory to be modeled, and make 
specific predictions about how specific types of quantified 
reasoning will fail based on working memory demands, 
such as differing magnitudes of n-back tasks. We are 
exploring these predictions with human participants. 
Crucially,  our model accomplishes these goals using the 
same parameters and processes that have allowed us to 
successfully account for more than 35 developmental 
phenomena in other domains.
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