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Abstract

Quantification plays a central role in human reasoning and
models thereof, but the discovery and development of
quantification remains an open question. We present a theory
of how such concepts are learned from experience in the
DORA model, a neurally-plausible computational model of
relational learning and reasoning (Doumas et al., 2008). The
same theory accounts for how concepts of number are
acquired in this class of model. We are unaware of any prior
model that accounts for the development of both
quantification and number from unstructured (e.g.,
perceptual) input.

Keywords: number; quantification; relational discovery;
computational modeling.

Introduction

Quantification and number are key representational
constructs in human cognition. These concepts are
foundational in science, mathematics, music, and many
other domains of human achievement. Many models of
cognition rely on these representational primitives (e.g., any
symbolic model that relies on first-order predicate calculus,
many Bayesian models such as Piantadosi, Tenenbaum, &
Goodman’s (2013) model of quantifier discovery, etc.), but
as Carey (2009, p. 456) notes, “There is no proposal I know
for a learning mechanism available to non-linguistic
creatures that can create representations of objects, number,
agency, or causality from perceptual primitives.”

These concepts share significant semantic overlap ranging
from their function as predicates over sets of objects
(Barwise & Cooper, 1981) to innate, scalar ordering (e.g.,
one, two, three & some, many, most; Horn, 1972). Both sets
of concepts can be derived from a small set of axioms via
set theory (i.e., set membership, identity; Van Heijenoort,
1977). It does not seem unreasonable to consider the
problem of their acquisition jointly. While there have been
attempts to explain their acquisition in terms of a
developmental trajectory from number to quantifiers or vice
versa (e.g., Gelman & Gallistel, 1978; Carey, 2004), we are
unaware of any existing model that accounts for the
development of representations of both quantification and
number from unstructured (i.e., perceptual) input.

Behavioral Data

Quantification Facts

Behavioral evidence suggests that there are three broad
areas of difficulty with the acquisition of quantification:
quantifier spreading, mapping issues, and superlative
quantifiers.

Quantifier Spreading Philip and his colleagues (1991a,
1991b) popularized the term quantifier spreading to
describe a phenomenon first reported by Inhelder & Piaget
(1964). Children aged six to seven were unable to restrict
universal quantifiers to a subset of items present in an array
based on a shared feature. When presented with three purple
triangles and a purple circle and asked “Are all the triangles
purple?” the children would respond in the negative. When
asked for an explanation, a typical response was “The circle
is purple, too.”

Mapping Issues Brooks & Braine (1996) demonstrated that
children have more rigid mappings for the quantifiers all
and each than adults. Children preferred a grouped
interpretation of all in scenarios such as “All of the roses are
in a vase” and a distributed, one-to-one interpretation of
each in scenarios such as “Each of the roses is in a vase”.
They interpreted scenes where roses were distributed over
more than one vase as false for the all quantifier and scenes
where there was not a one-to-one mapping of roses-to-vases
(e.g., more roses than vases, more vases than roses) as false
for the each quantifier. Children achieve adult-like
performance reasoning about all at around age five but do
not reach adult-like performance reasoning about each until
age nine.

Superlative Quantifiers Scalar quantifiers can be divided
into two types: superlative quantifiers that include their
endpoints (e.g., at most three, three or more) and
comparative quantifiers that exclude their endpoints (e.g.,
less than four, more than two). Musolino (2004) showed that
five-year-old children performed worse on tasks relying on
superlative quantifiers versus comparative quantifiers.
Geurts et al. (2010) investigated this phenomenon further
and showed that the difficulty of acquiring superlative
quantifiers extended to 11-year-old children. Geurts et al.
also showed that superlative quantifiers were more difficult
for adults to process (as shown by higher RTs). Hurewitz et
al. (2006) found that three-year-olds interpret some as
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inclusive of all. This result suggests that some undergoes a
transition from a superlative quantifier to a comparative
quantifier at some point in development.

Number Facts

Our discussion of the behavioral data on the acquisition of
number will focus on three areas: numerosity and counting,
the linear shift, and operational momentum.

Numerosity and Counting Children as young as two-years-
old can subitize, or determine the numerosity of small sets
without counting (Gelman & Gallistel, 1978). However,
three-year-olds struggle with the foundations of counting
(Grinstead et al., 1997), and have difficulty with cardinality
(Wynn 1990, 1992). By three-and-a-half, most children
demonstrate exact judgments of numbers up to four and the
ability to count to similar magnitudes (Gelman & Gallistel,
1978; Hurewitz et al., 2006).

The Linear Shift Children initially estimate numerical
quantities based on a logarithmic scale before undergoing a
shift to using a linear scale at approximately 12 years of age
(Siegler & Opfer, 2003). Logarithmic estimations of
quantity are consistent with a perceptual system that obeys
the Weber-Fechner law (Fechner, 1860).

Operational Momentum McCrink et al. (2007) showed
that adults overestimate sums and underestimate differences,
a phenomenon referred to as operational momentum. The
pattern of errors fits a Gaussian distribution if magnitudes
are represented logarithmically rather than linearly.

Summary of Behavioral Data

Children struggle with the acquisition of concepts of
quantification and number. Some abilities are present early
(e.g., subitization at two years) and others develop quickly
(e.g., developing counting between ages three and three-
and-a-half). Other abilities develop more gradually (e.g.,
restriction of quantifiers) and some developmental
trajectories extend into adolescence (e.g., the linear shift). In
some cases earlier points on the developmental trajectory
are more compatible with formal logic than the adult norm
(e.g., some as a superlative quantifier).

Developmental Accounts

Theories of Quantification

Existing accounts of the development of quantification can
be grouped into three broad categories: connectionist
models, symbolic models, and Bayesian models (e.g., Clark,
1996; Carey, 2004; and Piantadosi, Tenenbaum, &
Goodman, 2013, respectively). Existing connectionist
models model the association of externally supplied

symbols such as words with first-order quantifiers. We have
not found an account that does not assume pre-existing
symbolic representations such as number! (Carey, 2004) or
the set theoretic equivalents of number, the existential
quantifier, the universal quantifier, or formally equivalent
items (i.e., cardinality, non-exhaustion, exhaustion, and
membership & identity, respectively; Piantadosi et al., 2013;
Van Heijenoort, 1977).

Theories of Number

We will examine four classes of models of the acquisition of
number: connectionist models, spiking-neuron models,
symbolic models, and Bayesian models.

Connectionist Models of Number Existing connectionist
models provide an excellent account for the development of
subitization via associative learning or summation encoding
(e.g., Ahmad, Casey, & Bale, 2002; Dehaene & Changeux,
1993; and Verguts & Fias, 2004). Various models have
provided an account for innate ordering via unsupervised
competitive recurrent back-propagation networks (e.g.,
Ahmad et al., 2002) and the association of external symbols
with existing representations of number via co-occurrence
(Verguts & Fias, 2004). These models do not address
phenomena that occur later in development, nor do they
provide an account for the emergence of symbolic
representations.

Spiking-Neuron Models of Number These models focus
on tying specific abilities or developmental processes to
what is known about neuronal behavior. Examples include
modeling number as a consequence of gamma oscillations?
that predicts subitization behavior that obeys the Weber-
Fechner law (Miller & Kenyon, 2007) and a tuning function
based on neuronal spike trains that accounts for both
operational momentum and the linear shift (Prather, 2012).

Symbolic Models of Number Existing symbolic accounts
either require “explicit external symbols” (e.g., Carey, 2009)
or assume an existing set of quantifier representations (e.g.,
Gelman & Gallistel, 1978). While these models account for
many developmental phenomena, they openly assume a pre-
existing cache of symbolic currency to build upon.

Bayesian Models of Number Extant Bayesian models of
the acquisition of number share the flaws of Bayesian
models of quantification — they assume set theoretic
equivalents of number, the existential quantifier, the
universal quantifier, or formally equivalent items (i.e.,
cardinality, non-exhaustion, exhaustion, and membership &
identity, respectively; Piantadosi, Tenenbaum, & Goodman,
2012; Van Heijenoort, 1977).

! Set theory has demonstrated that quantifiers can be derived from number, and vice versa (Van Heijenoort, 1977).

2 Gamma-band oscillations have been advanced as a candidate for carrying binding information in object representations (Knowlton et al.,

2012).
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Summary of Developmental Accounts

Existing accounts of the development of quantification and
number can be grouped into connectionist, symbolic, and
Bayesian models. While each class of model has strengths,
all existing models fail to account for the development of
the symbolic currency such as predicates or set operations
that they either map to or build upon. Furthermore, no
existing model has accounted for both domains of concepts
or all of the key developmental trajectories within a single
domain.

The DORA Model

Overview

The DORA model is a symbolic connectionist architecture:
a computational model using a neural network to store and
manipulate structured representations. DORA represents
objects and roles in a distributed fashion - that is, as patterns
of simultaneous activation over units (analogous to groups
of neurons) that represent the semantic features of the item
being encoded.

DORA learns structured representations of properties
shared between objects by comparing them. Features shared
between objects receive input from multiple sources and are
isolated via simple Hebbian learning. The resulting
representations are comprised of these shared features, are
independent of any specific objects, and can be bound to
novel objects encountered in the future.> When DORA
compares instances of objects searching for another (e.g., a
cat searching for a mouse and a sister searching for her
brother) it learns representations of searcher (comparing the
cat and sister) and sought (comparing the mouse and the
brother). When observing a new instance of searching the
existing representation of sought can apply (i.e., be bound)
to the sought object.

The representations DORA learns are functionally
equivalent to single-place predicates that take novel
arguments. Although the initial representations that DORA
learns contain extraneous features (e.g., the shared features
of the cat and sister irrelevant to searcher), comparisons
between different instances produce representations that are
progressively more refined (i.e., comparing representations
searcher learned from different instances causes context-
specific features to wash out).

The DORA model represents multi-place relations by
combining sets of these single-place predicates - e.g., after
learning representations of searcher and sought they can be
combined to form a representation of the multi-place
relation searching. If there is anything invariant about a
concept (and there must be for us to recognize it), DORA

can learn a structured representation of it.

Discovery of Quantification and Number

The DORA model learns new representations through a
process of iterated comparison of items in the object and
role layer, where featural overlaps* are learned as new
representations. This process allows for refinement of
existing representations by comparing them to other existing
representations or new input.

All quantifiers are learned by comparing instances of
countable items and extracting numerosity features. There
are many accounts of how a connectionist model can
acquire basic numerosity features (e.g., Ahmad et al., 2002;
Dehaene & Changeux, 1993; and Verguts & Fias, 2004);
DORA implements a version of the Metric Array Module
(Hummel & Holyoak, 2001) which extracts magnitude
features for any metric dimension, such as numerosity or
length.
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Figure 1: An example of comparing instances of
countable items. Note that the featural representation of
3ness is active for higher cardinality sets, at least in
quantities where subitization is an effective strategy to
extract numerosity features.

Initial comparisons, especially when the arity of
compared sets differ, will result in representations of
quantifiers such as the all node in Figure 1. Note that the
initial representation in this example contains the 3ness
node as well. This process allows for the extraction of
quantifiers such as all, and through additional experience,
quantifiers such as some. The nodes 3ness and all
referenced here are purely expository and stand in for the
perceptual features that map to these concepts just as the

3 DORA binds representations of roles to fillers (e.g., objects) dynamically (i.e., the binding of a role to a filler is temporary so that the

same role can be bound to different fillers in different contexts) via systematic asynchrony of firing (Doumas et al., 2008). In asynchrony-
based binding, roles are bound to their fillers by proximity of firing, with bound roles and fillers firing in direct sequence. For example, to
bind searcher to cat, and sought to mouse, the units coding the searcher role fire, followed by the units coding cat. Next, the units coding

the sought role fire followed by the units coding for mouse.

4 As well as non-overlaps, though not as quickly.
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nodes for catness and dogness are collapsed representations
of the featural invariants present in cats and dogs.
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Figure 2: Extraction of the quantity 3.

The same process accounts for the extraction of number
representations. As a consequence of this process, concepts
that are encountered more frequently (a//, one, some) will be
learned before concepts that are encountered less frequently
(fifteen, at least), and previously learned concepts can be
used to bootstrap the learning of future concepts.
Eventually, pure conceptual representations of frequently
encountered quantifiers and numbers are extracted through
repeated comparison.
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Figure 3: The resulting representations for frequently
encountered quantities.

Representational Consequences

The representations shown in Figure 3 are pure set
representations, suitable for set operations. They can be
bound to other relations to create bound sets (solving the
quantifier spreading problem, assuming that the cognitive
system has developed both these representations and scope-
limiting representations and has enough WM to bind them
together). There are some other significant consequences of
this manner of representation.

Cardinality of the Universal Quantifier All quantifiers are
learned through experience; there is never a time when a
quantifier is perceived without being predicated over some
set. Consequently, the universal quantifier is cardinal. While
the cardinality of the universal (and other quantifiers) will
change based on the specific context it is experienced or
represented in, it will always possess cardinality. This
underscores the results from set theory that suggest that
numbers and quantifiers are formally equivalent (Van
Heijenoort, 1977).

Place-Value Notation Numeral Systems Commonly
encountered quantities will be explicitly represented in such
a system. It is likely that specific quantifiers for the numbers
one through ten exist in such a system. However, it is
extremely unlikely that such a system learns a specific
representation for quantities such as 347. However, such
representations can be built form the representational
currency of lower-order numbers such as three, four, and
seven, and a representation for place that takes on features
of the base of the numeral system (e.g., 10 for Arabic
numerals) and magnitude of the base (e.g., two for the
hundreds place), and so on.

The Way Forward - Count on DORA to
Quantify Development

Our theory of quantification and number development
handles three major issues not addressed in current models.
First, we account for both domains within a single model
using a small set of principles (e.g., comparison-based
learning, building complex representations from single-
place predicates) and processes. Furthermore, we provide an
account for how these symbolic representations are
developed and structured as a consequence without drawing
from an existing cache of symbolic currency. Finally, our
model accounts for a wide variety of developmental
trajectories within each domain using the same set of basic
parameters and processes, as well as a wide variety of other
developmental trajectories.

Unifying Quantification and Number

One of the core goals of framing the acquisition of
quantification and number within the DORA framework is
to provide a unified account of their development. Unifying
both domains as opposite endpoints of a developmental
trajectory has been attempted (e.g., Gelman & Gallistel,
1978; Carey, 2004) but such attempts fail to account for the
intertwined developmental trajectories as they are built on
assumptions of mastery within a domain as a foundation on
which to build mastery of the other. The most successful
Bayesian modeling attempts to account for the development
of quantification and number are currently instantiated as
separate Bayesian models built on the same set of priors
(Piantadosi et al., 2012, 2013). While unifying Bayesian
models built on the same set of priors is relatively simple , it
remains to be done.

Our account of the development of quantification and
number captures key developmental trajectories in both
domains as a consequence of comparison-based learning
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iterating over previously learned concepts and new
experience. The interactions between the developmental
trajectories of quantification and number are captured
because they arise as a natural consequence of learning both
domains at the same time. These interaction effects forced
us to deal with both domains simultaneously as modeling
either quantification or number learning in isolation failed to
account the developmental facts for either domain. DORA
cannot model either quantification or number in isolation as
successfully as it can account for both together.

Symbolic Structure Developed, Not Borrowed

Most accounts of cognition fail to explain where the
structured symbolic representations they use to solve
problems come from. Such structures range from predicates,
set operators, and even quantifiers and cardinality. The core
function of the DORA model is to extract invariance from
unstructured (e.g., perceptual) input via comparison. Using a
comparison-based learning mechanism not only explains
how such structure arises, but also what this structure looks
like. This mechanism creates the representations that many
models rely upon.

Bayesian models of development rely on an external
source of structured symbols to build a foundation upon.
While Bayesian models provide an excellent way to model
competency, when modeling development they run into
more fundamental issues than failing to account for where
the structures they rely on come from. The most successful
Bayesian models of the development of quantification and
number competency in people (i.e., Piantadosi et al., 2012,
2013) rely on priors that are a superset of the concepts they
claim to develop. Put simply, they start with the assumption
that people can already count to three and use the quantifiers
for existence, some, all, and none. We find it difficult to
characterize a model as developmental when it assumes its
outputs as priors.

Modeling Developmental Trajectories

We have provided a brief overview of how DORA learns
cardinality and number from experience, but we have not
yet laid out how our model handles the developmental
trajectories at play.

DORA begins subitizing using the Metric Array Module,
a simple, neurally plausible mechanism that could easily be
available to two-year-old children. This mechanism outputs
magnitude judgments that obey the Weber-Fechner law.
Logarithmic judgments of magnitude explain why children
treat numbers and analogous quantifiers such as some as
superlative quantifiers initially because a point on a
logarithmic scale corresponds to a range on a linear scale.
As DORA is exposed to many instances of small sets (as
children are) it quickly learns to represent small cardinal
numbers explicitly. These explicit representations do not
rely on logarithmic magnitude features; consequently,
children no longer treat these numbers as superlative
quantifiers.

Children gain working memory as the prefrontal cortex
matures. Quantifier spreading disappears as children are
able to marshall the working memory needed to build the
complex representations required to simultaneously bind a

quantifier to a scope-limiting representation and match that
representation to a particular situation. The representations
for cardinal numbers continue to develop throughout
childhood as larger and larger numbers become explicitly
represented, accounting for the linear shift in early puberty.

We account for all of these developmental facts with a
single set of parameters and simple processes. DORA also
accounts for over 35 findings surrounding the development
of relational thinking (Doumas & Hummel, 2010; Doumas
et al.,, 2006; Doumas et al., 2008; Sandhofer & Doumas,
2008), including the relational shift (Rattermann & Gentner,
1991), the development of relational representations (Smith,
1984), and the development of shape bias (Abecassis et al.,
2001).

Conclusion

Our proposal is a promising account of how concepts of
quantifiers and number can be learned from perceptual
input. The DORA model’s working memory constraints
allow a developmental trajectory to be modeled, and make
specific predictions about how specific types of quantified
reasoning will fail based on working memory demands,
such as differing magnitudes of n-back tasks. We are
exploring these predictions with human participants.
Crucially, our model accomplishes these goals using the
same parameters and processes that have allowed us to
successfully account for more than 35 developmental
phenomena in other domains.
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