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Abstract

The adaptive experimentation methodology has been adopted
in visual psychophysical modeling in the pursuit of efficiency
in experimental time and cost. The standard scheme only
optimizes one design in each experimental stage, although
simultaneous optimization of multiple designs per stage can
be beneficial, but difficult to implement because of a surge in
computation. In this study, we incorporated the adaptive
experimentation methodology under a Bayesian framework
with differential evolution (DE), an algorithm specialized in
multi-dimensional optimization problems to explore the
multiple-designs-per-stage approach. By taking advantage of
parallel computing, DE is computationally fast. The results
showed that the multiple-designs-per-stage scheme resulted in
a more stable estimation in the early stages of the parameter
estimation.
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Not All Designs are Equally Informative

Experimental design is a critical step in carrying out
effective experiments. Traditionally, the practice of
experimental design is guided by heuristic norms, using a
one-shot design, chosen at the outset, throughout the course
of the experiment. Although this approach may be adequate
in some scientific quests, its shortcomings are obvious. First,
not all experimental designs are equally informative. The
traditional approach does not guarantee that the design,
including the number of treatments, the values of treatments,
and the number of participants in each treatment, is an
optimal choice. A non-optimal design may contribute little
to the goal of the experiment. Further, the most informative
designs may change as the experiment progresses with more
responses being observed. Thus, a one-shot design ignores
utilizing what can be learned during the course of an
experiment.

Second, the traditional experimental design method
typically relies on increasing the number of participants or
the number of measurements to increase the power of
statistical inference. Obviously, this increases the
experimental cost, which would matter for experiments that
use expensive technology such as fMRI, or research whose
target population is difficult to recruit (children, senior
citizens, mentally disordered).

Third, the traditional methods of experimental design
center on randomization, reduction of variation, blocking
etc., with the purpose of revealing the group or treatment

effects while ignoring the individual variation. However,
more and more recognition has been given to the importance
of individual differences. For example, in drug development,
it is important to know how different people react
differently to the same drug to guide the prescription. Thus,
experimental designs should not be identical for every
participant.

To illustrate how experimental designs can be unequally
informative, suppose that a researcher is interested in
studying how the rate of detection changes with the
brightness of a stimulus. A psychometric function is used to
describe the probability p of detecting a stimulus of certain
brightness x. A simplified example assumes a sigmoid
function p = 1/(1 + exp(—x + t)), where x is the design
variable representing the brightness and t is the parameter,
threshold, a characteristic associated with a particular
individual, reflected in the shift of the model in the design
dimension. Suppose that there are only 5 possible values of t.
The corresponding predictions are depicted as the five lines
in Figure 1. The red line represents a particular subject’s
true t value and the other four blue lines are from the wrong
t values. The researcher conducts an experiment to estimate
the threshold value of that subject by presenting two designs
with intensity D1 and D2. Visualization of the model
suggests that D1 is a good design because the predictions
from the five t values are very differentiable so that the
observation can be informative of the true t value. On the
other hand, D2 would be a bad design because the
prediction differences are so small that little information
about the exact shift of the true model is given.
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Figure 1: A sample psychometric function with 5 possible
parameter values (see text) with the true value indicated by
the red line and the wrong values by the blue lines. A good
design D1 offers the most discriminability, whereas D2 is a
bad design for a lack of differentiability in prediction.
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Adaptive Experimentation

In practice, we do not possess full knowledge of the
approximate values of good designs because the model can
be quite complex and the range of parameters can be much
larger. In addition, an experiment usually contains multiple
trials, so the best designs at the beginning of an experiment
may be different from those at the later trials of the
experiment. Therefore, an efficient experimentation should
adaptively identify the best design for the current trial based
on the responses already collected from the participant.
Facing these challenges for a better experimental design
regime, a statistical methodology, dubbed adaptive design
optimization (ADO, Cavagnaro et al., 2010; Myung et al.,
2012) under a Bayesian framework has been developed to
meet these needs.

The general framework of ADO is illustrated in Figure 2.
The traditional experimentation starts from a particular
experimental design, with which data are collected, and it
stops at cognitive modeling where data are fit to a proposed
model to make statistical inferences. In contrast, in ADO,
the inference from cognitive modeling continues to
influence the choice the designs for the next experimental
stage. To put it in another way, the whole experiment is
divided into multiple stages, and in each stage, the design is
based on what is learned from the data collected in the
previous stages. By doing that, every selected design is the
most imminently useful one for the immediate trial. As such,
ADO is efficient in a way that it reduces the time, cost of
experiments and the number of participants without
sacrificing the quality of the statistical inferences.

Experiment

Design optimization |« Cognitive modeling

Figure 2: Schematic illustration of ADO paradigm.

There are other desirable features of ADO that make it
more attractive to the traditional experimental methods. It is
found that bad designs not only increase the cost of
experiments, but also deteriorate the quality of data so as to
hurt the final inference. ADO adopts an information
theoretic computational algorithm to ensure the quality of
the selected designs so that the risk of having bad designs is
minimized. Additionally, ADO is able to reveal individual
differences in response strategy or characteristics because
the designs are tailored based on the subject’s responses in
each experiment. Classification of participants can also be
done after individuals’ properties are estimated.

Because of its efficiency and versatility, ADO has found
its usage in various disciplines. It has been used for
designing electrophysiology experiments in neuroscience
(Lewi et al., 2008), drug dosage assignment in clinical drug
development (Miller, et al. 2007), etc. In psychology, it has

been implemented in the discrimination of retention models
in simulations (Cavagnaro et al., 2010) and human
experiments (Cavagnaro et al., 2011).

A promising application of ADO is in psychophysical
experiments with potential clinical applications that put high
stake on the reliability of the results and usually have tight
time restraint on the experiments. In this area, the previous
studies have only optimized one design in each
experimental stage. The difficulty of exploring a different
scheme, multiple designs per stage, lies in a lack of a
smarter algorithm and the increase in computation.

In this paper, we explore ways to improve upon the
current efficiency of ADO by implementing the multiple-
designs-per-stage scheme that is solved with an evolutionary
computation algorithm known as differential evolution (DE).
In what follows, we begin with a brief introduction of the
ADO methodology. We will then review past studies in
adaptive experimentation of visual psychophysics, followed
by a discussion of the motivation and application of the
multiple-designs-per-stage scheme and DE. Finally, we
present and discuss results from ADO simulations.

How ADO Works

In this section, we provide some technical details of ADO.
Readers who prefer to skip technicalities may bypass this
section. Figure 3 is a schematic illustration of the steps
involved in ADO. First, the application of ADO requires
that the model should be formulated as a statistical model
defined as a parametric family of probability distributions,
p(y|o, d)’s, which specifies the probability of observing an
experimental outcome y given a parameter value ¢ and a
design d. As mentioned before, ADO is a circulating process
going through design optimization (DO), experiments and
cognitive modeling. In each round, the process starts with
the assumed or learnt probability distribution of the
parameters, the prior distribution p(8). Next, in the step of
DO, the optimal design d* is selected from a design set D
by the principle of maximum utility.

In DO, a utility function U(d) is pre-defined to quantify
the usefulness of a design d € D for the purpose of the
experiment. For parameter estimation, the utility U(d) of
each design d is the expectation of the local utility u(d, 6, y)
taken over the parameter space and the outcome’s sample
space, formally written as

d"=argmax (U (d))
deD (1)
=argmax [[u(d, 6, y) p(y| 6,d) p(6)dyd®,
y.0

deD

where u(d, 9, y) is defined on a set of particular design d,
parameter value 6 and observation y. The goal of parameter
estimation is to obtain accurate estimation of the true
parameter values with the smallest number of experimental
trials. Functionally, an appropriate utility quantifies the
usefulness of designs in reducing the variation of the
parameter estimates. Or in the language of information
theory, a utility amounts to the information gain or the
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uncertainty reduction of the unknown parameters after
observations are collected. One formulation of utility that
directly quantifies the information gain of the parameter @
with the observation Y is Mutual Information I(Yg;0).
According to the property of mutual information, the utility
U(d) can be written as
U(d)=1(Y,:0)
P 0
~ [[a0g PV 1)) 5y, 1 0) pioydony,

P(yq)
POal%) corresponds to the local utility u(d, 6, y)

P(ya)
in Equation (1).

Two general methods have been used in ADO to solve the
multiple integral problem of Equation (1), grid search and
sequential Monte Carlo (SMC). In grid search, the design
space is discretized and grids are the fixed designs on the
space. To calculate U(d), one way is to discretize the
parameter space also and just replace the integral with
summation. Or we can draw a large sample of (6, y) from
the model’s prior and sampling distribution, and then
calculate Equation (1) by Monte Carlo approximation. On
the other hand, in SMC, solving ADO is recasted as a
probability density simulation problem. The utility function
is extended to a joint distribution with parameters,
observations and designs. By adopting Metropolis-Hasting
algorithm and simulated annealing procedure, the marginal
distribution of d can be obtained. In this paper, we will
present a third method, differential evolution (DE) (Storn &
Price, 1997) as an alternative that is specialized in multi-
dimensional optimization problems.

After DO, the optimal design ds for the current stage will
be presented to the participant. The responses until the
current stage will be used to update the knowledge of the
parameters. Mathematically, we calculate the posterior
probability distribution of the parameters by Bayes’ rule,

_ p(y|d.0)pgy(6)
Pg+1(6|y' d) = T ool

of the parameters of stage g is treated as the prior
distribution of the next stage g+1. And the ADO process
continues.

In which log

. Then the posterior distribution

Adaptive Estimation of Psychometric Function

In visual psychophysics, a major interest is to study the
relationship between the intensity of visual stimuli and their
perception. This relationship is usually modeled by a
psychometric function with two parameters, threshold and
slope. Accurate estimation of the parameter values on
individual level not only provides knowledge of the
underlying psychophysical process, but also assists in the
diagnosis and classification (Lesmes et al., 2010). A major,
practical challenge is that a large number of experimental
trials is often needed to accurately estimate the parameters
with the finding that different design schemes of fixed
patterns produce varying accuracy, precision of parameter
estimation and model fit (Wichmann & Hill, 2001).

Addressing this issue, a variety of adaptive experimental
methods have been proposed for efficient parameter
estimation while the design dimension was restricted to be
one. ADO, as a more general optimization algorithm, is able
to handle large scale, non-linear models with multiple
design variables. Next, within the framework of ADO, the ¥
method (Kontsevish & Tyler, 1999) was developed that can
easily be generalized to incorporate more than one stimulus.
It has been applied to such research as diagnosis of visual
deficit (Lesmes et al., 2010).

Multiple-designs-per-stage Scheme

All the methods mentioned above assume that there is just
one design to be optimized and one response to be collected
in each adaptive estimation stage. It is worthwhile to
explore if there is any benefit when more than one design is
optimized simultaneously and executed in each stage, by
which d in Equation (1) becomes a vector. Intuitively, a
multiple-designs-per-stage approach can be beneficial
because multiple responses are collected jointly in one stage,
and according to the information theory, the joint entropy or
information from a set of random variables is more than or
equal to the sum of entropy from individual variables.
Therefore, we hypothesize that if multiple responses are
collected in one stage, the relationship or synergy of the
responses can benefit the modeling process more than the
case when the responses are collected one by one.
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Figure 3: Schematic illustration of the steps involved in adaptive design optimization (ADO).
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One computational challenge in the application and
implementation of multiple-designs-per-stage scheme is
the curse of dimensionality. Most published studies on
parameter estimation with psychometric functions used
brute-force grid search, which is to fix a certain number
of design points on the design space. Because the
dimension of the design space increases with the number
of designs per stage, the quantity of grids need to enlarge
exponentially to keep a certain resolution, which causes a
waste of computing resource because most of the grids
are far from the best design and not worth being
computed in each stage. As such, it begs for a different
algorithm that suits multi-dimensional optimization
problems in an accurate and efficient way.

Differential Evolution Search

DE is an evolutionary computation algorithm to optimize
nonlinear and non-differentiable continuous functions by
keeping track of, iteratively evolving and updating
multiple particles. A brief explanation of the algorithm is
as follows. To search the global maximum of a D-
dimensional space, it keeps track of NP D-dimensional
vectors x; ¢ (i = 1,2, ..., NP), where NP is the number of
particles and G the generation index. At the beginning,
the vectors can be randomly selected. Then for each target
vector x;, a mutant vector vig.; for the next stage is
generated by v;gyq = X6 + F X (Xpa6 — Xr3,6) Where
rl, r2 and r3 are randomly chosen integers from 1 to NP
except i, and F is a constant factor controlling the
contribution of the difference of the two randomly chosen
vectors. The next step, crossover, creates a trial vector for
each target vector with each element either from the
mutant vector v; or the target vector x;. Then the cost
function values of both the target vector x; and the
mutant vector v; are computed. If the mutant vector
v;yields a smaller cost, the target vector is set to v;.
Otherwise, the target vector is retained from the last
generation. DE is illustrated in Figure 4 with a simple toy
example in which DE was used to search the global
maximum of a bimodal distribution.

Figure 4: lllustration of DE algorithm searching for the
global maximum of a 2-dimensional bimodal distribution.
Initially (left), the particles are randomly selected. At 30"
generation (right), they converged to the larger mode.

DE is a natural approach to our problem of optimizing
multiple designs per stage simultaneously. Because
different particles can be processed independently in one
stage, DE can benefit from parallel computing.
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GPU-based Parallel Computing

Although ADO retains the quality of the data with fewer
trials, the heavy computation of ADO is still an issue to
reckon with, especially in real-time experiments. One
solution to speed up the computation lies in parallel
computing. Traditionally, computer instructions are stored
and processed by a central processing unit (CPU), and
executed in a serial manner. On the other hand, parallel
computing employs multiple cores on a single chip to
perform many independent numerical operations
simultaneously. Graphic processing units (GPUs) were
originally dedicated to processing graphics. However, in
recent years, GPUs are being increasingly popular as a
general-purpose parallel computing tool in image
processing, data mining, and machine learning.

In our previous work, we have implemented GPU
computing to accelerate ADO computing. Compared with
CPU-based ADO, GPU-based ADO is around 100 times
faster, which substantiates the feasibility of using GPU
computing to accelerate the computational speed of ADO
computing (Gu, 2012). Given that the DE algorithm is
intrinsically parallelizable, GPU computing can be
beneficial for accelerating the computation.

In the present work, we implemented DE on graphic
processing units (GPUs) to speed up the ADO
computation.

Simulations

ADO-based parameter estimation of the psychophysical
model in Kontsevich and Tyler (1999) was simulated with
artificial data under the assumption that the data are from
a stationary process with no variation of lapses or learning.
The data-generating model was defined in the following
equations
Y ~ Binomial(, W(Xx));
W(x) = D(r(x)/V2; 4 =0,0=1);
r(x) =10"(10°(x —t)),
2
in  which ®(m; u,o) = V%f_”; exp(— S8 )de; ¥
represents the experimental observation; x, t and s are the
design variable and the parameters, threshold and slope,
transformed in log decimal scale. The range of x, t and s
are set to be (0, 3), (0, 3) and (log0.7, logye7),
respectively. The prior distributions of t and s are both
uniform. In the simulation, the true values for t and s are
set to be 1.5 and logy,3.5 or approximately 0.544.
Multiple designs are optimized at the same time in one
stage by DE algorithm. Computationally, DE is used to
search for the global maximum of the defined utility
function. For a two-alternative forced choice (2AFC)
problem, the response y is either 0 or 1. So the utility
function of an n-dimensional space can be written as
Ud) =3 > u(d,..d,, ¥;-¥p, OP(Y1-Y, | O)P(O),

0 y;=01
in which the parameter space 6 is also discretized so that
the integral in Equation (1) becomes a summation. The


http://en.wikipedia.org/wiki/Central_processing_unit

local utility u(d;...dy, Yi...¥n, 0) is in the form of mutual

information log 2&2-¥nl%,

P(y1..yn)
First the two-designs-per-stage  scheme  was
implemented. Five two-dimensional particles were

generated and shown to be enough for the convergence,
which was evaluated by the closeness of the particles at
the last generation. Until the 50" generation, the 5
particles are identical up to the second decimal number,
indicating that 50 generations are enough for DE to locate
the maximum of the utility space. The algorithm was
coded in parallel computing with a single GPU card,
Tesla C2050 by Nvidia, which contains 448 CUDA cores.
A third party library in C++, Arrayfire, is called to access
the GPU computing function.

One experiment contains a total of 150 stages or 300
trials. To visualize the effect of parameter estimation, the
model predictions based on the prior distribution and the

posterior distribution at the last stage is shown in Figure 5.

On the left, the model prediction is based on the initial
uniform distribution of the two parameters. On the right,
the prediction is based on the posterior distribution of the
150" stage of the two parameters. Compared to the initial
stage, the range of the likely outcome of the model is

much narrowed and concentrated, indicating the
convergence of the estimation.
Initial state 150th stage
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Figure 5: The model predictions based on the prior
distribution (left) and the posterior distribution at the 150"
stage (right). Darker colors indicate high probabilities.
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The joint and marginal posterior distributions of threshold
and slope at the end of the experiment are shown in
Figure 6. Both the posterior distributions tend to converge
to the true values of the parameters. Conforming to the
previous studies, the estimation of the threshold is more
accurate and has less variation in its posterior distribution
while the estimation of slope is less stable.

In each stage, one point estimate is computed for each
parameter by calculating the mean of the distribution. 100
experiments of 150 stages were run. Let 8; be the point
estimate in each stage, and 6, be the true parameter
value, each in log decimal scale. Then we can compute
the average bias and standard deviation of the estimation
in each stage across the 100 experiments by
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Figure 6: The joint and marginal posterior distributions of
threshold and slope at the 300™ trial.

To compare the two-designs-per-stage scheme with the
traditional one-design-per-stage scheme, we ran 100
experiments of 300 stages with one design in each stage
and computed the bias and standard deviation of the
estimates in each stage. Figure 7(a) shows the comparison
between the two different schemes. In the later trials, the
two different schemes do not seem to have significant
differences. There is no significant bias at the 300" trial
for both threshold and slope. The standard deviation of
threshold is about 0.2dB and that of slope is about 1.1dB.
Although the two-designs-per-stage scheme has less
fluctuation in the early stages in the bias of threshold, the
difference may result from the random effect.

Next, the five-designs-per-stage  scheme  was
implemented. Because the dimension increases, 200
generations are needed for DE to converge. One hundred
experiments of 60 stages (300 trials in total still) were run
and the point estimates were computed for each stage.
Figure 7(b) shows the comparison between the five-
designs-per-stage and the one-designs-per-stage schemes.
We can see that there is much less fluctuation in the bias
of threshold for five-designs-per-stage than that of one-
design-per-stage at the early trials, which is consistent
with the improvement in the two-designs-per-stage
scheme. Other than that, there is no obvious difference
between the two schemes.

As expected, simply increasing the number of designs
in one stage while still keeping the total number of trials
constant resulted in improvement in the accuracy of
parameter estimation, at least at the early stages. As we
hypothesized, the relationship or synergy provided by
multiple responses is greater or at least different than the
sum of the information from single responses. We expect
that such improvement can be more obvious when it is
applied to more complex models because in those cases,
more trials are needed for simply exploring the model in



the early stages of an experiment. However, we should
not expect that the performance continues to improve as
the number of designs per stage increases. By the
principle of ADO, a good design should be based on solid
information conveyed by the participants’ responses. A
large number of designs per stage may probe into
unfruitful regions of the design space. A balance must be
sought in deciding how many designs per stage are good
for different models.
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Figure 7: The comparison of one design per stage with
two designs per stage (a) and five designs per stage (b) in
the bias and standard deviation of the estimates of
threshold and slope.

Conclusion

In psychophysical studies, many endeavors have been
made to bring further efficiency to the process in
parameter estimation. One clear direction is in global
optimization or multiple steps ahead to improve the
current greedy method that only evaluates the design
utilities at the next stage. If global optimization provides
the ultimate solution, the approach we studied in this
paper, multiple designs per stage, is an initial step in this
direction. Thus, in this paper, we sought one eclectic
choice between the traditional one-shot experimental
design at the very beginning of an experiment and the
advanced adaptive experimentation with only one design
per stage. The results showed that multiple designs per
stage can benefit the estimation in the early stages of an
experiment. The reason for the benefit is reminiscent of
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holistics in Gestalt psychology and the principle in
information theory, with the multiple responses offering
extra information than the sum of the individual responses.

To realize the optimization of multiple designs in one
stage, we integrated the adaptive design optimization
framework with an evolutionary computation algorithm,
differential evolution, which is specialized in searching a
multi-dimensional space for the purpose of optimization.
DE can also be naturally applied to models that contain
multiple design variables, for which brute-force grid
search is usually applied. DE is less computationally
demanding than grid search when the design space is
large. Other than that, DE can also benefit from parallel
computing to accelerate the computation within each
experimental stage.

As such, DE-based adaptive design optimization has
large potential of applications in the future experiments
for parameter estimation.
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