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Abstract 

The adaptive experimentation methodology has been adopted 
in visual psychophysical modeling in the pursuit of efficiency 
in experimental time and cost. The standard scheme only 
optimizes one design in each experimental stage, although 
simultaneous optimization of multiple designs per stage can 
be beneficial, but difficult to implement because of a surge in 
computation.  In this study, we incorporated the adaptive 
experimentation methodology under a Bayesian framework 
with differential evolution (DE), an algorithm specialized in 
multi-dimensional optimization problems to explore the 
multiple-designs-per-stage approach. By taking advantage of 
parallel computing, DE is computationally fast. The results 
showed that the multiple-designs-per-stage scheme resulted in 
a more stable estimation in the early stages of the parameter 
estimation.  

Keywords: Visual psychophysics, Bayesian inference, 
adaptive estimation, evolutionary computing 

Not All Designs are Equally Informative 

Experimental design is a critical step in carrying out 

effective experiments. Traditionally, the practice of 

experimental design is guided by heuristic norms, using a 

one-shot design, chosen at the outset, throughout the course 

of the experiment. Although this approach may be adequate 

in some scientific quests, its shortcomings are obvious. First, 

not all experimental designs are equally informative. The 

traditional approach does not guarantee that the design, 

including the number of treatments, the values of treatments, 

and the number of participants in each treatment, is an 

optimal choice. A non-optimal design may contribute little 

to the goal of the experiment. Further, the most informative 

designs may change as the experiment progresses with more 

responses being observed. Thus, a one-shot design ignores 

utilizing what can be learned during the course of an 

experiment.   

Second, the traditional experimental design method 

typically relies on increasing the number of participants or 

the number of measurements to increase the power of 

statistical inference. Obviously, this increases the 

experimental cost, which would matter for experiments that 

use expensive technology such as fMRI, or research whose 

target population is difficult to recruit (children, senior 

citizens, mentally disordered).  

Third, the traditional methods of experimental design 

center on randomization, reduction of variation, blocking 

etc., with the purpose of revealing the group or treatment 

effects while ignoring the individual variation. However, 

more and more recognition has been given to the importance 

of individual differences. For example, in drug development, 

it is important to know how different people react 

differently to the same drug to guide the prescription. Thus, 

experimental designs should not be identical for every 

participant. 

To illustrate how experimental designs can be unequally 

informative, suppose that a researcher is interested in 

studying how the rate of detection changes with the 

brightness of a stimulus. A psychometric function is used to 

describe the probability p of detecting a stimulus of certain 

brightness x. A simplified example assumes a sigmoid 

function                   , where x is the design 

variable representing the brightness and t is the parameter, 

threshold, a characteristic associated with a particular 

individual, reflected in the shift of the model in the design 

dimension. Suppose that there are only 5 possible values of t. 

The corresponding predictions are depicted as the five lines 

in Figure 1. The red line represents a particular subject’s 

true t value and the other four blue lines are from the wrong 

t values. The researcher conducts an experiment to estimate 

the threshold value of that subject by presenting two designs 

with intensity D1 and D2.  Visualization of the model 

suggests that D1 is a good design because the predictions 

from the five t values are very differentiable so that the 

observation can be informative of the true t value. On the 

other hand, D2 would be a bad design because the 

prediction differences are so small that little information 

about the exact shift of the true model is given. 

 
Figure 1: A sample psychometric function with 5 possible 

parameter values (see text) with the true value indicated by 

the red line and the wrong values by the blue lines. A good 

design D1 offers the most discriminability, whereas D2 is a 

bad design for a lack of differentiability in prediction. 
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Adaptive Experimentation 

In practice, we do not possess full knowledge of the 

approximate values of good designs because the model can 

be quite complex and the range of parameters can be much 

larger. In addition, an experiment usually contains multiple 

trials, so the best designs at the beginning of an experiment 

may be different from those at the later trials of the 

experiment. Therefore, an efficient experimentation should 

adaptively identify the best design for the current trial based 

on the responses already collected from the participant. 

Facing these challenges for a better experimental design 

regime, a statistical methodology, dubbed adaptive design 

optimization (ADO, Cavagnaro et al., 2010; Myung et al., 

2012) under a Bayesian framework has been developed to 

meet these needs. 

The general framework of ADO is illustrated in Figure 2. 

The traditional experimentation starts from a particular 

experimental design, with which data are collected, and it 

stops at cognitive modeling where data are fit to a proposed 

model to make statistical inferences. In contrast, in ADO, 

the inference from cognitive modeling continues to 

influence the choice the designs for the next experimental 

stage. To put it in another way, the whole experiment is 

divided into multiple stages, and in each stage, the design is 

based on what is learned from the data collected in the 

previous stages. By doing that, every selected design is the 

most imminently useful one for the immediate trial. As such, 

ADO is efficient in a way that it reduces the time, cost of 

experiments and the number of participants without 

sacrificing the quality of the statistical inferences.  

 

 

     

 

 

 

 

 

Figure 2: Schematic illustration of ADO paradigm.  

 

   There are other desirable features of ADO that make it 

more attractive to the traditional experimental methods. It is 

found that bad designs not only increase the cost of 

experiments, but also deteriorate the quality of data so as to 

hurt the final inference. ADO adopts an information 

theoretic computational algorithm to ensure the quality of 

the selected designs so that the risk of having bad designs is 

minimized. Additionally, ADO is able to reveal individual 

differences in response strategy or characteristics because 

the designs are tailored based on the subject’s responses in 

each experiment. Classification of participants can also be 

done after individuals’ properties are estimated.  

   Because of its efficiency and versatility, ADO has found 

its usage in various disciplines. It has been used for 

designing electrophysiology experiments in neuroscience 

(Lewi et al., 2008), drug dosage assignment in clinical drug 

development (Miller, et al. 2007), etc. In psychology, it has 

been implemented in the discrimination of retention models 

in simulations (Cavagnaro et al., 2010) and human 

experiments (Cavagnaro et al., 2011). 

   A promising application of ADO is in psychophysical 

experiments with potential clinical applications that put high 

stake on the reliability of the results and usually have tight 

time restraint on the experiments. In this area, the previous 

studies have only optimized one design in each 

experimental stage. The difficulty of exploring a different 

scheme, multiple designs per stage, lies in a lack of a 

smarter algorithm and the increase in computation.  

   In this paper, we explore ways to improve upon the 

current efficiency of ADO by implementing the multiple-

designs-per-stage scheme that is solved with an evolutionary 

computation algorithm known as differential evolution (DE). 

In what follows, we begin with a brief introduction of the 

ADO methodology. We will then review past studies in 

adaptive experimentation of visual psychophysics, followed 

by a discussion of the motivation and application of the 

multiple-designs-per-stage scheme and DE. Finally, we 

present and discuss results from ADO simulations.  

How ADO Works 

In this section, we provide some technical details of ADO. 

Readers who prefer to skip technicalities may bypass this 

section. Figure 3 is a schematic illustration of the steps 

involved in ADO. First, the application of ADO requires 

that the model should be formulated as a statistical model 

defined as a parametric family of probability distributions, 

p(y|θ, d)’s, which specifies the probability of observing an 

experimental outcome y given a parameter value θ and a 

design d. As mentioned before, ADO is a circulating process 

going through design optimization (DO), experiments and 

cognitive modeling. In each round, the process starts with 

the assumed or learnt probability distribution of the 

parameters, the prior distribution p(θ).  Next, in the step of 

DO, the optimal design d* is selected from a design set D 

by the principle of maximum utility.  

   In DO, a utility function U(d) is pre-defined to quantify 

the usefulness of a design d    for the purpose of the 

experiment. For parameter estimation, the utility U(d) of 

each design d is the expectation of the local utility u(d, θ , y) 

taken over the parameter space and the outcome’s sample 

space, formally written as  

      

*

,

= argmax( ( ))

argmax ( , , ) ( | , ) ( ) ,

d D

d D
y

d U d

u d y p y d p dyd


   





 
      (1) 

where u(d, θ , y) is defined on a set of particular design d, 

parameter value θ and observation y. The goal of parameter 

estimation is to obtain accurate estimation of the true 

parameter values with the smallest number of experimental 

trials. Functionally, an appropriate utility quantifies the 

usefulness of designs in reducing the variation of the 

parameter estimates. Or in the language of information 

theory, a utility amounts to the information gain or the 
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uncertainty reduction of the unknown parameters after 

observations are collected. One formulation of utility that 

directly quantifies the information gain of the parameter Θ 

with the observation Y is Mutual Information I(Yd;Θ). 

According to the property of mutual information, the utility 

U(d) can be written as 

          

) ,

( ) (Y ; )

(y | )
(log ( | ) ( )

( )

d

d
d d

d

U d I

P
p y p d dy

P y


  

 

 

                 

In which log
       

     
 corresponds to the local utility u(d, θ, y) 

in Equation (1). 

   Two general methods have been used in ADO to solve the 

multiple integral problem of Equation (1), grid search and 

sequential Monte Carlo (SMC).  In grid search, the design 

space is discretized and grids are the fixed designs on the 

space. To calculate U(d), one way is to discretize the 

parameter space also and just replace the integral with 

summation. Or we can draw a large sample of (θ, y) from 

the model’s prior and sampling distribution, and then 

calculate Equation (1) by Monte Carlo approximation. On 

the other hand, in SMC, solving ADO is recasted as a 

probability density simulation problem. The utility function 

is extended to a joint distribution with parameters, 

observations and designs. By adopting Metropolis-Hasting 

algorithm and simulated annealing procedure, the marginal 

distribution of d can be obtained. In this paper, we will 

present a third method, differential evolution (DE) (Storn & 

Price, 1997) as an alternative that is specialized in multi-

dimensional optimization problems. 

   After DO, the optimal design ds for the current stage will 

be presented to the participant. The responses until the 

current stage will be used to update the knowledge of the 

parameters. Mathematically, we calculate the posterior 

probability distribution of the parameters by Bayes’ rule, 

            
             

      
  Then the posterior distribution 

of the parameters of stage g is treated as the prior 

distribution of the next stage g+1. And the ADO process 

continues.    

 

 

 

Adaptive Estimation of Psychometric Function  

In visual psychophysics, a major interest is to study the 

relationship between the intensity of visual stimuli and their 

perception. This relationship is usually modeled by a 

psychometric function with two parameters, threshold and 

slope. Accurate estimation of the parameter values on 

individual level not only provides knowledge of the 

underlying psychophysical process, but also assists in the 

diagnosis and classification (Lesmes et al., 2010). A major, 

practical challenge is that a large number of experimental 

trials is often needed to accurately estimate the parameters 

with the finding that different design schemes of fixed 

patterns produce varying accuracy, precision of parameter 

estimation and model fit (Wichmann & Hill, 2001).  

   Addressing this issue, a variety of adaptive experimental 

methods have been proposed for efficient parameter 

estimation while the design dimension was restricted to be
 

one. ADO, as a more general optimization algorithm, is able 

to handle large scale, non-linear models with multiple 

design variables. Next, within the framework of ADO, the Ψ 

method (Kontsevish & Tyler, 1999) was developed that can 

easily be generalized to incorporate more than one stimulus. 

It has been applied to such research as diagnosis of visual 

deficit (Lesmes et al., 2010).   

Multiple-designs-per-stage Scheme 

All the methods mentioned above assume that there is just 

one design to be optimized and one response to be collected 

in each adaptive estimation stage. It is worthwhile to 

explore if there is any benefit when more than one design is 

optimized simultaneously and executed in each stage, by 

which d in Equation (1) becomes a vector. Intuitively, a 

multiple-designs-per-stage approach can be beneficial 

because multiple responses are collected jointly in one stage, 

and according to the information theory, the joint entropy or 

information from a set of random variables is more than or 

equal to the sum of entropy from individual variables. 

Therefore, we hypothesize that if multiple responses are 

collected in one stage, the relationship or synergy of the 

responses can benefit the modeling process more than the 

case when the responses are collected one by one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

                           Figure 3: Schematic illustration of the steps involved in adaptive design optimization (ADO). 
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   One computational challenge in the application and 

implementation of multiple-designs-per-stage scheme is 

the curse of dimensionality. Most published studies on 

parameter estimation with psychometric functions used 

brute-force grid search, which is to fix a certain number 

of design points on the design space. Because the 

dimension of the design space increases with the number 

of designs per stage, the quantity of grids need to enlarge 

exponentially to keep a certain resolution, which causes a 

waste of computing resource because most of the grids 

are far from the best design and not worth being 

computed in each stage. As such, it begs for a different 

algorithm that suits multi-dimensional optimization 

problems in an accurate and efficient way. 

Differential Evolution Search 

DE is an evolutionary computation algorithm to optimize 

nonlinear and non-differentiable continuous functions by 

keeping track of, iteratively evolving and updating 

multiple particles. A brief explanation of the algorithm is 

as follows. To search the global maximum of a D-

dimensional space, it keeps track of NP D-dimensional 

vectors                  , where NP is the number of 

particles and G the generation index. At the beginning, 

the vectors can be randomly selected. Then for each target 

vector    , a mutant vector vi,G+1 for the next stage is 

generated by                (           ) where 

r1, r2 and r3 are randomly chosen integers from 1 to NP 

except i, and F is a constant factor controlling the 

contribution of the difference of the two randomly chosen 

vectors. The next step, crossover, creates a trial vector for 

each target vector with each element either from the 

mutant vector    or the target vector    . Then the cost 

function values of both the target vector     and the 

mutant vector     are computed. If the mutant vector 

  yields a smaller cost, the target vector is set to   . 

Otherwise, the target vector is retained from the last 

generation. DE is illustrated in Figure 4 with a simple toy 

example in which DE was used to search the global 

maximum of a bimodal distribution.  

 
Figure 4: Illustration of DE algorithm searching for the 

global maximum of a 2-dimensional bimodal distribution. 

Initially (left), the particles are randomly selected. At 30
th

 

generation (right), they converged to the larger mode. 

  DE is a natural approach to our problem of optimizing 

multiple designs per stage simultaneously. Because 

different particles can be processed independently in one 

stage, DE can benefit from parallel computing. 

GPU-based Parallel Computing 

Although ADO retains the quality of the data with fewer 

trials, the heavy computation of ADO is still an issue to 

reckon with, especially in real-time experiments. One 

solution to speed up the computation lies in parallel 

computing. Traditionally, computer instructions are stored 

and processed by a central processing unit (CPU), and 

executed in a serial manner. On the other hand, parallel 

computing employs multiple cores on a single chip to 

perform many independent numerical operations 

simultaneously. Graphic processing units (GPUs) were 

originally dedicated to processing graphics. However, in 

recent years, GPUs are being increasingly popular as a 

general-purpose parallel computing tool in image 

processing, data mining, and machine learning. 

   In our previous work, we have implemented GPU 

computing to accelerate ADO computing. Compared with 

CPU-based ADO, GPU-based ADO is around 100 times 

faster, which substantiates the feasibility of using GPU 

computing to accelerate the computational speed of ADO 

computing (Gu, 2012). Given that the DE algorithm is 

intrinsically parallelizable, GPU computing can be 

beneficial for accelerating the computation. 

   In the present work, we implemented DE on graphic 

processing units (GPUs) to speed up the ADO 

computation.  

 

Simulations 

ADO-based parameter estimation of the psychophysical 

model in Kontsevich and Tyler (1999) was simulated with 

artificial data under the assumption that the data are from 

a stationary process with no variation of lapses or learning. 

The data-generating model was defined in the following 

equations 

                           

^

(1, ( ));

( ) ( ( ) / 2; 0, 1);

( ) 10 (10 ( )),s

Y Binomial x

x r x

r x x t

 

 

   

 

 

in which           
 

√  
∫       

      

      
 

  
  Y 

represents the experimental observation; x, t and s are the 

design variable and the parameters, threshold and slope, 

transformed in log decimal scale. The range of x, t and s 

are set to be (0, 3), (0, 3) and (log100.7, log107), 

respectively. The prior distributions of t and s are both 

uniform. In the simulation, the true values for t and s are 

set to be 1.5 and log103.5 or approximately 0.544.  

   Multiple designs are optimized at the same time in one 

stage by DE algorithm. Computationally, DE is used to 

search for the global maximum of the defined utility 

function. For a two-alternative forced choice (2AFC) 

problem, the response y is either 0 or 1. So the utility 

function of an n-dimensional space can be written as 

 

 

in which the parameter space θ is also discretized so that 

the integral in Equation (1) becomes a summation. The 
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local utility u(d1...dn, y1...yn, θ) is in the form of mutual 

information    
          

        
. 

   First the two-designs-per-stage scheme was 

implemented. Five two-dimensional particles were 

generated and shown to be enough for the convergence, 

which was evaluated by the closeness of the particles at 

the last generation. Until the 50
th

 generation, the 5 

particles are identical up to the second decimal number, 

indicating that 50 generations are enough for DE to locate 

the maximum of the utility space. The algorithm was 

coded in parallel computing with a single GPU card, 

Tesla C2050 by Nvidia, which contains 448 CUDA cores. 

A third party library in C++, Arrayfire, is called to access 

the GPU computing function. 

   One experiment contains a total of 150 stages or 300 

trials. To visualize the effect of parameter estimation, the 

model predictions based on the prior distribution and the 

posterior distribution at the last stage is shown in Figure 5. 

On the left, the model prediction is based on the initial 

uniform distribution of the two parameters. On the right, 

the prediction is based on the posterior distribution of the 

150
th

 stage of the two parameters. Compared to the initial 

stage, the range of the likely outcome of the model is 

much narrowed and concentrated, indicating the 

convergence of the estimation. 
 

   

Figure 5: The model predictions based on the prior 

distribution (left) and the posterior distribution at the 150
th

 

stage (right). Darker colors indicate high probabilities. 

 

The joint and marginal posterior distributions of threshold 

and slope at the end of the experiment are shown in 

Figure 6. Both the posterior distributions tend to converge 

to the true values of the parameters. Conforming to the 

previous studies, the estimation of the threshold is more 

accurate and has less variation in its posterior distribution 

while the estimation of slope is less stable. 

In each stage, one point estimate is computed for each 

parameter by calculating the mean of the distribution. 100 

experiments of 150 stages were run. Let    be the point 

estimate in each stage, and       be the true parameter 

value, each in log decimal scale. Then we can compute 

the average bias and standard deviation of the estimation 

in each stage across the 100 experiments by 
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Figure 6: The joint and marginal posterior distributions of 

threshold and slope at the 300
th

 trial. 

 

To compare the two-designs-per-stage scheme with the 

traditional one-design-per-stage scheme, we ran 100 

experiments of 300 stages with one design in each stage 

and computed the bias and standard deviation of the 

estimates in each stage. Figure 7(a) shows the comparison 

between the two different schemes. In the later trials, the 

two different schemes do not seem to have significant 

differences. There is no significant bias at the 300
th

 trial 

for both threshold and slope. The standard deviation of 

threshold is about 0.2dB and that of slope is about 1.1dB. 

Although the two-designs-per-stage scheme has less 

fluctuation in the early stages in the bias of threshold, the 

difference may result from the random effect. 

   Next, the five-designs-per-stage scheme was 

implemented. Because the dimension increases, 200 

generations are needed for DE to converge. One hundred 

experiments of 60 stages (300 trials in total still) were run 

and the point estimates were computed for each stage. 

Figure 7(b) shows the comparison between the five-

designs-per-stage and the one-designs-per-stage schemes. 

We can see that there is much less fluctuation in the bias 

of threshold for five-designs-per-stage than that of one-

design-per-stage at the early trials, which is consistent 

with the improvement in the two-designs-per-stage 

scheme. Other than that, there is no obvious difference 

between the two schemes.  

As expected, simply increasing the number of designs 

in one stage while still keeping the total number of trials 

constant resulted in improvement in the accuracy of 

parameter estimation, at least at the early stages. As we 

hypothesized, the relationship or synergy provided by 

multiple responses is greater or at least different than the 

sum of the information from single responses. We expect 

that such improvement can be more obvious when it is 

applied to more complex models because in those cases, 

more trials are needed for simply exploring the model in 
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the early stages of an experiment. However, we should 

not expect that the performance continues to improve as 

the number of designs per stage increases. By the 

principle of ADO, a good design should be based on solid 

information conveyed by the participants’ responses. A 

large number of designs per stage may probe into 

unfruitful regions of the design space. A balance must be 

sought in deciding how many designs per stage are good 

for different models. 

       

       
Figure 7: The comparison of one design per stage with 

two designs per stage (a) and five designs per stage (b) in 

the bias and standard deviation of the estimates of 

threshold and slope.                   

Conclusion 

In psychophysical studies, many endeavors have been 

made to bring further efficiency to the process in 

parameter estimation. One clear direction is in global 

optimization or multiple steps ahead to improve the 

current greedy method that only evaluates the design 

utilities at the next stage. If global optimization provides 

the ultimate solution, the approach we studied in this 

paper, multiple designs per stage, is an initial step in this 

direction. Thus, in this paper, we sought one eclectic 

choice between the traditional one-shot experimental 

design at the very beginning of an experiment and the 

advanced adaptive experimentation with only one design 

per stage. The results showed that multiple designs per 

stage can benefit the estimation in the early stages of an 

experiment. The reason for the benefit is reminiscent of 

holistics in Gestalt psychology and the principle in 

information theory, with the multiple responses offering 

extra information than the sum of the individual responses.  

   To realize the optimization of multiple designs in one 

stage, we integrated the adaptive design optimization 

framework with an evolutionary computation algorithm, 

differential evolution, which is specialized in searching a 

multi-dimensional space for the purpose of optimization. 

DE can also be naturally applied to models that contain 

multiple design variables, for which brute-force grid 

search is usually applied. DE is less computationally 

demanding than grid search when the design space is 

large. Other than that, DE can also benefit from parallel 

computing to accelerate the computation within each 

experimental stage. 

   As such, DE-based adaptive design optimization has 

large potential of applications in the future experiments 

for parameter estimation. 
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