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Abstract

Cooperation among children can appear haphazard, a finding
often attributed to deficient social skills and moral reasoning.
Here we took a game theoretical approach to understand
development of cooperation, using the prisoner’s dilemma to
test an alternative source of age-differences in cooperative
behavior—how children and adults represent the numerical
magnitudes of payoffs for cooperating versus not. We found
that as incentives increased solely in numerical magnitude,
speed of incentive comparisons decreased and cooperation
increased. Further, though children tended to be more
cooperative than adults, effect of age on cooperation was
moderated by speed of incentive comparison. We conclude
that representations of numeric value constrain how economic
rewards affect cooperation and that children’s greater
cooperativeness may be attributed to a poor sense of
numerical value.

Keywords: Cooperation, Numerical Cognition; Cognitive
Development.

Introduction

Development of cooperation—how it begins, how it
changes over time, and what factors promote it—has invited
speculation for at least 350 years. According to Rousseau
(1754/2007), cooperation is our birthright, society breeds
competition; according to Hobbes (1651/2008), we are
naturally competitive, society promotes cooperation.
Although scientists champion neither position, nearly all
look to the same factors—social constructs—to explain
development of cooperation (Miles, Hare & Tomasello,
2006, Warneken & Tomasello, 2006; 2007, Warneken,
Chen & Tomasello, 2006). Research on the role of social
constructs (i.e., theory of mind, communication, fairness
norms, trust, social tolerance) on development of
cooperation finds support for both views—development
breeds either competition or cooperation, depending on the
context (i.e., Damon, 1975; Lane & Coon, 1972; Piaget,
1932; Warneken & Tomasello, 2006; 2007; Warneken,
Chen & Tomasello, 2006).

One possible way to explain the role of context on
development of cooperation is to consider that cooperation
may result, not only from developing social skills, but also
from how cooperative incentives are mentally represented
(Furlong & Opfer, 2009). This role for incentive structure
has been explored by game theory, which predicts
circumstances under which organisms are likely to
cooperate and tests these predictions using games such as

Prisoner’s Dilemma (PD). Following this approach, we
propose a novel and surprising influence on cooperation—
how children represent numeric value. In the following
sections we: (1) follow Hobbes’ lead and provide a game
theoretical ~analysis linking incentive structure to
cooperative behavior, (2) explain how developing
representations of number affect representation of incentive
structures, and (3) show how this analysis accurately
predicts Rousseau’s claim that cooperation would decrease
with age and experience.

Game Theory Links Incentives to Cooperation

Insight into why cooperation depends heavily on contextual
factors comes from game theory, which makes predictions
about the incentive structures under which organisms are
likely to cooperate. Incentive structures in which small
immediate costs of cooperation are offset by large
immediate benefits, known as mutualisms, commonly lead
to cooperation. Even simple organisms—such as fish and
ants—readily engage in cooperation under mutualist
incentive structures (Bronstein, 2001; Mesterton-Gibbons &
Dugatkin, 1992; Trivers, 1971).

While cooperative mutualisms occur readily throughout
the animal kingdom, reciprocity--in which short-term costs
of cooperation are exchanged in expectation of long-term
benefits--is relatively scarce. Indeed, in many cases, these
exchanges can be explained by simpler mechanisms such as
kin selection, where cooperation does not occur in
expectation of any future exchange (i.e., Maynard-Smith,
1965; Trivers, 1971; Stevens et al, 2005).

Biologists typically account for high mutualism rates and
low reciprocity rates by arguing that mutualism poses
relatively few risks (costs are immediate and relatively low
and benefits are immediate and relatively high), whereas the
additional temporal element of reciprocity makes it fairly
risky (costs are immediate and high and future large benefits
are tenuous and may never realize; Maynard-Smith, 1965;
Stevens et al, 2005; Trivers, 1971). The likelihood of
cooperation depends, therefore, on the relation between
benefits and costs—in other words, its incentive structure.

How incentive structure can affect cooperative behavior is
often examined using the prisoner’s dilemma game
(Clements & Stephens, 1995; Noe, 2006; Rapoport &
Chammah, 1965; Valev & Chater, 2006). The prisoner’s
dilemma can be conceptualized in this way: Suppose two
children, Bonnie and Clyde, have agreed to charge $3 per
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glass in competing lemonade stands. If Bonnie cooperates
and charges $3, she’ll earn $3; however, if she reneges and
drops her price, she may be able to sell more lemonade for a
cheaper price (say, 2 cups for $2.50 each yielding $5). If
both renege, their prices will drop until they sell lemonade
at cost—S$1 per cup. If Clyde drops his price, but Bonnie
does not, Bonnie will lose her clients to Clyde and earn
nothing (Figure 1a).

Generally, if players meet only once, they maximize
rewards by defecting; however, if players interact
repeatedly, they maximize rewards by cooperating (Axelrod
& Hamilton, 1981; Rapoport & Chammah, 1965). Sadly,
even in iterated dilemmas, people and animals tend to defect
(i.e., Baker & Rachlin, 2002; Dawes & Thaler, 1998).
However, reciprocal dilemmas can elicit mutualistic
behavior simply by manipulating incentives—for example,
by changing the reward for mutual cooperation from $3 to
$6 and the temptation to defect from $5 to $8, cooperation
rates increase (Figure 1b; Rapoport & Chammah, 1965;
Valev & Chater, 2006).

(a) A Prisoner’s Dilemma (b) A Mutualism
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Figure 1. Payoff matrices characteristic of Prisoner's
Dilemma (where cooperation is rare) and Mutulism (where
cooperation is common)

Representation of Incentive Structure Depends on
Representation of Numeric Value

Why manipulating incentives results in mutualistic behavior
might be explained by how the brain represents numeric
quantity. Specifically, as numeric values increase,
discriminability decreases; thus, while participants quickly
determine that 5 > 3, they are slower to determine that 8§ > 6
(Moyer & Landauer, 1967; Starkey & Cooper, 1980).

This numeric size effect fits into a broader literature
suggesting non-symbolic numeric quantities may be
represented logarithmically: that the brain overestimates
differences among small quantities and compresses
differences among large quantities (Dehaene, 1997; Nieder
& Miller, 2003). Therefore, the difference between 3 and 5
feels larger than the difference between 6 and 8.

The suggestion that subjective incentives in the brain may
be quite different than objective incentives in the real world

is not new. This is the chief insight of prospect theory
(Kahneman & Tversky, 1979): choices and framing of
incentives may affect their subjective value. As Bernoulli
(1738/1954) famously observed, “a gain of 2000 ducats is
more significant to a pauper than to a rich man though both
gain the same amount.” The framing of incentives—in this
case, the initial endowment—may affect decisions about
those incentives.

Although most theories of decision-making rely on
prospect theory, in which economic value is subject to size
effects (Kahneman & Tversky, 1979), we argue that
numeric value, independent of economic value, can affect
cooperative behavior. This hypothesis leads to an interesting
implication—namely, converting a reciprocal dilemma into
a mutualism may not require manipulating economic values
of incentives; rather, it may be accomplished by
manipulating numeric values alone.

$1 Condition 100¢ Condition
You You
Cooperate Defect Cooperate Defect

g o
s S You- §3 You- $0 T S| vou-300¢ You- 0¢
5' S| Computer-$3 | Computer-$5 ‘5 S | Computer- 300¢ [ Computer- 500¢
£ £
o o
(W [
v 9 You- $5 You- $1 v 9 You- 500¢ You- 100¢
£ % Computer-$0 | Computer-$1 £ 5| Computer-0¢ |Computer-100¢
F o P P (= P i

1¢ Condition $100 Condition
You You
Cooperate Defect Cooperate Defect

& g
E 5 You- 3¢ You- 0¢ $ 5 You- $300 You- $0
S S| Computer-3¢ | Computer-5¢ ‘5 S | Computer- $300 | Computer- $500
Q S Q S
£ £
o o
(W [
v 9 You- 5¢ You- 1¢ v 9 You- $500 You- $100
= % Computer-0¢ | Computer- 1¢ £ 0| Computer-$0 |Computer-$100
F o P P F o P i

Figure 2: Payoff matrices used by Furlong & Opfer (2009).

This surprising hypothesis was recently tested in a series
of experiments in which adult participants played one of
four prisoner’s dilemma games, identical except for
incentive structure (Figure 2; Furlong & Opfer, 2009). As
observed in previous studies, subjects in the baseline ($1)
condition showed relatively high rates of defection and low
rates of cooperation. When rewards were increased a
hundred-fold to $100, however, subjects showed the
opposite behavior—low rates of defection and high rates of
cooperation. This finding could be explained by the standard
economic value model—perhaps subjects cooperated more
in the $100 condition simply because there was more at
stake. On the other hand, subjects may have cooperated
more simply because 100 is a larger number than 1. In
support of the latter explanation, subjects playing for 100¢,
which is economically equivalent to playing for $1 and
numerically equivalent to playing for $100, showed
identical behavior to those playing for $100. Similarly,
subjects in the 1¢ condition behaved identically to those in
the $1 condition, even though the increase from 1¢ to $1
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represents a one hundred fold increase in economic value.
Thus, cooperative behavior changed in response to numeric
value, but not in response to economic value.

These numeric-magnitude effects are consistent with the
idea that numbers associated with payoff values are
represented logarithmically. That is, the linear model
predicts defection whenever the ratio between the reward
for mutual cooperation and the temptation to defect is less
than 1, and because 300¢/ 500¢ equals $3/$5, changing
numeric values would not matter. This preservation of ratio
information does not obtain if numeric values are scaled
logarithmically, as In(300)/In(500) is approximately 1 (i.e.,
temptation to defect and cooperate are nearly equal),
whereas In(3)/In(5) is approximately .68 (i.e., temptation to
defect is higher than temptation to cooperate).

Hypothesized Effects of Developing Number
Representations on Cooperation

In Furlong and Opfer’s (2009) work, big numbers increased
cooperation—a finding predicted by the way the mind
represents non-symbolic quantities to increase
logarithmically with actual value. When representing
symbolic quantities, however, important developmental
differences emerge (see Opfer & Siegler, 2012, for review).
For young preschoolers, numeric symbols are meaningless
stimuli. For example, 2- and 3-year-olds who count
flawlessly from 1-10 have no idea that the number 6 is
greater than the number 4, nor do children of these ages
know how many objects to give an adult who asks for 4 or
more (Le Corre et al., 2006; Opfer, Thompson, & Furlong,
2009; Sarnecka & Carey, 2008). As young children gain
experience with the symbols in a given numerical range and
associate them with non-verbal quantities in that range, they
initially map them to a logarithmically-compressed mental
number line (Berteletti et al., 2010; Booth & Siegler, 2006;
Opfer, Thompson, & Furlong, 2010; Siegler & Booth, 2004;
Siegler & Opfer, 2003; Thompson & Opfer, 2010). Over a
period that typically lasts 1-3 years for a given numerical
range (0-10, 0-100, or 0-1000), their mapping changes from
a logarithmically compressed form to a linear form, in
which subjective and objective numerical values increase in
a 1:1 fashion. Use of linear magnitude representations
occurs earliest for the numerals that are most frequent in the
environment, that is the smallest whole numbers, and it
gradually is applied to increasingly large numbers.

The  logarithmic-to-linear  shift in  children’s
representations of symbolic quantities expands children’s
quantitative thinking profoundly. It improves (1) children’s
ability to estimate the positions of numbers on number lines
(Siegler, Thompson, & Opfer, 2010), (2) to estimate the
measurements of continuous and discrete quantities (Booth
& Siegler, 2006; Laski & Siegler, 2007; Thompson &
Siegler, 2010), (3) to categorize numbers according to size

(Laski & Siegler, 2007; Opfer & Thompson, 2008), (4) to
remember numbers that they have encountered (Thompson
& Siegler, 2010), and (5) to estimate and learn the answers
to arithmetic problems (Booth & Siegler, 2006). All of these
abilities also have important educational roles, leading to
use of linear representations of number being highly
correlated with mathematics achievement and a broadly
effective target of instructional interventions. Thus,
children’s representations of symbolic quantities—Ilike
those used in the payoff matrices of prisoner’s dilemma
games—change dramatically with age and experience.
Developmental differences in representations of symbolic
magnitudes have important implications for how children
and adults are likely to respond to economic incentives.
That is, if representations of numeric quantity affect
cooperative decisions, adults--who are least likely to use
logarithmic representations of symbolic quantity—should
show the smallest effect of numeric value on cooperative
behavior, whereas young children—who are most likely to
use logarithmic representations—should show the largest
effect of numeric value on cooperative behavior. This is a
somewhat surprising and counter-intuitive prediction:
because behavioral variability typically decreases with age,
effect sizes generally increase with age. To test this
hypothesis, we explored the effects of numeric and unit
changes on cooperation in third-grade children, fifth-grade
children and adults engaged in a prisoner’s dilemma game.

Method

Participants

Undergraduate students (23 males, 25 females; M=19.58
years of age, s=1.43), third-grade students (19 males, 29
females; M=9.33 years of age, s=.33) and fifth-grade
students (25 males, 23 females; M=11.06 years of age,
s=.43) from largely middle-class schools were randomly
assigned to play one of four iterated prisoner’s dilemma
games (IPDs) identical except for payoff structure (Figure
2). All participants received a sticker (children) or course
credit (adults) for participating.

Design and Procedure

Participants played IPDs against computers using a “Tit-for-
Tat” (TFT) strategy — initially cooperating and thereafter
mirroring the participant’s behavior on the preceding trial.
Participants received no instruction on strategy but were
told they were going to play a game called “rock/paper” in
which they could earn pretend money (rock was defect and
paper cooperate). They were further instructed that the goal
was to earn as much money as possible, and that the amount
of money they earned depended on how they and the
computer played the game. Participants could click on an
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Figure 3. Cooperation in adults, Sth graders and 3rd graders in the prisoner’s dilemma game.

icon of a piece of paper (cooperate) or a hand in a fist
(defect) to make their choice. Once they made their choice
the computer’s ‘choice’ was presented as well as a running
total of each player’s score. Each participant was allowed as
much time as they wanted to complete each of 45 trials.

The design was a 2 (unit: dollars or cents) X 2 (number: 1
or 100) factorial design resulting in four games, identical
except for payoff structure (Figure 2) — a numerically small
dollars condition ($1), a numerically large cents condition
(100¢), a numerically small cents condition (1¢), and a
numerically large dollars condition ($100).

We measured four indices of cooperative behavior—
individual cooperation (total number of trials in which the
participant cooperated), mutual cooperation (number of
trials in which participant and computer engaged in
cooperation together), mutual defection (number of trials in
which participant and computer defected together) and
forgiveness, a measure of number of trials to cooperate after
the computer’s first defection.

To ensure children understood the monetary conversion,
children were asked, “how many pennies are in a dollar?”
Only one child (a third-grader) answered this question
incorrectly; his data were excluded from analyses.

Additionally, subjects participated in a computerized
number discrimination task in which they were presented
with two numbers (i.e., 3 and 5) and asked to press one of
two keys to indicate which was the larger as quickly and
accurately as possible. Combinations of the numeric values
presented to participants in the numeric discrimination task
were identical to the prisoner's dilemma task.

Results and Discussion

First, we explored effects of number, unit and value on
cooperative behavior in all three age groups. This analysis is
followed by an exploration of the magnitude of the effect of
numeric value on cooperation across ages. Finally, we
explore the relation between numeric representation in the
number comparison task with cooperative behavior in the
prisoner’s dilemma task.

Two (units: dollars, cents) by two (number: 1, 100)
MANOVAs were conducted on the four indices of
cooperation. No age groups showed a main effect of unit,

nor did any age group show an interaction of unit with
number on their cooperative behavior. Further, no age group
showed an effect of economic value (1¢, $1 or $100) on
cooperative behavior.

Cooperation in all three groups, however, varied with
number (Figure 3; Adults: F[4, 41]=2.66, p=.046; 5th
graders: F[4, 41]=5.09, p=.002; 3rd graders: F[4, 41]=3.89,
p=.009). Specifically, numerically greater rewards increased
individual cooperation (Adults: F[1, 44]=10.06, p=.003; 5th
graders: F[1, 44]=10.42, p=.002; 3rd graders: F[I,
441=13.49, p=.001) such that changing rewards from 3¢ to
300¢ increased cooperation rates, but an economically
identical change from 3¢ to $3 did not. The same pattern
was evident in rates of mutual cooperation, where
numerically large rewards elicited more mutual cooperation
than numerically small rewards (Adults: F[1, 44]=7.18,
p=.01; 5th graders: F[1, 44]=9.46, p=.004; 3rd graders: F[1,
441=8.49, p=.006). Further, numerically large rewards
elicited less mutual defection than numerically small ones
(Adults: F[1, 441=9.18, p=.004; Sth graders: F[1, 44]=6.05,
p=.02; 3rd graders: F[1, 44]=9.75, p=.003). While no effect
of number was observed for forgiveness in adults and Sth
graders, 3rd graders did show an effect of number on
forgiveness (F[1, 44]=5.94, p=.02), requiring fewer trials to
‘forgive’ their partner for large numeric values than for
small numeric values.

A 3 (age: 3rd grade, 5th grade, adult) X 2 (number: 1,
100) MANOVA also revealed main effects of age (F[S8,
2721=5.92, p<.001) and number (F[4, 135]=8.30, p<.001)
on cooperation. This effect was observed for individual
cooperation (F[2, 138]=9.57, p<.001) and mutual defection
(FT2, 138]=19.05, p<.001). Results for mutual cooperation
(F12, 138]=2.18, p=.11) and forgiveness F[2, 138]=2.41,
p=.09) trended toward significance. Post-hoc tests revealed
3rd graders had more individual cooperation than both Sth
graders and adults (ps < .01). This pattern held true for
mutual defection (S5th graders: p=.001; adults: p < .001).
Fifth graders and adults did not differ from each other on
individual cooperation (p=.82) but they trended to differ on
mutual defection (p=.06). No differences were found
between the groups on mutual cooperation or forgiveness.
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Figure 4: 3rd graders showed larger effects of number on
individual and mutual cooperation and forgiveness than Sth
graders and adults.

We next compared values of Cohen’s d, a measure of
effect size, for each of the four indices of cooperation in
each of the three age groups. We expected to find a larger
effect of number (a larger value of d) in third-grade children
than in fifth-grade children and adults. This predicted
pattern was indeed observed for three of our four measures
of cooperation: 3rd graders showed a larger effect of
numeric value on individual cooperation (d=1.08), mutual
cooperation (d=1.12) and forgiveness (4=0.70) than Sth

graders  (individual  cooperation:  @=0.95; mutual
cooperation: d=0.90; forgiveness: d=0.31) or adults
(individual cooperation: d=0.93; mutual cooperation:

d=0.78; forgiveness: d=0.30). Effect sizes for mutual
defection were roughly equal across all three groups (3rd:
d=0.92; 5th: d=0.73; adults: d=0.88; Figure 4).

We hypothesized that the age related increases in effect
size were due to number representations, and that the Sth
graders were already demonstrating adult-like number
cognition. Data from individual participants were analysed
to determine whether their reaction times in the number
discrimination task were best fit using a linear difference
between the two comparison numerals (i.e., 5 — 3) or a
logarithmic difference (i.e., In[S] — In[3]). This allowed us to
classify participants are relying on a more linear or more
logarithmic representation.

As predicted, as age increased reliance on a linear
representation increased as well (¥2(2)=4.88, p=.08); 57%
of 3rd graders were best fit by the linear model; 69% of Sth
graders and 77% of adults were best fit by the linear model.
A 2 (representation type: logarithmic or linear) X 2
(number: 1 or 100) MANOVA on cooperation revealed a
significant effect of representation type on cooperation (£[4,
96]=2.78, p=.03) such that participants best fit by the
logarithmic model showed greater individual cooperation (¥
(1, 104)=3.41, p=.06) and mutual defection (F (1,
104)=7.40, p < .01) than participants best fit by the linear
model.

Conclusion

What is the nature of human cooperation? Are we
Rousseauian, naturally cooperative, or are we Hobbesian,
naturally competitive? The answer may be Both: we start
life cooperative (a la Rousseau), but become competitive
with age and experience (a la Hobbes). Our cooperative
decisions may be shaped, however, not just by changing
social influences, but also by developing numeric
representations.

Consistent with this perspective, adults--who represent
numbers relatively precisely--showed more individual and
mutual cooperation and less mutual defection in response to
large numbers, not large economic values. Not only did
third- and fifth-grade children also demonstrate this pattern,
but age related changes in number representation were
associated with changes in cooperation: 3rd graders showed
a larger effect of number than the older children and adults
in individual cooperation, mutual defection and forgiveness.

Further, numerical representations predicted individual
cooperation, mutual cooperation, defection and forgiveness
rates; subjects who relied more on logarithmic
representations demonstrated higher rates of individual and
mutual cooperation, lower rates of mutual defection, and
took less time to forgive their partner than subjects who
relied more on linear representations. These results suggest
that logarithmic representations may make it harder to
discriminate incentives, resulting in them being treated more
like a cooperative mutualism than a reciprocity.

Our results may be able to shed light on previous findings
that children appear Hobbesian or Rousseauian depending
on the context (Damon, 1975; Lane & Coon, 1972; Piaget,
1932; Warneken & Tomasello, 2006, 2007, Warneken,
Chen & Tomasello, 2006). Perhaps these inconsistencies in
cooperation can be explained by how costs and benefits are
represented in the minds of children. Children may be more
likely to cooperate in tasks in which they perceive the costs
to be minimal and/or the benefits large (e.g., holding a door
open for a stranger), but may be less likely to cooperate in
tasks in which they perceive the costs to be large and the
benefits minimal (e.g., providing another child with a
reward out of one’s own stock).

Thus, while it may not be possible to definitively resolve
the Hobbes-Rousseau debate, the combination of game
theory and psychology of number may make it possible to
predict which circumstances incentive cooperation. Put
simply, children may be more Rousseauian when costs and
benefits are hard to discriminate, but more Hobbesian when
they are easily discriminable.
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