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Abstract 

Cooperation among children can appear haphazard, a finding 
often attributed to deficient social skills and moral reasoning. 
Here we took a game theoretical approach to understand 
development of cooperation, using the prisoner’s dilemma to 
test an alternative source of age-differences in cooperative 
behavior—how children and adults represent the numerical 
magnitudes of payoffs for cooperating versus not. We found 
that as incentives increased solely in numerical magnitude, 
speed of incentive comparisons decreased and cooperation 
increased. Further, though children tended to be more 
cooperative than adults, effect of age on cooperation was 
moderated by speed of incentive comparison. We conclude 
that representations of numeric value constrain how economic 
rewards affect cooperation and that children’s greater 
cooperativeness may be attributed to a poor sense of 
numerical value. 

Keywords: Cooperation; Numerical Cognition; Cognitive 
Development. 

Introduction 
Development of cooperation—how it begins, how it 
changes over time, and what factors promote it—has invited 
speculation for at least 350 years. According to Rousseau 
(1754/2007), cooperation is our birthright, society breeds 
competition; according to Hobbes (1651/2008), we are 
naturally competitive, society promotes cooperation. 
Although scientists champion neither position, nearly all 
look to the same factors—social constructs—to explain 
development of cooperation (Miles, Hare & Tomasello, 
2006; Warneken & Tomasello, 2006; 2007; Warneken, 
Chen & Tomasello, 2006). Research on the role of social 
constructs (i.e., theory of mind, communication, fairness 
norms, trust, social tolerance) on development of 
cooperation finds support for both views—development 
breeds either competition or cooperation, depending on the 
context (i.e., Damon, 1975; Lane & Coon, 1972; Piaget, 
1932; Warneken & Tomasello, 2006; 2007; Warneken, 
Chen & Tomasello, 2006).  

One possible way to explain the role of context on 
development of cooperation is to consider that cooperation 
may result, not only from developing social skills, but also 
from how cooperative incentives are mentally represented 
(Furlong & Opfer, 2009). This role for incentive structure 
has been explored by game theory, which predicts 
circumstances under which organisms are likely to 
cooperate and tests these predictions using games such as 

Prisoner’s Dilemma (PD). Following this approach, we 
propose a novel and surprising influence on cooperation—
how children represent numeric value. In the following 
sections we: (1) follow Hobbes’ lead and provide a game 
theoretical analysis linking incentive structure to 
cooperative behavior, (2) explain how developing 
representations of number affect representation of incentive 
structures, and (3) show how this analysis accurately 
predicts Rousseau’s claim that cooperation would decrease 
with age and experience. 

Game Theory Links Incentives to Cooperation 
Insight into why cooperation depends heavily on contextual 
factors comes from game theory, which makes predictions 
about the incentive structures under which organisms are 
likely to cooperate. Incentive structures in which small 
immediate costs of cooperation are offset by large 
immediate benefits, known as mutualisms, commonly lead 
to cooperation. Even simple organisms—such as fish and 
ants—readily engage in cooperation under mutualist 
incentive structures (Bronstein, 2001; Mesterton-Gibbons & 
Dugatkin, 1992; Trivers, 1971). 

While cooperative mutualisms occur readily throughout 
the animal kingdom, reciprocity--in which short-term costs 
of cooperation are exchanged in expectation of long-term 
benefits--is relatively scarce. Indeed, in many cases, these 
exchanges can be explained by simpler mechanisms such as 
kin selection, where cooperation does not occur in 
expectation of any future exchange (i.e., Maynard-Smith, 
1965; Trivers, 1971; Stevens et al, 2005). 

Biologists typically account for high mutualism rates and 
low reciprocity rates by arguing that mutualism poses 
relatively few risks (costs are immediate and relatively low 
and benefits are immediate and relatively high), whereas the 
additional temporal element of reciprocity makes it fairly 
risky (costs are immediate and high and future large benefits 
are tenuous and may never realize; Maynard-Smith, 1965; 
Stevens et al, 2005; Trivers, 1971). The likelihood of 
cooperation depends, therefore, on the relation between 
benefits and costs—in other words, its incentive structure. 

How incentive structure can affect cooperative behavior is 
often examined using the prisoner’s dilemma game 
(Clements & Stephens, 1995; Noe, 2006; Rapoport & 
Chammah, 1965; Valev & Chater, 2006). The prisoner’s 
dilemma can be conceptualized in this way: Suppose two 
children, Bonnie and Clyde, have agreed to charge $3 per 
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glass in competing lemonade stands. If Bonnie cooperates 
and charges $3, she’ll earn $3; however, if she reneges and 
drops her price, she may be able to sell more lemonade for a 
cheaper price (say, 2 cups for $2.50 each yielding $5). If 
both renege, their prices will drop until they sell lemonade 
at cost—$1 per cup. If Clyde drops his price, but Bonnie 
does not, Bonnie will lose her clients to Clyde and earn 
nothing (Figure 1a).  

Generally, if players meet only once, they maximize 
rewards by defecting; however, if players interact 
repeatedly, they maximize rewards by cooperating (Axelrod 
& Hamilton, 1981; Rapoport & Chammah, 1965). Sadly, 
even in iterated dilemmas, people and animals tend to defect 
(i.e., Baker & Rachlin, 2002; Dawes & Thaler, 1998). 
However, reciprocal dilemmas can elicit mutualistic 
behavior simply by manipulating incentives—for example, 
by changing the reward for mutual cooperation from $3 to 
$6 and the temptation to defect from $5 to $8, cooperation 
rates increase (Figure 1b; Rapoport & Chammah, 1965; 
Valev & Chater, 2006). 

 
Figure 1. Payoff matrices characteristic of Prisoner's 

Dilemma (where cooperation is rare) and Mutulism (where 
cooperation is common) 

Representation of Incentive Structure Depends on 
Representation of Numeric Value 
Why manipulating incentives results in mutualistic behavior 
might be explained by how the brain represents numeric 
quantity. Specifically, as numeric values increase, 
discriminability decreases; thus, while participants quickly 
determine that 5 > 3, they are slower to determine that 8 > 6 
(Moyer & Landauer, 1967; Starkey & Cooper, 1980).  

This numeric size effect fits into a broader literature 
suggesting non-symbolic numeric quantities may be 
represented logarithmically: that the brain overestimates 
differences among small quantities and compresses 
differences among large quantities (Dehaene, 1997; Nieder 
& Miller, 2003). Therefore, the difference between 3 and 5 
feels larger than the difference between 6 and 8.  

The suggestion that subjective incentives in the brain may 
be quite different than objective incentives in the real world 

is not new. This is the chief insight of prospect theory 
(Kahneman & Tversky, 1979): choices and framing of 
incentives may affect their subjective value. As Bernoulli 
(1738/1954) famously observed, “a gain of 2000 ducats is 
more significant to a pauper than to a rich man though both 
gain the same amount.” The framing of incentives—in this 
case, the initial endowment—may affect decisions about 
those incentives.  

Although most theories of decision-making rely on 
prospect theory, in which economic value is subject to size 
effects (Kahneman & Tversky, 1979), we argue that 
numeric value, independent of economic value, can affect 
cooperative behavior. This hypothesis leads to an interesting 
implication—namely, converting a reciprocal dilemma into 
a mutualism may not require manipulating economic values 
of incentives; rather, it may be accomplished by 
manipulating numeric values alone.  

 
Figure 2: Payoff matrices used by Furlong & Opfer (2009).  

 
This surprising hypothesis was recently tested in a series 

of experiments in which adult participants played one of 
four prisoner’s dilemma games, identical except for 
incentive structure (Figure 2; Furlong & Opfer, 2009). As 
observed in previous studies, subjects in the baseline ($1) 
condition showed relatively high rates of defection and low 
rates of cooperation. When rewards were increased a 
hundred-fold to $100, however, subjects showed the 
opposite behavior—low rates of defection and high rates of 
cooperation. This finding could be explained by the standard 
economic value model—perhaps subjects cooperated more 
in the $100 condition simply because there was more at 
stake. On the other hand, subjects may have cooperated 
more simply because 100 is a larger number than 1. In 
support of the latter explanation, subjects playing for 100¢, 
which is economically equivalent to playing for $1 and 
numerically equivalent to playing for $100, showed 
identical behavior to those playing for $100. Similarly, 
subjects in the 1¢ condition behaved identically to those in 
the $1 condition, even though the increase from 1¢ to $1 
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represents a one hundred fold increase in economic value. 
Thus, cooperative behavior changed in response to numeric 
value, but not in response to economic value.  

These numeric-magnitude effects are consistent with the 
idea that numbers associated with payoff values are 
represented logarithmically. That is, the linear model 
predicts defection whenever the ratio between the reward 
for mutual cooperation and the temptation to defect is less 
than 1, and because 300¢/ 500¢ equals $3/$5, changing 
numeric values would not matter. This preservation of ratio 
information does not obtain if numeric values are scaled 
logarithmically, as ln(300)/ln(500) is approximately 1 (i.e., 
temptation to defect and cooperate are nearly equal), 
whereas ln(3)/ln(5) is approximately .68 (i.e., temptation to 
defect is higher than temptation to cooperate). 

Hypothesized Effects of Developing Number 
Representations on Cooperation 
In Furlong and Opfer’s (2009) work, big numbers increased 
cooperation—a finding predicted by the way the mind 
represents non-symbolic quantities to increase 
logarithmically with actual value. When representing 
symbolic quantities, however, important developmental 
differences emerge (see Opfer & Siegler, 2012, for review). 
For young preschoolers, numeric symbols are meaningless 
stimuli. For example, 2- and 3-year-olds who count 
flawlessly from 1-10 have no idea that the number 6 is 
greater than the number 4, nor do children of these ages 
know how many objects to give an adult who asks for 4 or 
more (Le Corre et al., 2006; Opfer, Thompson, & Furlong, 
2009; Sarnecka & Carey, 2008). As young children gain 
experience with the symbols in a given numerical range and 
associate them with non-verbal quantities in that range, they 
initially map them to a logarithmically-compressed mental 
number line (Berteletti et al., 2010; Booth & Siegler, 2006; 
Opfer, Thompson, & Furlong, 2010; Siegler & Booth, 2004; 
Siegler & Opfer, 2003; Thompson & Opfer, 2010). Over a 
period that typically lasts 1-3 years for a given numerical 
range (0-10, 0-100, or 0-1000), their mapping changes from 
a logarithmically compressed form to a linear form, in 
which subjective and objective numerical values increase in 
a 1:1 fashion. Use of linear magnitude representations 
occurs earliest for the numerals that are most frequent in the 
environment, that is the smallest whole numbers, and it 
gradually is applied to increasingly large numbers.  

The logarithmic-to-linear shift in children’s 
representations of symbolic quantities expands children’s 
quantitative thinking profoundly. It improves (1) children’s 
ability to estimate the positions of numbers on number lines 
(Siegler, Thompson, & Opfer, 2010), (2) to estimate the 
measurements of continuous and discrete quantities (Booth 
& Siegler, 2006; Laski & Siegler, 2007; Thompson & 
Siegler, 2010), (3) to categorize numbers according to size 

(Laski & Siegler, 2007; Opfer & Thompson, 2008), (4) to 
remember numbers that they have encountered (Thompson 
& Siegler, 2010), and (5) to estimate and learn the answers 
to arithmetic problems (Booth & Siegler, 2006). All of these 
abilities also have important educational roles, leading to 
use of linear representations of number being highly 
correlated with mathematics achievement and a broadly 
effective target of instructional interventions. Thus, 
children’s representations of symbolic quantities—like 
those used in the payoff matrices of prisoner’s dilemma 
games—change dramatically with age and experience. 

Developmental differences in representations of symbolic 
magnitudes have important implications for how children 
and adults are likely to respond to economic incentives. 
That is, if representations of numeric quantity affect 
cooperative decisions, adults--who are least likely to use 
logarithmic representations of symbolic quantity—should 
show the smallest effect of numeric value on cooperative 
behavior, whereas young children—who are most likely to 
use logarithmic representations—should show the largest 
effect of numeric value on cooperative behavior. This is a 
somewhat surprising and counter-intuitive prediction: 
because behavioral variability typically decreases with age, 
effect sizes generally increase with age. To test this 
hypothesis, we explored the effects of numeric and unit 
changes on cooperation in third-grade children, fifth-grade 
children and adults engaged in a prisoner’s dilemma game. 

Method 

Participants 
Undergraduate students (23 males, 25 females; M=19.58 
years of age, s=1.43), third-grade students (19 males, 29 
females; M=9.33 years of age, s=.33) and fifth-grade 
students (25 males, 23 females; M=11.06 years of age, 
s=.43) from largely middle-class schools were randomly 
assigned to play one of four iterated prisoner’s dilemma 
games (IPDs) identical except for payoff structure (Figure 
2). All participants received a sticker (children) or course 
credit (adults) for participating.  

Design and Procedure  
Participants played IPDs against computers using a “Tit-for-
Tat” (TFT) strategy – initially cooperating and thereafter 
mirroring the participant’s behavior on the preceding trial. 
Participants received no instruction on strategy but were 
told they were going to play a game called “rock/paper” in 
which they could earn pretend money (rock was defect and 
paper cooperate). They were further instructed that the goal 
was to earn as much money as possible, and that the amount 
of money they earned depended on how they and the 
computer played the game. Participants could click on an
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Figure 3. Cooperation in adults, 5th graders and 3rd graders in the prisoner’s dilemma game.  
 

icon of a piece of paper (cooperate) or a hand in a fist 
(defect) to make their choice. Once they made their choice 
the computer’s ‘choice’ was presented as well as a running 
total of each player’s score. Each participant was allowed as 
much time as they wanted to complete each of 45 trials.  

The design was a 2 (unit: dollars or cents) X 2 (number: 1 
or 100) factorial design resulting in four games, identical 
except for payoff structure (Figure 2) – a numerically small 
dollars condition ($1), a numerically large cents condition 
(100¢), a numerically small cents condition (1¢), and a 
numerically large dollars condition ($100).   

We measured four indices of cooperative behavior—
individual cooperation (total number of trials in which the 
participant cooperated), mutual cooperation (number of 
trials in which participant and computer engaged in 
cooperation together), mutual defection (number of trials in 
which participant and computer defected together) and 
forgiveness, a measure of number of trials to cooperate after 
the computer’s first defection.  

To ensure children understood the monetary conversion, 
children were asked, “how many pennies are in a dollar?” 
Only one child (a third-grader) answered this question 
incorrectly; his data were excluded from analyses.  

Additionally, subjects participated in a computerized 
number discrimination task in which they were presented 
with two numbers (i.e., 3 and 5) and asked to press one of 
two keys to indicate which was the larger as quickly and 
accurately as possible. Combinations of the numeric values 
presented to participants in the numeric discrimination task 
were identical to the prisoner's dilemma task.  

Results and Discussion 
First, we explored effects of number, unit and value on 
cooperative behavior in all three age groups. This analysis is 
followed by an exploration of the magnitude of the effect of 
numeric value on cooperation across ages. Finally, we 
explore the relation between numeric representation in the 
number comparison task with cooperative behavior in the 
prisoner’s dilemma task.  

Two (units: dollars, cents) by two (number: 1, 100) 
MANOVAs were conducted on the four indices of 
cooperation. No age groups showed a main effect of unit, 

nor did any age group show an interaction of unit with 
number on their cooperative behavior. Further, no age group 
showed an effect of economic value (1¢, $1 or $100) on 
cooperative behavior. 

Cooperation in all three groups, however, varied with 
number (Figure 3; Adults: F[4, 41]=2.66, p=.046; 5th 
graders: F[4, 41]=5.09, p=.002; 3rd graders: F[4, 41]=3.89, 
p=.009). Specifically, numerically greater rewards increased 
individual cooperation (Adults: F[1, 44]=10.06, p=.003; 5th 
graders: F[1, 44]=10.42, p=.002; 3rd graders: F[1, 
44]=13.49, p=.001) such that changing rewards from 3¢ to 
300¢ increased cooperation rates, but an economically 
identical change from 3¢ to $3 did not. The same pattern 
was evident in rates of mutual cooperation, where 
numerically large rewards elicited more mutual cooperation 
than numerically small rewards (Adults: F[1, 44]=7.18, 
p=.01; 5th graders: F[1, 44]=9.46, p=.004; 3rd graders: F[1, 
44]=8.49, p=.006). Further, numerically large rewards 
elicited less mutual defection than numerically small ones 
(Adults: F[1, 44]=9.18, p=.004; 5th graders: F[1, 44]=6.05, 
p=.02; 3rd graders: F[1, 44]=9.75, p=.003). While no effect 
of number was observed for forgiveness in adults and 5th 
graders, 3rd graders did show an effect of number on 
forgiveness (F[1, 44]=5.94, p=.02), requiring fewer trials to 
‘forgive’ their partner for large numeric values than for 
small numeric values.  

 A 3 (age: 3rd grade, 5th grade, adult) X 2 (number: 1, 
100) MANOVA also revealed main effects of age (F[8, 
272]=5.92, p<.001) and number (F[4, 135]=8.30, p<.001) 
on cooperation. This effect was observed for individual 
cooperation (F[2, 138]=9.57, p<.001) and mutual defection 
(F[2, 138]=19.05, p<.001). Results for mutual cooperation 
(F[2, 138]=2.18, p=.11) and forgiveness F[2, 138]=2.41, 
p=.09) trended toward significance. Post-hoc tests revealed 
3rd graders had more individual cooperation than both 5th 
graders and adults (ps < .01). This pattern held true for 
mutual defection (5th graders: p=.001; adults: p < .001). 
Fifth graders and adults did not differ from each other on 
individual cooperation (p=.82) but they trended to differ on 
mutual defection (p=.06). No differences were found 
between the groups on mutual cooperation or forgiveness.  
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Figure 4: 3rd graders showed larger effects of number on 
individual and mutual cooperation and forgiveness than 5th 
graders and adults. 
 

We next compared values of Cohen’s d, a measure of 
effect size, for each of the four indices of cooperation in 
each of the three age groups. We expected to find a larger 
effect of number (a larger value of d) in third-grade children 
than in fifth-grade children and adults. This predicted 
pattern was indeed observed for three of our four measures 
of cooperation: 3rd graders showed a larger effect of 
numeric value on individual cooperation (d=1.08), mutual 
cooperation (d=1.12) and forgiveness (d=0.70) than 5th 
graders (individual cooperation: d=0.95; mutual 
cooperation: d=0.90; forgiveness: d=0.31) or adults 
(individual cooperation: d=0.93; mutual cooperation: 
d=0.78; forgiveness: d=0.30). Effect sizes for mutual 
defection were roughly equal across all three groups (3rd: 
d=0.92; 5th: d=0.73; adults: d=0.88; Figure 4).  

We hypothesized that the age related increases in effect 
size were due to number representations, and that the 5th 
graders were already demonstrating adult-like number 
cognition. Data from individual participants were analysed 
to determine whether their reaction times in the number 
discrimination task were best fit using a linear difference 
between the two comparison numerals (i.e., 5 – 3) or a 
logarithmic difference (i.e., ln[5] – ln[3]). This allowed us to 
classify participants are relying on a more linear or more 
logarithmic representation.  

As predicted, as age increased reliance on a linear 
representation increased as well (χ2(2)=4.88, p=.08); 57% 
of 3rd graders were best fit by the linear model; 69% of 5th 
graders and 77% of adults were best fit by the linear model. 
A 2 (representation type: logarithmic or linear) X 2 
(number: 1 or 100) MANOVA on cooperation revealed a 
significant effect of representation type on cooperation (F[4, 
96]=2.78, p=.03) such that participants best fit by the 
logarithmic model showed greater individual cooperation (F 
(1, 104)=3.41, p=.06) and mutual defection (F (1, 
104)=7.40, p < .01) than participants best fit by the linear 
model.  

Conclusion 
What is the nature of human cooperation? Are we 
Rousseauian, naturally cooperative, or are we Hobbesian, 
naturally competitive? The answer may be Both: we start 
life cooperative (a la Rousseau), but become competitive 
with age and experience (a la Hobbes). Our cooperative 
decisions may be shaped, however, not just by changing 
social influences, but also by developing numeric 
representations.  

Consistent with this perspective, adults--who represent 
numbers relatively precisely--showed more individual and 
mutual cooperation and less mutual defection in response to 
large numbers, not large economic values. Not only did 
third- and fifth-grade children also demonstrate this pattern, 
but age related changes in number representation were 
associated with changes in cooperation: 3rd graders showed 
a larger effect of number than the older children and adults 
in individual cooperation, mutual defection and forgiveness.  

Further, numerical representations predicted individual 
cooperation, mutual cooperation, defection and forgiveness 
rates; subjects who relied more on logarithmic 
representations demonstrated higher rates of individual and 
mutual cooperation, lower rates of mutual defection, and 
took less time to forgive their partner than subjects who 
relied more on linear representations. These results suggest 
that logarithmic representations may make it harder to 
discriminate incentives, resulting in them being treated more 
like a cooperative mutualism than a reciprocity.  

Our results may be able to shed light on previous findings 
that children appear Hobbesian or Rousseauian depending 
on the context (Damon, 1975; Lane & Coon, 1972; Piaget, 
1932; Warneken & Tomasello, 2006, 2007; Warneken, 
Chen & Tomasello, 2006). Perhaps these inconsistencies in 
cooperation can be explained by how costs and benefits are 
represented in the minds of children. Children may be more 
likely to cooperate in tasks in which they perceive the costs 
to be minimal and/or the benefits large (e.g., holding a door 
open for a stranger), but may be less likely to cooperate in 
tasks in which they perceive the costs to be large and the 
benefits minimal (e.g., providing another child with a 
reward out of one’s own stock).  

Thus, while it may not be possible to definitively resolve 
the Hobbes-Rousseau debate, the combination of game 
theory and psychology of number may make it possible to 
predict which circumstances incentive cooperation. Put 
simply, children may be more Rousseauian when costs and 
benefits are hard to discriminate, but more Hobbesian when 
they are easily discriminable.  
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