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Abstract

Arguments, claims, and discussions about the “level of
description” of a theory are ubiquitous in cognitive science.
Such talk is typically expressed more precisely in terms of the
granularity of the theory, or in terms of Marr’s (1982) three
levels (computational, algorithmic, and implementation). I
argue that these ways of understanding levels of description
are insufficient to capture the range of different types of
theoretical commitments that one can have in cognitive
science. When we understand these commitments as points in
a multi-dimensional space, we find that we must also
reconsider our understanding of intertheoretic relations. In
particular, we should understand cognitive theories as
constraining one another, rather than reducing to one another.
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Limitations of Levels

It is customary within science to talk about our theories as
falling at different “levels of description”: biology is at a
higher level of description than chemistry, which is itself at
a higher level than physics. Moreover, talk of levels is not
restricted to the relationships between these large-scale
domains of science; a sub-symbolic model of causal
cognition can be said to be at a lower level of description
than some symbolic model of the same cognition or
behavior.

“Levels talk” is particularly widespread in the cognitive
sciences (as noted by many authors, such as Bechtel, 1994;
Bickle, 1998; Marr, 1982). The proliferation of talk about
levels is quite unsurprising, given the many different
methodologies used to develop theories of human behavior
and cognition. At the same time, exactly what is meant by a
“level” is often left somewhat vague. Levels of description
are sometimes identified with the ontological granularity of
a theory, where its level is determined (largely) by its
objects. This characterization misses important distinctions,
however, such as the difference between a rational analysis
that says how one should act, and a process model that
describes the cognitive mechanisms generating behavior.

One of the most precise characterization of levels in
cognitive science—and certainly the most influential such
characterization—was given by Marr (1982), and captured
this key distinction. Marr’s three levels characterize
information-processing devices in general, and processes in
the human mind more specifically. The computational level
identifies the input and output of the process, as well as
constraints on the types of computation done on the input to
get the output. The algorithmic level (also called the
representation level) specifies an implementation of the
computational theory, as well as the representation of the

input and output of the process. Finally, the
implementational level describes the physical realization of
the representation and the algorithm.

Roughly speaking, the computational level specifies what
problem is being (appropriately) solved; the algorithmic
level explains how it is solved; and the implementational
level gives the details of the physical substrate that does the
solving. As a concrete (non-cognitive) example, we can
understand a word-processing program as (i) a process for
entering, editing, and rendering text documents (the
computational level); (ii) a bunch of lines of code that
produce the appropriate behavior (the algorithmic level); or
(iii) changes of 1’s and 0’s in the internal memory registers
of the computer (the implementational level).

As a more cognitive example, consider the problem of
learning causal structure from observational data (e.g.,
Cheng, 1997; Griffiths & Tenenbaum, 2005). A
computational-level model of this problem would
characterize the relevant inputs (case-by-case observations
or a summary of a sequence of such cases), the output that
should result given such input (a representation that can be
used for causal inference, decision-making, explanation,
etc.), and any relevant cognitive constraints (though in
practice, computational-level models rarely incorporate such
constraints). An algorithmic-level model would characterize
the internal representations and cognitive processes by
which we humans happen to solve this challenge. And an
implementation-level model would show how the relevant
computations are performed in particular brain regions (e.g.,
frontal cortex as suggested by Fletcher, et al., 2001 or
Satpute, et al., 2005).

Marr’s three levels were a significant advance in part
because they are based on the recognition that the
mathematical or computational specification of a cognitive
theory significantly underdetermines the commitments that
are implied by it. A Bayesian model of causal learning
could, for example, be at the computational or algorithmic
level, depending on the intended interpretation of the terms
in the model. Moreover, these differences in interpretation
(and so commitments) can matter: whether some experiment
or behavioral measure is a test of a model depends in part on
the commitments of that model.

Marr’s levels were also intended to help show that there
can be distinct models of the same phenomenon that are not
competitors. That is, models M| and M, can be incompatible
(whether mathematically or ontologically) and yet both be
correct as long as they are at different levels. For example,
Bayesian and associationist models of causal learning are
mathematically  incompatible—they  posit  different
representations and different learning processes—but can

2124



both be correct if one is at the computational level and the
other is at the algorithmic level (Danks, Griffiths, &
Tenenbaum, 2003; Griffiths & Tenenbaum, 2005).

Unfortunately, Marr’s levels suffer from at least two
significant flaws. First, and more importantly, they assume
that multiple distinct aspects of theoretical commitment
must vary together, rather than being able to wvary
independently (see also McClamrock, 1991). For example,
suppose model M, is a standard computational-level model
of human causal learning: it characterizes the relevant inputs
and shows which (behavioral) outputs would solve the
causal learning task, all while being agnostic about the
underlying representations and processes.

Now consider M, that is mathematically identical to M,
but which claims only that people do generate this
(behavioral) output, not that this behavior is how people
should solve the causal learning task. That is, M, is a
relatively standard instrumentalist model that characterizes
the human behavior without explaining precisely how or
why it is generated. M, is not a computational-level model,
as it does not explain why people act as they do (i.e., one of
the putative hallmarks of a computational-level model). At
the same time, M, is not an algorithmic-level model, as it
does not characterize the underlying representations or
cognitive processes. There thus does not appear to be any
place to put M, in the standard three Marr levels.

More generally, Marr’s three levels force three different
dimensions of variation in theoretical commitment—extent
of realism, tightness of approximation, and (importance of)
closeness to optimality (all discussed in the next section)—
to change in lockstep when they can, in practice, vary
relatively independently. This observation points towards
the second concern about Marr’s levels: namely, each of
these dimensions has many more than just three levels, as
theories can differ (in their commitments) in relatively fine-
grained ways. Marr’s levels are sometimes helpful for
providing a quick characterization of the commitments of
some theory, if the theory happens to fit one of those
templates. But in general, we need a subtler characterization
of the types of theoretical commitments we can have for a
given cognitive model.

Dimensions of Variation in Commitments

In this section, I consider in more detail these three
dimensions of variation in one’s theoretical commitments.
At the end, I show how we can use these dimensions to
better understand how Marr’s levels force these different
dimensions to vary together, though they should be
independent in theory (though not always in practice).

Realist Commitments (or, What Does It Mean to Be
a Cognitive Realist?)

The first dimension is arguably the easiest to understand:
the extent of realism about the theory is simply which parts
of the theory are supposed to refer to representations or
cognitive processes that “really exist” in a standard
metaphysical sense. As a simple example, consider a

cognitive model of an individual being asked to add two
plus two, and then responding with four. A completely
minimal realist commitment for such a model would be to
regard it instrumentally: one could commit only to the
model offering a correct characterization of the input-output
function for human addition. A substantially more realist
commitment would claim that there are internal cognitive
representations of the numbers ‘2° and ‘4’, as well as some
process by which the former representation (perhaps with a
copy) is manipulated so as to yield the latter representation.
This interpretation presupposes that there is really a
representation there (in a sense discussed below) and that
there is some process corresponding to addition.

As we see in this example, simply giving the
mathematical specification of a cognitive theory is
insufficient to determine the realist commitments; those are,
in an important sense, outside of the scope of the
computational part of the model. At the same time, to fully
understand how to interpret a cognitive model, one needs to
know what realist commitments to attribute to it. Such
specification rarely occurs explicitly for theories in
cognitive science (or at least, rarely in journal papers), but is
nonetheless an important step. Some information about
realist commitments can be conveyed implicitly through the
variables in the model, or by asserting that the theory holds
at some level of description. “Levels” of description are,
however, much too coarse to convey potentially fine-
grained metaphysical commitments, at least in the sense of
stating what things there are held to be in the world.

This dimension of variation is still under-specified, as it is
not yet clear which epistemological commitments—
commitments about what we could come to learn or know—
are implied by attributing “reality” to cognitive
representations or processes. We can usefully understand
epistemological commitments in terms of the predictions
they license, as prediction is at the core of many epistemic
activities, including control, learning, inference, and even
parts of explanation.

By looking at constraints on prediction, we see that there
are two different types of realist commitments in the
cognitive sciences—realism about processes, and about
representations. A rough characterization of the distinction
between representations and processes suffices for capturing
realist commitments: representations are the relatively
stable, persistent objects that encode information, and
processes are dynamic operations involving those objects
that can potentially (but need not) change the state of those
objects. That is, representations are whatever encodes
information stably over some reasonable timescale, and
processes are whatever manipulate that information. This
high-level characterization covers most of the standard
accounts of cognitive representations and processes; even
embodied (e.g., Barsalou, 2008) and dynamic systems (e.g.,
Port & van Gelder, 1995) theories of representation (or its
apparent absence) fit this general schema, if we focus on the
structure of the theory rather than the language used to
describe it.
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Given this distinction, representation realism implies
commitments about the stability of predictions for different
types of cognition that use the information encoded in that
representation. If the representation “really exists,” then the
same object is presumably used for (potentially) many
purposes, and so predictions in these different contexts
should reflect that shared informational basis. For example,
realism about the concept ‘DOG’ implies that behavior in a
categorization task involving dogs should be correlated (in
various ways) with performance in a feature inference task
involving dogs. More generally, representation realism
licenses us to use behavior on one task to make predictions
about (likely) behavior on different tasks that use the same
representations, at least ceteris paribus. Importantly, realism
about our cognitive representations does not imply that
every one is available for every process; it is certainly
possible that we have multiple representational stores, some
of which are process-specific. But if the same representation
is supposed to be available to multiple processes, then
representation realism implies a set of epistemological
commitments about correlations or stabilities between
predictions about the behaviors that the different cognitive
processes generate.

Process realism similarly implies epistemological
commitments of inter-prediction correlations and stabilities,
but rather for the same task given different inputs,
backgrounds, or environmental conditions. That is, if one is
committed to the reality of a given cognitive process, then
that process should be stable and persistent in its
functioning across a range of inputs and conditions. For
example, realism about a particular process theory of
concept learning implies that this particular process should
be active for a variety of inputs that trigger concept
learning. Whether I am learning about the concept ‘DOG’ or
the concept ‘CAT’, the same process should be engaged
(since that is the process that is “really there”). Of course,
process realism does not imply that every process is
triggered for every input or in every condition; rather,
process realism is the more minimal claim that there should
be correlations and stabilities between the predictions for
the different performances of the same task, ceteris paribus.

Critically, the epistemological commitments of process
realism and representation realism are separable, at least in
the abstract. One could think that the appropriate predictive
correlations obtain within a cognitive task but not between
them (i.e., process realism without representation realism).
For example, performance on a categorization task
involving dogs might not imply anything stable for
predictions about how people do causal inference about
dogs. Alternately, the appropriate stabilities might obtain
across tasks for the same information, but not within a task
(i.e., representation realism without process realism). For
example, there might be correlations between predictions
for categorization and feature inference tasks involving
dogs, but no stable correlations between the predictions for
categorization involving dogs and cats.

One can make realist commitments about only some of
the representations or processes in one’s theory; process and
representation realism are not all-or-nothing affairs. To take
a concrete example, consider associative models of
contingency (or causal) learning, such as the well-known
Rescorla-Wagner model (Rescorla & Wagner, 1972). At a
high level, associative learning models posit that one learns
contingencies or correlations (possibly including causal
strengths) by updating associative strengths between various
factors. Computationally, whenever one observes a new
case, the cognitive agent (i) uses some of the observed
factors to predict the state of other factors using the
appropriate associative strengths, and then (ii) changes
associative strengths based on the prediction error.

Most standard interpretations of associative learning
models are realist about the associative strengths, but not
about the predictions “generated” in step (i) in order to
change strengths in step (ii). That is, the former
representations “really exist” and are encoded somewhere,
but the latter are just a computational device. Similarly,
most are realist about the update process that changes the
associative strengths, but not about the prediction process
that uses some of the associative strengths to predict the
states of other factors.

Degree of Approximation

A second dimension of variation in the commitments of a
cognitive theory is in the intended closeness (to reality) of
the theory’s approximations. All theories are approximate in
some ways, in that they exclude certain factors or
possibilities; there is no complete theory that incorporates
everything. We can nonetheless distinguish (for a particular
theory) different commitments about what is supposed to be
captured by that theory. We can think about this dimension
as tracking either which factors have been excluded, or the
intended scope of the theory.

As a concrete example, suppose one has a model of
human addition that predicts that people will respond ’93’
when asked “what is 76 + 17?” A question thus arises when
someone responds (erroneously) ‘83’: what does this
behavior imply for the theory? One response is to hold that
this represents a (partial) falsification of the model, as it
made a prediction that was not borne out. A different
response is to argue that the behavior is due to some factor
that was not included in the model because it falls outside of
the intended scope of the model (e.g., a momentary lapse of
reason due to distraction). The mathematical or
computational specification of a theory does not include
what was (deliberately) omitted, but that information is
important when deciding how to respond to an apparent
mismatch between theory and reality.

This dimension is clearly related to the performance/
competence distinction, but it is also not identical with it.
Roughly speaking, a competence theory aims to characterize
what people are capable of doing, while a performance
theory aims to describe what they actually do. Typically, the
former is a theory that aims to explain and predict people’s
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ideal behavior if they did not face, for example, limits on
memory and attention, cognitive processing errors, and
other deleterious factors. The latter is supposed to be a
theory that accounts for these various factors so as to
capture (approximately) actual human behavior in all its
messy glory. The mathematical specification of a theory
does not entail that it is either a performance or competence
theory, and some historical debates in the cognitive sciences
occurred precisely because of a misunderstanding about
whether (the mathematical specification of) a theory was
intended as a competence or performance theory.

The performance vs. competence distinction can be
understood as picking out two possible commitments along
this dimension of variation (i.e., about the intended scope of
a theory). But there are many other intended approximations
that one could have in mind, including ones that arise from
abstracting away from only some human cognitive
limitations and peculiarities, rather than all of them (as in
competence theories). The performance vs. competence
theory distinction marks an important pair of possible
intended commitments of a theory, but fails to capture the
full range of possible commitments.

Importance of Optimality

The third dimension of variation in a theory’s intended
commitments is in the putative or claimed optimality of the
theory (if any): that is, is the theory additionally claimed to
be optimal (or rational), and if so, for what task(s) and
relative to what competitors? This additional claim is
important because claims about optimality (help to) license
so-called “why-explanations.” We are often interested not
just in how some behavior occurs (i.e., the underlying
representations and processes that actually generate it), but
also in why that behavior occurs.

Actually tracing the causal history (whether ontogenetic
or phylogenetic) of a process or representation can be
remarkably difficult, if not impossible. An alternative path
to reach a why-explanation is to show that some cognition is
optimal relative to competitors, and that there are
sufficiently strong pressures on the individual (or lineage) to
push the individual to the optimal cognition (and that those
pressures actually obtained in these circumstances). If these
elements can be shown, then we can conclude that the
cognition occurs because it is optimal. This alternative path
is a standard way to demonstrate, for example, that some
physical trait constitutes an evolutionary adaptation (Rose &
Lauder, 1996).

In practice, many optimality-based “explanations” in the
cognitive sciences fail to demonstrate all of the elements; in
particular, they frequently fail to show that there are actual
“selection pressures” that would suffice to drive an
individual towards the optimal cognition, or even to
maintain an individual at the optimal cognition.
Nonetheless, the intended closeness to optimality (relative
to a class of alternatives) of a theory—and so its ability to
function in a possible why-explanation—is a critical
theoretical commitment about a model that is not implied

simply by its mathematical/computational specification.
And clearly, variation in this dimension induces different
metaphysical and epistemological commitments, as claims
that some theory is optimal imply facts about the causal
history of the cognition, and about how the cognition should
plausibly change under variations in the environment or
learning history.

Connecting the Dimensions and Marr’s Levels

Marr’s levels force these three dimensions of variation to
change together, rather than allowing them to vary
independently. For example, a theory at the computational
level is understood to have a relatively weak set of realist
commitments (particularly about processes), significant
approximation (since the theory is about how the system
should solve a problem, rather than what it actually does),
and a fairly strong expectation of optimality. Theories at the
implementational level, in contrast, are strongly realist
(since they hopefully focus on the underlying biological

mechanisms), aim to minimize approximation by
incorporating  relatively  contingent influences, and
emphasize causal mechanisms (“how”) rather than
optimality (“why”).

As a result, one must be careful about using Marr’s levels
to characterize a theory. Use of the terminology can force
proponents of a theory into particular commitments that
they would prefer to deny, as the levels bundle together
commitments that should be kept separate. At the same
time, anything that encourages more precise specification of
the extra-computational commitments for a theory is a
positive. The overall usefulness of Marr’s levels principally
depends on whether the theory’s proponent happens to
endorse one of the limited sets of possible commitments that
can be expressed in that trichotomy. In many actual cases in
cognitive science, however, we have subtler, more fine-
grained variations in our theoretical commitments.

From Reduction to Constraint

Throughout this discussion, I have largely ignored one of
the most important uses of levels, whether Marr or
otherwise: namely, they provide a framework in which we
can understand infertheoretic relationships. That is, we care
not only about the commitments of a scientific theory, but
also about the ways in which theories are related to one
another, and “levels talk” provides an excellent way to
understand such relations.

Of course, it is possible that there are no such (interesting)
intertheoretic relations in cognitive science, as implied by
various claims that psychology is “autonomous” (or other
related term) from the underlying neuroscience (e.g., Fodor,
1974, 1997). Proponents of rational analyses often suggest a
similar sort of disconnect, as they sometimes hold that the
rational analysis says nothing about how the behavior is
generated (e.g., Anderson, 1990). There are many
theoretical concerns about the autonomy position (see, e.g.,
the long list in Bickle, 1998). In addition, it is arguably
descriptively incorrect: cognitive scientists frequently attend
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to the ways in which their theories matter for one another.
Regardless of whether it is logically necessary that there be
interesting intertheoretic relations, it certainly seems to be
contingently true that there are such relations.

The more common way to think about intertheoretic
relations in cognitive science is in terms of reduction:
roughly, a theory H at a higher level must (eventually,
somehow) “reduce” to a theory L at a lower level. More
precisely, H reduces to L when the latter is a finer-grained
version of (something approximately equivalent to) the
former. There are many different ways of explicating
“reduction” with more precision, whether in terms of
syntactic equivalence (Nagel, 1961); semantic equivalence
(Bickle, 1998); similar causal powers (Schaffner, 1967);
replaceability (Churchland, 1985; Hooker, 1981a, 1981b);
or even as implementation of a computer program (Danks,
2008). In all of these cases, there is a close connection, or at
least sympathy, between talk of “levels” and the focus on
reduction as the key intertheoretic relation.

At least two general concerns arise, however, for all of
these accounts of “reduction.” First, scientific practice
(particularly in the cognitive sciences) often does not
involve definite, positive, theoretical proposals to serve as
the relata of the “reduction” relation. One might claim, for
example, that two variables are associated, or that some
functional relationship falls in some (perhaps large) family,
or that some previously considered theoretical possibility is
incorrect (but without any further information about which
theoretical possibility actually is right). These different
types of theoretical claims can all imply commitments at
other levels even if there is no particular broad theory in
which they fit (and so no appropriate relata for reduction).

Second, and more importantly, “reduction” is always
understood as a between-level relation: H and L are theories
at different levels about roughly similar phenomena.’
Intertheoretic relations arise, however, between theories that
do not stand in this type of “hierarchical” arrangement. For
example, theories of causal learning and reasoning (e.g.,
Cheng, 1997; Griffiths & Tenenbaum, 2005) and theories of
“causal” concepts (e.g., Rehder, 2003a, 2003b) investigate
different phenomena, and so cannot possibly stand in a
reductive relationship in either direction. Nonetheless, these
types of theories clearly constrain one another; at the very
least, they both depend on representations of causal
structure, and so information about one theory can be
informative about the other. The focus on “levels of
description” or Marr’s levels makes it easy to focus on the
hierarchically structured theories, but they are not the only
ones that constrain one another. Just as we needed a more
sophisticated understanding of the dimensions of variation
in theoretical commitment, we need a more general account
of intertheoretic constraints.

' We also sometimes speak of a more general theory “reducing”
to a more specific one at the same level in particular conditions
(e.g., general relativity reduces to Newtonian dynamics in the limit
of (v / ¢)* — 0). Nickles (1973) shows how to keep this type of
reduction separate from the type I have been discussing.

Towards an Account of “Constraint”

At a high level, one cognitive theory S constrains another
theory T if the extent to which S has some theoretical virtue
V (e.g., truth, predictive accuracy, explanatory power) is
relevant for the extent to which 7 has the same theoretical
virtue V. More colloquially, S constrains 7 just when, if we
care about 7 along some dimension, then we should also
care about S along that same dimension (because S could be
informative about 7). Suppose, for example, that T reduces
to S. Reductions clearly involve constraint in terms of truth:
S and T plausibly have the same truth-value when T reduces
to S. At the same time, reductions arguably do not always
involve constraint in terms of explanatory power: the
explanatory powers of the two theories in a reduction can
vary relatively independently. Thus, it is important to
relativize each application of intertheoretic constraint to a
particular theoretical virtue.

To see how a more general notion of “constraint” could
be made precise, consider the theoretical virtue of truth. I
propose (without argument) that: S truth-constrains 7 if and
only if a change in belief in S from time ¢, to time # would,
for a fully-knowledgeable agent, rationally produce a
change in belief in 7 from # to #,. Note that there is no
assumption here that the change in belief in S is rational;
rather, this account of ‘constraint’ essentially models it as a
conditional: “if an individual’s belief in S changes (for
whatever reason), then belief in 7 should rationally change
as well, assuming that she understands the implications of
her beliefs.”

This proposal clearly includes reduction as a special case
constraint: if H reduces to L given conditions C, then an
increase in belief in L&C (alternately, full acceptance of
L&C) should rationally lead to an increase in belief in (or
full acceptance of) H. For example, if some psychological
theory P reduces to some neuroscientific theory N, then if
we come to believe N, then we should also (rationally)
believe P. Moreover, in some contexts, a reductive relation
can also lead to a downward constraint: if we come to
believe H, then that can rule out certain Ls (i.e., any that H
cannot reduce to).

This account of truth-constraint applies much more
broadly than just reduction. For example, causal learning
theories and theories of causal concepts that use the same
representational framework (e.g., causal Bayesian networks)
can be understood as mutually supporting: each makes the
other more probable. More generally, one regularly finds
arguments in cognitive science that are based on converging
evidence from disparate domains, measurement methods, or
processes. In this model of truth-constraints, the theories in
the different domains place symmetric constraints on one
another: increases (or decreases) in belief in one theory
should rationally lead to increases (or decreases) in belief in
others that point in the same direction. That is, the broader
intertheoretic relation of “constraint” enables us—in
contrast to the more narrowly focused “reduction”—to
explicate and justify one of the most common argumentative
techniques in cognitive science.
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Conclusions

The core idea of this paper is that the commitments that we
have about our cognitive theories extend far beyond their
mathematical or computational specification. Instead, we
must be clear about where we are located in a multi-
dimensional space of theoretical commitments. Our degree
of realist commitment, permissible degree of approximation,
and intended degree of optimality all can vary relatively
independently, though they are tightly coupled in the
traditional Marr levels.

Moreover, we need a more fine-grained notion of
intertheoretic relations to complement this more nuanced
picture of theoretic commitments. Cognitive theories
sometimes reduce to one another, but more commonly they
inform one another only indirectly. I have suggested that a
theory of intertheoretic constraints would be most
appropriate, but have only sketched how such constraints
might look in one particular case. Substantial work remains
to be done to characterize the ways that theories can relate
to one another, and then to show how these constraints can
be used to guide actual practice in cognitive science.
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