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Abstract

We investigated the way in which working memory (WM)
constrains the learning of relational concepts — categories de-
fined by the way objects are assigned to roles in the structure
of an underlying relation, and not by objects’ intrinsic featu-
res. By applying to a large sample a novel test of concept le-
arning as well as the battery of WM tasks, we found that WM
is a strong predictor of the scores on the test, but the WM-
learning correlation decreases as the relational complexity of
the to-be-learned concepts increases. Such results support
those theoretical models of relational learning, which assume
that learning of relational concepts (and relations, in general)
consumes more WM resources than just the processing of
relations which have already been learned.

Introduction

The issue of relational thinking — the humankind’s ability to
acquire, process, and effectively use mental representations
of relations — has huge importance in cognitive science
(Gentner & Kurtz, 2005; Halford, Wilson, & Phillips, 1998;
Hummel & Holyoak, 2003). A relation can be described as
an ordered list (a structure, a predicate) of well-defined roles
and objects that fulfill them. The key aspect of relations
consists of the fact that understanding of them as well as
inferring from them depends primarily on the way objects
are assigned to roles in the relation’s structure, and not
necessarily on objects’ intrinsic features. Relational repre-
sentations constitute the core of human complex cognition,
including abstraction, reasoning, analogy making, creativity,
and language (Halford, Wilson, & Phillips, 2010).

The extension of an n-ary relation (where n is a number of
roles in a relation; its arity) is a subset of Cartesian product
of n sets, which includes all lists of objects (n-tuples) that
can fulfill roles in that relation (i.e., an object from the first
set in a tuple fulfills the first role, etc.; Halford et al., 1998).
So, each relation can be treated as a relational category/
concept (Gentner & Kurtz, 2005). Unlike so-called entity
categories, that is, categories formed by objects due to their
perceptual or/and internal (e.g., genetic) similarity (e.g.,
natural kinds), relational concepts in the first place organize
entity categories (or lower level relational categories), and
so their exemplars may drastically vary featurally. For
example, the instances of the relational concept of barrier
will include: a wall, a river, a person, but also an insult, and
loss of support (ibidem). Relational concepts constitute the
main part of culture, science, and technology.

A key goal of cognitive science is to understand what re-
lational concepts are, how they are acquired in childhood
and adulthood, and how they are used in relational thinking.
Consequently, the present paper aims to deal with one speci-
fic problem in this domain: it investigates in what way the
constraints of human cognitive architecture, particularly its
working memory capacity (WMC), influence the learning of
relational concepts (from here on, the process/ability
referred to as relational learning).

Working memory and relational learning

Computational models of relational thinking (e.g., Chuder-
ski, Andrelczyk, & Smolen, 2013; Doumas, Hummel, &
Sandhofer, 2008; Halford et al., 2010; Hummel & Holyoak,
2003) as well as psychometric studies on reasoning and
analogy making (e.g., Martinez et al., 2011) suggest that
processing relations is grounded in working memory (WM).
WM is a neurocognitive mechanism responsible for mainte-
nance of a limited, but crucial for the current task/goal,
amount of information, in an active and easily available
state (Cowan, 2001). It thus allows for flexible manipulation
of that information (Hummel & Holyoak, 2003; Oberauer,
Si, Wilhelm, & Sander, 2007), including binding of rela-
tional roles and corresponding objects, which is a necessary
process for a relational representation to be constructed.
People can hold in their WM up to, on average, as few as
three or four chunks of information (Cowan, 2001; Luck &
Vogel, 1997) and, probably, the similar number of bindings
(Chuderski et al., 2013; Oberauer et al., 2007), though these
values vary among individuals (approx. from 1 to 6). This
clearly corresponds to the fact that accuracy of processing
relations sharply decreases with increasing arity of relations,
and few participants can cope with relations more complex
than quaternary ones (Halford et al., 2010).

An interesting research question pertains to a problem of
whether similar influence of WMC, as in abovementioned
case of processing relations (e.g., during analogical mapping
or inference), also takes place in case of relational learning,
when people have to discover an (abstract) relation between
related objects and construct a mental representation of the
relational concept referring to that category.

A widely used paradigm of relational concept learning
was proposed by Shepard, Hovland, and Jenkins (1961).
They presented to participants series of eight three-feature
geometric figures, each of which could take one out of two
values on each featural dimension (shape, size, color), and
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needed to be classified as belonging or not to a category de-
fined by an arbitrary rule of propositional logic (henceforth
named a Boolean concept). Each decision was followed by a
feedback information on whether an object was categorized
correctly or not. Participants improved on that classification
task, thus learning to some extent a hidden Boolean concept.
The most important result suggested that the accuracy of
categorization decreased as the number of features relevant
for a concept increased from one to three. This observation
was generalized beyond Boolean concepts domain by
Halford et al. (1998), who defined relational complexity in
terms of the number of entities (variables or dimensions of a
relation, that is, its arity) that must be related in parallel,
because their decomposition into a set of less complex
relations would lead to the loss of the relation’s meaning.

Moreover, accuracy of categorization decreased with
increasing complexity (expressed by minimal description
length, MDL; Feldman, 2000) of a logical rule associated
with the three-feature concepts. However, as the MDL
approach led to a problem of which logical operators should
count as minimal (e.g., if we include exclusive disjunction,
then MDL no longer predicts Shepard et al.’s data; see
Goodwin & Johnson-Laird, 2011), later this approach was
disputed. For example, Feldman (2006) proposed an alge-
braic complexity metric of discrete-value concept learning
difficulty, which depends on the sum of a number of
constant values of variables and the number of implications
which derive values of one variable from values of another
variable, into which a given concept can be decomposed.
Kemp, Goodman, and Tenenbaum (2008) adopted this app-
roach to describe relational concepts beyond a Boolean
domain. Those approaches nicely predicted observed data.
Similarly good fit was obtained by a theory predicting that
the number of all possible mental models (iconic-like repre-
sentations precisely corresponding to the structure of —
themselves roughly represented — elements of a situation)
which match a rule describing a concept (Goodwin &
Johnson-Laird, 2011).

In the present paper, we ask whether the effectiveness of
relational learning can be predicted by WMC. Moreover, we
test whether the link between those two variables, if any is
found, depends on the abovementioned complexity of con-
cepts which are learned. Such a test may be very informa-
tive regarding the validity of existing models of relational
learning, because, as we will see, some of them seem to
yield opposite patterns of predictions on the strength of
WDMC-relational-learning link in the function of complexity.

Although Halford et al. (1998) have not inferred such
predictions directly from their theory (instantiated also in a
computational model called STAR), closer inspection of this
theory leads to the prediction that the critical value of
relational complexity for learning relations should be four
dimensions. For example, Halford, Baker, McCredden, &
Bain (2005) have shown that accuracy to understand stati-
stical interactions is quite high for two- and three-way
interactions, while it radically falls down in the case of four-
way ones. As Halford et al. (2010) assume that the same
constrains pertain to both processing and acquiring relations
(both limits are grounded in the maximal size of a tensor
that humans can mentally represent), learning bi- and ter-

nary relations should be relatively easy and not so much
constrained by individual WMC, as the mean WMC is about
four. In contrast, there should be substantial differences in
learning quaternary relations, as people of WMC below four
(i.e., one, two, or three) will not be able to learn them fully,
while people of WM above that limit (i.e., of four, five or
six slots) will have enough capacity to do that. So, the
correlation between WMC and relational learning should be
the strongest in case of the mean value of WMC.

In contrast, a neurosymbolic model of the discovery of
relations proposed by Doumas et al. (2008) assumes that in
order to learn a relation, a cognitive system has to represent
each role-filler pair as two separate neuronal oscillations,
asynchronic, but peaking close in time. This implicates that
for learning each dimension of a relation, the system needs
two WM chunks, and only after having learned it, both a
role and a filler can be compressed into one synchronized
oscillation. So, even learning binary relations will consume
WMC (i.e., four chunks) of a large part of participants, and
their performance on binary relations should be particularly
sensitive to individual differences in WMC. Learning ter-
nary (i.e., requiring six WM slots) or quaternary (i.e., occu-
pying eight slots) relations should be difficult for almost
everyone’s WM, and — if nevertheless effective — will have
to rely on mechanisms other than WM (e.g., relational
knowledge accretion, compressing relations, etc.).

Interestingly, a recent study by Lewandowsky (2011),
who examined correlations between each type of Shepard et
al.’s concepts and WMC, has shown that the strength of
such a correlation is basically the same in case of unary,
binary and ternary concepts of such a kind. This study
suggests that a third possibility regarding the pattern of
correlations between relational learning and WMC is
possible, specifically that WMC influences learning rela-
tions of any complexity. However, three disputable aspects
of the Lewandowsky’s study suggest that more data is
needed before a decisive conclusion on WMC-relational
learning link can be given.

Firstly, the criterion for a successful learning of Shepard
et al.” concepts was that a certain number of correct
classifications can be consecutively made by a participant.
However, this does not guarantee that he or she really start-
ed to represent a relation underlying the concept, because
due to a large number of classification trials a complex
association, instead of a fully-blown relational representa-
tion, may be formed as well. So, in order to prevent such a
case, participants should be able to explicitly report a rela-
tion to be found, as a necessary criterion for judging that a
relational representation has indeed been learned.

Secondly, with the use of Shepard et al.’s concepts, at
most ternary relations can be investigated, what does not
allow to directly test predictions derived from Halford et al.
(1998, 2005, 2010). More complex relations, above and
beyond binary features and three dimensions, are needed
(e.g., Kemp et al., 2008). Optimally, participants should be
required to learn quaternary relations, in which each
variable depends on the values of three other variables.

Finally, all existing studies (e.g., Goodwin & Johnson-
Laird, 2011; Halford et al., 2005; Kemp et al., 2008; Lewan-
dowsky, 2011) have investigated relational learning defined
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as the rate of success in acquisition of a to-be-learned
concept/rule. However, learning is a dynamic process, and
its most important indicator is the increase of knowledge
one has gained, and not the total amount of knowledge
(including the knowledge possessed before the study start-
ed) that one can display. So, the examination of the progress
in the discovery of relations, and not only how one can
discover them in general, as well as the testing of possible
associations between the rate of that progress and WMC,
can bring a vital insight about relational learning and its
WM mechanisms. To our knowledge, no study so far add-
ressed all aforementioned issues in parallel.

In the remaining part of the paper, we present a direct
examination of possible predictions on the link between
WMC and relational learning, by applying to a large sample
of participants a test that requires discovery of relational
concepts differing in complexity. Each discovered concept
must aptly describe six presented associated exemplars,
while excluding three accompanying counterexamples. We
also measured participants’ WMC with four versions of a
well-established WM measure (a complex span task). We
investigated the resulting correlations with the use of
confirmatory factor analysis (CFA). Firstly, we correlated
relational learning accuracy with WMC, in the function of
the complexity of the former. Secondly, we tested the link
between the latter and the improvement on learning, that is,
when structurally identical relations must be discovered for
the second time, but now governing new kind of stimuli.
That is, we examined if the transfer of the effects of rela-
tional learning would be linked to WMC or not.

A study

Participants

A total of 243 participants (142 women, mean age = 24.3
years, SD age = 5.0, range 18 — 45 years) were recruited via
publicly accessible social networking websites. Each person
was paid 15 euro for their participation in the study. Data
from six people were discarded because of theirs failure to
provide even one elaborate description in the learning test.

A test of relational concepts discovery

The DREL (Discovery of RELations) paper-and-pencil test
consists of two, letter and digit, parts. Each part includes 15
items. Each item consists of six four-symbol strings, which
are governed by a to-be-discovered relation, and another
three strings, which form counterexamples for that relation,
that is, the discovered relation must exclude all three
counterexamples. A participant is required to write down a
concise and abstract description of a relation that matches
six positive exemplar strings. The counterexamples were
introduced in order to prevent describing too general rela-
tions (e.g., all strings consist of four symbols). In each part
of the test, there are five binary, five ternary, and five
quaternary relations, and item positions for each complexity
level with regard to the beginning of the test were balanced
(the sequence of levelsis: 324234342432423).

In the first part of the test, symbols in each string are two
different letters, and a relation governs the place of each
letter relative to some number of remaining letters in a
string. We assumed that in binary-relation items, the proper
relation can be discovered using only pairwise comparisons
of letters, so in each step of analysis of a string, a partici-
pant needs to maintain in WM only two representations.
One example of a binary-relation item requires to discover a
relation the same letters in the middle are different from the
same two letters on the extremes:

OEEO LSSL BVVB

ZKKZ NUUN YAAY

RRVV—AKAK—PPEL

Counterexamples prevent people from proposing relations
like there are always two exemplars of one letter and two —
of the other letter. There is only one mental model corres-
ponding to binary relations (in case of this example: abba).
In the ternary-relation items, the proper relation can be
discovered using comparisons of three letters in parallel, so
in each step of analysis three representations have to be
maintained in WM. An instance of ternary relation is one
and only letter different from three other identical letters is
always placed in the middle (corresponding models are:
aaba and abaa). In the item presented below, a participant is
expected to relate: a pair of two identical letters to another
identical letter on the opposite, and both of them to one re-
maining different letter always placed in the middle:

ZE7Z7 LLUL NRNN

ASAA JIW]  PBPP

OEEE—KKKN—ANE

In the most difficult, quaternary-relation items, we assumed
that all four letters have to be related in one step. An
example relation is the first letter is different from the
second one or the third one or both, and the third letter is
different from the fourth one (three corresponding models:
aaba, abab, and abba). The complexity of this relation is a
result of introducing an inclusive disjunction x or y or both.
A participant in this example is expected to simultaneously
relate the first letter to the second, the first one to the third,
and the third one to the fourth:

GGRG NHNH FDDF

BEEB 0OOXO ACAC
HEEE—NNNP—HSS

The only difference between the first and the second part of
the test is that symbols are digits, and relations pertain to

2054



their evenness or oddness. However, the abstract structure
of relations of corresponding items in both tests is identical.
For example, the digit version of aforementioned binary
relation would be: two digits in the middle are both odd or
both even, and in the former case two extreme digits are
even, while in the latter case two extreme digits are odd.
This part is more difficult, as the crucial feature (evenness/
oddness) is not linked to the appearance of a symbol, while
the crucial feature of the letter part (identity/difference) is.

The scoring on the test depended on the abstractness on
given descriptions. One point was scored if a described rela-
tion was correct and properly abstract (as in the examples),
no matter what exact formulation were used by participants.
Half point was scored if a description was correct, but it was
not abstract enough, instead it was composed of particular
subcategories of strings (usually corresponding to possible
models), for example, in case of the ternary example, if a
description was like there is either (a) one letter, then
another is different, and then two last letters are the same as
the first one, or (b) there are two same letters, then another
is different, and then the last letter is the same as the two
first ones. No score was given for incorrect descriptions, no
matter if they excluded valid instances of strings or included
counterexamples. Such a partial scoring resulted in much
better reliability of the test (Cronbach’s o = .91) than did
binary (correct/incorrect) scoring (o = .78). The dependent
variables were total scores (in range O to 5) on each level of
relational complexity, and the corresponding differences
between scores on the second and first part of the test (i.e.,
indices of learning).

Working memory tasks

Four complex span tasks were designed following Conway
et al. (2005). In general, a complex span requires memo-
rizing a sequence of a few stimuli, each of them followed by
a simple decision task. In the present versions, each task re-
quired memorizing three to seven (set size) stimuli, present-
ed for 1.2 s apiece, out of nine possible ones for that task.
After two two-stimuli training trials, three trials for each set
size (in increasing order) were presented in each complex
span task. The letter span task (sometimes called an opera-
tion span task) required memorizing letters, while deciding
with a mouse button if intermittent simple arithmetical
equations (e.g., 2 x 3 — I = 5?) are correct or not. The digit
span consisted of memorizing digits, while checking if letter
strings begin and end with the same letter. The spatial span
task required memorizing locations of a red square in the
3x3 matrix, while deciding which of two presented bars is
larger (the difference was always 25%). In the figural span
task, participants were instructed to memorize simple geo-
metric figures, while judging colors to be light (yellow or
beige) or dark (brown or navy blue). The dual (decision)
task in each WM test aimed to prevent the chunking of
stimuli or the extensive use of phonological loop, which
could obscure “real” WMC of individuals. The participants
were instructed that they should recall as many stimuli as
they can (in proper order), but that they should also try to be
correct on the decision tasks.

The response procedure in each task consisted of a pre-
sentation of as many 3x3 matrices as was a particular set
size, in the center of the computer screen, from left to right.
Each matrix contained the same set of all nine possible sti-
muli for a task. A participant was required to point with the
mouse those stimuli that were presented in a sequence, in
the correct order (from left to right). Only choices that
matched both the identity and ordinal position of a stimulus
were taken as correct answers. The dependent variable for
each complex span task was the proportion of correct
choices to all stimuli presented in the task. All complex
span tasks displayed high reliability (as = .85 to .89).

Procedure

The presented study was a part of a larger project testing
various cognitive abilities (WM, attention, reasoning),
which included 17 computerized tasks applied in one four-
hr session, and 5 tests of relational thinking applied in ano-
ther four-hr session (sessions were administered in a random
order), with a 1-hr break between the sessions. Complex
span tasks were the 5% 9" 13" and 16" tasks in a row
applied in the former session, while the DREL test was the
first task in the latter session. Half hour was allowed for
each part of the DREL test.

Results

Table 1 shows the descriptive statistics and correlations of
all dependent variables. No variable deviated from the nor-
mal distribution. Correlations ranged from moderate (r =
.21) to strong (r = .75).

Task 1. 2. 3. 4 5 6. 7. 8 9. 10

1.DL2 -

2.DL3 46 -

3.DL4 36 .66 -

4.DD2 42 45 44 -

5.DD3 27 46 47 65 -

6.DD4 23 43 52 56 75 -
7.LSPAN .36 .39 34 37 40 31 -

8.NSPAN 42 37 .30 38 .33 26 .70 -
9.SSPAN 21 32 23 34 34 25 57 51 -
10.FSPAN 24 29 23 36 32 28 .65 .72 59 -

Mean 4.462.181.533.071.370.88 0.69 0.76 0.52 0.62
SD 0.950.850.991.460.960.960.190.160.18 0.18
Min. 0O 0 0 0 0 0 0.050.090.050.13
Max. 5 4 45 5 35 3 0991.000.971.00

Table 1: Correlation coefficients and descriptive statistics
for all dependent variables in the study (N = 237). All
correlations were significant at p = .001 level. Note: D —
DREL test, L or D — its letter or digit version, 2, 3, or 4 —
relational complexity level. SPAN — versions of complex
span task, L — letter, N — number, S — spatial, F — figural.
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Figure 1: The general structure of the CFA models linking
the discovery of binary, ternary, and quaternary relations to
WMC. Ovals represent latent variables (factors), while
boxes stand for observed variables (measures). Arrows
represent factor loadings, while a line stands for correlation.

The two (test versions) by three (levels of complexity)
ANOVA of the DREL test’s scores indicated that they were
significantly higher in the letter version (M = 2.72) than in
the digit version (M = 1.77), F(1, 236) = 316.93, p < .001,
n® = .57, and that they decreased with increasing relational
Complexity (MRCZ = 375, MRC3 = 174, and MRC4 = 120),
F(2, 472) = 1523.80, p < .001, n2 = .87. Also, both factors
interacted, F(2, 472) = 43.18, p < .001, n* = .15, as the
effect of complexity was more profound in the letter version
than in the digit one. These data indicate that the DREL test
seems to be a proper tool for measurement of how effect-
ively people discover relations, and that participants were
sensitive to the complexity of the test’s items.

Then, we tested whether our participants improved at all
in the digit version of the DREL test, by comparing their
scores on that version to another 79 participants from a si-
milar study, who only attempted the digit version (i.e., they
did not “train” on the letter version). This control group
scored M = 1.34 per condition (comparing to M = 1.77 in
the experimental group), that is, there was a highly
significant learning effect, #(314) = 3.46, p < .001.

Next, with CFA, we assessed the strengths of correlations
between the latent variable reflecting WMC (loaded by four
complex span tasks) and variables representing the effect-
iveness of the discovery of relational concepts, separately
for each level of complexity. The structure common to three
calculated models is shown in Fig. 1. Each model had a
good fit, as estimated by Bentler’s comparative fit index
(CFI; its widely accepted criterion value = .92) and the
standardized root mean square residual (SRMSR; the
criterion value = .05). For all models, CFIs surpassed .965,
and SRMSRs were below .035. Complex span measures’
loadings on WMC variable were high (> .667, p < .001), as
well as loadings of DREL measures (> .609, p < .001). This
data indicates that the structure of models reflected very
well the structure of correlations among variables. The com-
parison of correlations between both latent variables showed
that there was no significant difference between the correl-
ations for binary (r = .663, SE = .068, p < .001) and ternary
(r=.631, SE = .065, p < .001) relations (Ar = —.028, n.s.),

while discovery of quaternary ones was more weakly correl-
ated with WMC (r = .477, SE = .071, p < .001) than disco-
very of both binary (Ar = —.186., 235] = 2.70; p = .004)
and ternary relations (Ar = —.154., #{235] = 2.30; p = .009).

Finally, we tested another CFA model, which related the
WMC variable to the index of learning that occurred from
the letter to the digit version of the DREL test. Because the
scores in quaternary conditions approached floor, and thus
the difference between them might have poor psychometric
parameters, we decided to aggregate indices of learning of
ternary and quaternary relations. The model, presented in
Fig. 2, had a very good fit (CFI = .979, SRMSR = .035).
Most importantly, it suggests that the performance of
participants displaying more capacious WM deteriorated
less on the more abstract version of the test in comparison to
less capacious participants (r = .207, p = .002), most
probably due to a more effective process of the transfer of
the abstract pattern of relations, which had been introduced
in the letter part of the test, to its digit version.

Discussion

The newly designed DREL test appeared to be a very reliab-
le tool, and scores on DREL responded well to experimental
manipulations. The significant drop of the DREL-WMC
correlation only for quaternary relations (in comparison to
binary and ternary ones) seems to provide more support for
Doumas et al.’s (2008) model than to Halford et al.’s (1998)
model. Moreover, not only quaternary relations were very
difficult to learn (24.5% accuracy), as the latter model pre-
dicts, but also ternary relations were rarely found (34.8%),
though according to that model they should well fit in WMC
of most of participants. In contrast, people displayed fair
performance only in cases of binary relations (75.0%), and
that fact better corresponds to Doumas et al.’s (2008)
assumption telling that during relational learning (but not
when processing relations) even as few as two role-filler
representations may occupy the whole available capacity.
The study provided data convergent with Lewandowsky
(2011) results, though moving beyond ternary relations to
newly introduced quaternary condition suggests that rela-
tional learning is not uniformly linked to WMC with regard
to the complexity of relations being learned.

LETTER SPAN

DIGIT SPAN

il

WORKING
MEMORY
CAPACITY

COMPLEXITY 2
.99
21 RELATIONAL
' LEARNING
35
COMPLEXITY 3&4

87
SPATIALSPAN

FIGURE SPAN

i

Figure 2: The CFA model linking WMC to relational learn-
ing (a difference in scores between two parts of DREL). The
same graphical symbols were used as in Fig. 1.
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It must be acknowledged, however, that due to the floor
effect in the quaternary condition, a possible alternative
explanation of the drop in the value of the DREL-WMC
correlation coefficients might appeal to a possible worse
psychometric usefulness of scores on quaternary relations.
However, this is an unlikely explanation, because of rela-
tively low values of the 95% confidence intervals [.338 —
.616] for that correlation, comparable to the respective
intervals regarding binary and ternary conditions, indicating
that all three correlation coefficients have been estimated
with a similar precision. Nevertheless, in order to be able to
draw firm conclusions on the issue of which model best
explains WM contribution to relational learning, the present
results should be replicated with a similar method, but one
yielding relatively higher scores in the quaternary condition.

Another new result brought by the present study pertains
to the fact that not only some general ability to discover
relational concepts correlated — though with a varied
strength depending on the complexity of those concepts —
with WMC, but WMC predicted also the amount of transfer
of relational knowledge from one task to another. Although
whole our test was strongly dependent on WM resources,
we accounted for this fact by subtracting the initial (i.e., ge-
neral) performance on the task, from the final performance,
thus measuring the sheer increase in effectiveness of rela-
tional thinking during the coping with the test. It appeared
that more capacious WM allows for better learning of
abstract relational structures and more effective application
of them to new, but analogous, situations. This observation
seems to be an interesting challenge for existing models of
analogy-making and relational learning, and has potentially
profound practical (e.g., educational) implications.

Summary

This study provided another evidence for the thesis that
mechanisms of WM impose substantial constraints on
human complex cognition, especially its core component:
relational thinking. Understanding those constraints by
developing computational models of thinking within WM is
one of the crucial current focuses in cognitive science. This
study seems to contribute to those efforts by presenting data
supporting those models (e.g., Doumas et al., 2008) which
predict that WM resources may be exceptionally loaded
during the acquisition of relations, in comparison to a lesser
load predicted in situations requiring only transformations
and manipulations of relational representations which have
already been learned.
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