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Abstract

Past research suggests that spatial configurations play an im-
portant role in graph comprehension. The present study in-
vestigates consequences of this fact for the relative utility of
graphs and tables for interpreting data. Participants judged
presence or absence of various statistical effects in simulated
datasets presented in various formats. For the statistical ef-
fects introduced earlier in the study, performance was better
with graphs than with tables, while for the effect introduced
last in the study, this trend reversed. Additionally, in the later
sections of the study, responses with graphs, but not tables,
reflected increasing influence from the presence of stimulus
features which had been relevant earlier in the study, but were
no longer relevant. The findings suggest that graphs, relative
to tables, may better facilitate perception of complex relation-
ships among data points, but may also bias readers more
strongly to favor some perspectives over others when inter-
preting data.
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Introduction

Humans have devised a variety of different formats for ex-
ternally representing information. Often, the same infor-
mation may be represented in multiple representations that
are informationally equivalent, in that each may be recon-
structed perfectly on the basis of any other. Despite such
equivalence, different representations may support perfor-
mance of specific cognitive tasks at different levels of effi-
ciency. Such differences have important implications for
the selection and design of external representations.

The present study explores such differences with respect
to graphs and tables, two of the most commonly-employed
representational formats for quantitative information in a
variety of fields. The relative advantages of graphs and
tables have been the subject of extensive research. Tables
appear to be at least as effective as graphs with respect to
point reading tasks, which require one to estimate or read
off individual data points (Meyer, Shamo, & Gopher, 1999;
Porat, Oron-Gilad, & Meyer, 2009; Vessey & Galletta,
1991). However, graphs have often shown advantages for
tasks involving complex relationships between multiple data
points, such as estimating or comparing differences between
points (Schonlau & Peters, 2012; Vessey & Galletta, 1991),
projecting trends (Meyer et al., 1999), and detecting changes
in function parameters (Porat et al., 2009).

Models of graph comprehension (Carpenter & Shah,
1998; Ratwani, Trafton, & Boehm-Davis, 2008) suggest a
possible explanation for the latter findings. According to

these models, spatial configurations of data points are the
raw material on which graph comprehension processes op-
erate. Importantly, some configurations may be directly
perceived as basic visual features (Pomerantz & Portillo,
2012), allowing relationships between points to be “read
off” directly without first encoding each point separately
(Carpenter & Shah, 1998; Porat et al., 2009). For example,
distances between points may be used to determine or esti-
mate differences in the values they represent, without the
need to encode those individual values at all (Pinker, 1990).
Thus, in graphs, spatial configurations can act as cues for
recognizing relationships between data points. Because
such cues are unavailable or less salient in tables, this prop-
erty of graphs can account for their observed advantages in
conveying relationships among data points.

Many studies comparing task performance with graphs
and tables have employed univariate datasets (Meyer et al.,
1999; Porat et al., 2009). Consideration of bivariate data
introduces another difference between graphs and tables. In
graphs of bivariate data, there is a representational asym-
metry between the two independent variables, in that one is
often laid out along a spatial axis, typically the x-axis, while
the other is typically represented by a non-spatial visual
feature such as line color or thickness. For tables, on the
other hand, such representational asymmetry is reduced,
because the levels of both independent variables are laid out
along spatial axes, albeit horizontal in one case and vertical
in the other.

Can such representational asymmetries as exist in graphs
of bivariate data lead to performance asymmetries in tasks
involving one or the other variable? A few studies have
provided evidence in the affirmative (Carpenter & Shah,
1998; Shah & Freedman, 2011). For example, Shah and
Freedman (2011) found that when asked to interpret graphs
of bivariate data, participants were more likely to describe
main effects of the variable depicted in the legend than of
that depicted on the x-axis, and were more likely to describe
interaction effects as moderating effects of the legend varia-
ble on the effect of the x-axis variable than vice versa.

Such representational asymmetries in graphs, together
with the intuition that these asymmetries are reduced in ta-
bles, suggest that performance asymmetries between tasks
relating to one or the other independent variable in bivariate
data should be greater for graphs than for tables. While a
few studies have compared performance with graphs and
tables on tasks involving bivariate data (Schonlau & Peters,
2012; Vessey & Galletta, 1991), the specific issue of how
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display format affects performance asymmetry between
tasks has not been directly investigated.

Consideration of multiple tasks introduces the possibility
of transfer, in which experience with one task affects subse-
quent performance on other tasks. Such transfer could be
positive or negative, depending on whether previously-
learned skills are correctly adapted for novel tasks, or ap-
plied without adaptation despite being inappropriate. Dif-
ferences in the methods used to comprehend data in differ-
ent formats, such as greater reliance on spatial configura-
tions in graphs than in tables, could cause differences in
ease of adaptation to novel tasks. Consistent with this pos-
sibility, Porat et al. (2009) found evidence of greater nega-
tive transfer between tasks for tables than for graphs of uni-
variate data. However, it is unclear whether, and to what
extent, these findings may generalize to other tasks, and in
particular, to tasks involving bivariate data.

A related issue is how best to promote future positive
transfer, and reduce negative transfer, when instructing
learners to perform particular tasks. Educational theories
(e.g. Ainsworth, 2006) suggest that incorporating multiple
representations into instruction may be one path to these
goals. Learners who integrate knowledge from multiple
representations to form unified internal concepts are likely
to show more robust and flexible learning. Analogy re-
search suggests that comparison is a powerful tool to facili-
tate such integration and thus encourage positive transfer.
For example, Gentner, Loewenstein, and Thompson (2003)
found that management students who compared case studies
illustrating a negotiation technique were more likely to ap-
ply the technique to novel cases. Considering these two
lines of research together suggests that comparing graphs
and tables illustrating a concept may encourage learners to
learn the concept in a more abstract way, and thus to apply
and adapt them more flexibly when faced with novel tasks.

The preceding discussion suggests several questions,
which were investigated in the present study. First, for tasks
focusing on one or the other variable in bivariate datasets,
does graphical presentation lead to greater performance
asymmetry than tabular presentation with respect to the de-
picted variables? Second, do graphs or tables show more
positive (or less negative) influence of previous task prac-
tice on novel task performance? Third, does comparing
graphs and tables during training promote such positive
transfer (and/or reduce negative transfer)?

Method

Participants received tutorials on different types of statistical
effects in the context of 2x2 factorial designs with one ex-
perimentally-manipulated variable, or “treatment factor,”
and one observed variable, or “secondary factor.” The first
two tutorials involved, respectively, main effects of the
treatment factor and interaction effects of the two factors.
Each tutorial explained how to judge the presence of the
given effect in graphs and tables. Each tutorial was fol-
lowed by a test requiring participants to judge whether the
given effect was present in a series of graphs and tables.

The first two tutorials and tests were followed by a third
tutorial and test pertaining to main effects of the secondary
factor. This test required participants to perform the same
task as for main effects of the treatment factor, namely mar-
ginalizing over one of the two factors, and differed only in
which factor was to be marginalized. Comparing perfor-
mance across test sections allowed us to tell whether the
size of performance asymmetries across tasks differed by
representational format. Further, the first two tutorials ex-
plained explicitly how to determine whether the given ef-
fects were present. By contrast, the third tutorial, regarding
main effects of the secondary factor, did not. Thus, the third
test provided a measure of transfer to a novel task following
practice with other related tasks. The tests following each
tutorial also included stimuli in a verbal format which was
not shown during training. Performance with these stimuli
served as a measure of knowledge transfer to a task involv-
ing a novel representation.

Participants

Participants were N=127 undergraduate students from the
Indiana University Psychology Department who participated
in partial fulfillment of a course requirement.

Materials

A set of tables, graphs, and text passages representing pos-
sible outcomes of a fictional study were developed for use
as test stimuli (Figure 1). The study involved a drink taste
test with two binary independent variables, drink flavor and
participant age group, and one continuous dependent varia-
ble, taste rating. Drink flavor is referred to as the “treatment
factor,” and age group as the “secondary factor.”

Each stimulus represented a dataset comprising one taste

(a) Average Taste Rating (b)

71

Average Taste Rating

(c)
Among Teenagers,
the average taste ratings were

57 —e—Cherry 57 for cherry and 49 for blackberry.
Teenagers Young Adults
43 —-Black- Among Young Adults,
35 berry Cherry 57 n the average taste ratings were
71 for cherry and 35 for blackberry.
Teenagers Young Adults Blackberry 49 35

Figure 1. Test stimuli in (a) graph, (b) table, and (c) verbal format for a single dataset.
The pictured dataset shows a treatment effect and a treatment x secondary interaction, but no secondary effect.

1929



rating for each combination of factor levels. 2 datasets were
generated for each combination of presence or absence of
effects of the treatment factor, secondary factor, and their
interaction, yielding 16 datasets. Each effect appeared in
exactly half of the datasets, and no effect was correlated
with any other. 3 stimuli were created for each dataset by
presenting the data in each of 3 formats: table (Figure 1a),
graph (Figure 1b), and verbal (Figure 1c), yielding 48 stimu-
li. The secondary factor always appeared on the horizontal
axis of the graphs and tables, while the treatment factor was
laid out vertically in the tables and the graph legends, but
these orientations were reversed in the verbal stimuli.

Another fictional study, involving effects of cognitive en-
hancement drugs on test scores of males and females, was
devised as a basis for examples to be shown in the tutorials.
Analogous to our terminology for the test stimuli, drug is
referred to as the treatment factor and sex as the secondary
factor. As for the test stimuli, 3 effects of these factors were
possible: treatment effect, secondary effect, and treatment x
secondary interaction. For each effect, 2 datasets were de-
veloped: a “positive” dataset, which had the effect, and a
“negative” one, which did not. Using the same conventions
as for the test stimuli, one graph and one table were created
for each dataset, yielding 4 examples for each effect.

Procedure

The experiment was divided into 3 sections, one for each
effect. Each section consisted of a tutorial, followed by a
test, for the given effect. The sections were always present-
ed in the same order, namely (1) treatment effect, (2) inter-
action effect, and (3) secondary effect. The tutorials and
tests were presented via a computer interface.

The tutorials for treatment and interaction effects fol-
lowed the same structure. First, participants were shown a
brief description of the cognitive enhancer study, together
with 2 of the 4 examples for the given effect shown side-by-
side, and asked to judge whether or not the examples
showed the given effect. Second, they were told that the
presence of the effect depended on certain values, i.e. dif-
ference in drug scores when marginalizing over sex in the
case of treatment effect, or difference of differences be-
tween drugs for each sex in the case of interaction effect.
They were required to calculate and compare the relevant
values, and were then told in which example(s) the effect
was present, using the calculated values as justification®.
Next, participants were asked to compare the two examples.
Finally, the above procedure was repeated for the remaining
2 examples for the given effect.

The tutorial for secondary effects followed the same pat-
tern as those for treatment and interaction effects, except
that participants were not told which values they should
calculate in order to judge the presence of secondary effects.
Instead, after selecting which of the example(s) they thought

! Participants were informed that normally a statistical test
would be required, but for simplicity, they were to make their
judgments using the standard that differences were significant if
greater than or equal to 5, and not significant otherwise.

showed effects of the secondary factor, they were asked to
state how they thought the judgment should be made. They
were given no feedback on their responses to this question.

Each participant was assigned randomly to one of three
training conditions, which determined which examples were
shown together in the tutorials. (1) In the Comparing Rep-
resentations condition, the two positive examples, i.e. one
graph and one table, were shown together first, followed by
the two negative examples, again one graph and one table.
(2) In the Contrasting Examples condition, the positive and
negative examples in table format were shown together first,
followed by the positive and negative examples in graph
format. (3) In the Control condition, the positive table and
negative graph examples were shown together first, fol-
lowed by the negative table and positive graph examples.

The Comparing Representations condition directly im-
plemented the idea, described in the introduction, of encour-
aging learners to compare different representations of the
same information. The Contrasting Examples condition was
intended as a pedagogically plausible alternative approach
that employed the same materials, and involved the same
amount of training, but did not afford the above opportunity
for comparison of different representations. The Control
condition was intended as a baseline with the same materi-
als and same amount of variation across examples as the
other two conditions, but with the examples paired in a way
not expected to be useful for learners. N=42 participants
were assigned to Comparing Representations, N=41 to Con-
trasting Examples, and N=44 to Control.

Each tutorial was followed by a test. Participants were
shown a description of the taste test study and told that they
would need to judge whether or not the effect about which
they had just learned was present for various outcomes of
the study. For each trial, one test stimulus appeared and
remained onscreen until a response was received. No feed-
back was given. Each test stimulus was presented once per
test section, in random order, for a total of 48 trials.

The experiment may be viewed online at
http://perceptsconcepts.psych.indiana.edu/experiments/dwhb/
MRIS_02/experiment_demo_live.html.

Results

Mean accuracy on test trials was 66%, and ranged from 25%
to 100%. Accuracy was significantly higher than chance,
i.e. 50%, for all test sections and stimulus formats.

Accuracy scores were submitted to a 3x3x3 mixed
ANOVA with training condition as a between-subjects fac-
tor, and test section and stimulus format as within-subjects
factors. The main effect of training was not significant,
F(2,124)=1.82, p=.166, nor were any of its interactions with
other factors. The main effect of section was significant,
F(2,248)=23.67, p~.000, indicating that accuracy was high-
est in the treatment section (74%), lower in the interaction
section (69%), and lowest in the secondary section (63%).
There was a marginal main effect of format, F(2,248)=2.82,
p=.061, qualified by a significant section x format interac-
tion, F(4,496)=11.54, p~.000. Accuracy scores by test and
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format are shown in Figure 2. In the treatment and interac-
tion sections, accuracy was highest for graphs, lower for
tables, and lowest for verbal, while in the secondary section,
accuracy showed the opposite trend.

Stimulus Format: ® Graph = Table m Verbal
85% -
‘E 80%
2
5 75%
8 I
E.Q- 70%
= I
& 65%
: I
o
& 60%
55%
Treatment Interaction Secondary

Test Section

Figure 2: Accuracy by Test Section and Format.
Error bars indicate standard errors.

Several of our research questions relate to graphs and ta-
bles only. Thus, the above analysis was repeated with the
data from verbal stimuli excluded. The interaction of for-

mat with section was still significant, F(2,248)=3.61, p=.029.

While accuracy decreased across the three sections for both
graphs and tables, it decreased more for graphs (treatment:
77%, interaction: 71%, secondary: 61%) than for tables
(treatment: 75%, interaction: 69%, secondary: 63%).

Response times for test trials were analyzed using the
same ANOVA model structure. The results strongly resem-
bled those for accuracy. No significant effects involving
training were found, ps>.25. The main effects of test sec-
tion and format were both significant, F(2,248)=63.78,
p~.000 for section and F(2,248)=40.69, p~.000 for format,
as was their interaction, F(4,496)=3.04, p=.017. Response
times by section and format are shown in Figure 3. Re-
sponses sped up over the course of the three test sections.
Responses were, overall, faster for graphs than for tables
and verbal, but these differences were more pronounced in
the treatment section than in the later sections.

Stimulus Format: ® Graph = Table m Verbal
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Figure 3: Response Time by Test Section and Format.
Error bars indicate standard errors.

Just as for accuracy, the analysis of response time was re-
peated using for graph and table trials only. The main effect
of format was significant, F(1,124)=53.41, p~.000, but the
interaction of format with section was not, F(2,248)=.913,
p=.403. Thus, response times were faster for graphs (6209
ms) than for tables (7230 ms) across all three sections.

Accuracy scores reflect the differing utilities of graphs
and tables for task performance in different test sections, but
give little insight regarding the mental processes underlying
task performance. One way in which the latter might differ
is the degree of influence exerted by different stimulus fea-
tures. Each test stimulus was determined by presence or
absence of treatment, interaction, and secondary effects,
which may be viewed as three binary features. In each test
section, only one feature was relevant, but the two irrelevant
features may also have influenced responses. For example,
in the secondary effect section, only the presence/absence of
secondary effects was relevant, but a participant who had
not adequately differentiated the three effects might give a
positive response to a stimulus exhibiting treatment and
interaction effects, even if no secondary effect was present.
Thus, it could be useful to understand the influences of rele-
vant and irrelevant features on responses for different stimu-
lus formats and test sections.

To this end, a measure of the degree I, to which the pres-
ence of effect x influenced responses in the test section re-
garding effect s was calculated as follows:

Is=P(R=+|E,=+,5=5)—P(R=+|E,=—,5=5)

R=+ signifies a positive response, E,=+ and E,=— signify,
respectively, the presence and absence of effect x, and S=s
signifies that the test section concerns effect s. Thus, Iy
represents the difference in probability of a positive re-
sponse regarding effect s when effect x is present, relative to
when effect x is absent. For a perfect responder, we would
have 1,,=100% when x is relevant, i.e. x=s, and 1,:=0%
when x is irrelevant, i.e. x=s. In other words, perfect re-
sponses would reflect total influence of relevant features
and zero influence of irrelevant features.

Influence I, was calculated separately for each partici-
pant, stimulus format, effect x, and test section s. The pat-
tern of results for relevant features closely resembled those
for accuracy, and thus are not reported here. The results for
irrelevant features are shown in Figure 4. The mean of I,
in these cases was 18%, and was significantly greater than
0% for all combinations of format and test section. Thus,
participants were significantly biased towards positive re-
sponses by the presence of irrelevant features.

The data for influence I, over all cases where x=s were
analyzed using the same ANOVA model structure as for
accuracy and response time. No significant effects involv-
ing training condition were found, ps>.12, nor was the main
effect of test section significant, F(2,248)=0.86, p=.423.
However, a significant main effect of format was found,
F(2,248)=5.68, p=.004, indicating that irrelevant features
had the most influence for graphs (20.5%), less for tables
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(18.7%), and least for verbal format (17.4%). This effect
was qualified by a format x test section interaction,
F(4,496)=8.61, p~.000. As shown in Figure 4, the influence
of irrelevant features increased over test sections for graphs,
stayed about the same for tables, and decreased for verbal
stimuli. Separate ANOVAs conducted using the data for
each format alone found a significant effect of test section
on influence I, for graphs, F(2,248)=8.41, p=.000, but not
for tables or verbal stimuli, ps>.38.

Stimulus Format: —+-Graph Table -aVerbal

30% -

25% -+
#20% 1 §>-kf_\_i
15%

10% 4

5% -

Mean Influence /__ for x#s

0% T 1

Treatment Interaction Secondary

Test Section

Figure 4. Influence I, for x=s, i.e. for irrelevant features.
Error bars indicate standard errors.

Discussion

In the first two sections of the study, participants were
trained to judge whether treatment and interaction effects
were present in bivariate data, and then tested on their abil-
ity to do so when the data was presented in graphical, tabu-
lar, or verbal format. In both sections, responses were faster
and more accurate for graphs than for tables. Judging the
presence of either effect requires assessing complex rela-
tionships between data points, i.e. comparing averages of
pairs of data points for treatment effects or differences be-
tween pairs of data points for interaction effects. The ad-
vantage shown by graphs over tables is thus consistent with
the general view that complex relationships among data
points are more easily assessed in graphical than in tabular
format (Meyer et al., 1999; Porat et al., 2009; Schonlau &
Peters, 2012; Vessey & Galletta, 1991).

Accuracy was lower in the secondary effect section than
in the previous two sections. This result is not surprising,
considering that participants were not told how to judge the
presence of secondary effects. However, interestingly, the
effect of format on accuracy was reversed in this section.
What might have caused this reversal? One possible expla-
nation, detailed below, involves transfer. Specifically, low
accuracy with graphs in the secondary effect section may
have reflected negative transfer from the previous sections
that was absent, or reduced, in the case of tables.

To flesh out this possibility, we consider how experience
of the earlier sections of the study might have affected per-
formance in later sections. In the earlier sections, partici-
pants were trained in explicit calculation methods to judge
the presence of treatment and interaction effects. With

graphs, however, their judgments may have relied in part on
visual patterns. For example, a sideways “v” shape in the
graphs (Figure 1a) could be a useful cue for the presence of
both treatment and interaction effects. Reliance on such
visual patterns may have led to the creation of automatic
visual routines (Ullman, 1984) that could support quick
judgments regarding presence or absence of effects without,
or before, performing the relevant calculations. Important-
ly, such routines, once acquired in the earlier sections of the
study, might continue to be used in the later sections.

Thus, visual routines associating responses with visual
patterns are one mechanism by which experience of the ear-
lier sections might influence performance in the later sec-
tions. Importantly, this account predicts that such influence
would be greater for graphs than for tables. Visual patterns
are believed to play an important role in graph comprehen-
sion (Carpenter & Shah, 1998; Pinker, 1990), but are much
less salient in the case of tables. Moreover, the above
mechanism could lead to negative transfer. Because visual
patterns that were relevant earlier become irrelevant, even
misleading, later, continuing to rely on them could hurt per-
formance. For example, having learned in the first two sec-
tions to give positive responses when seeing the sideways
“v” shape (Figure 1a), participants might continue to do so
in the secondary effect section, even though that shape actu-
ally indicates the absence of a secondary effect. In sum, the
above account predicts greater negative transfer for graphs
than for tables in the later sections of the study.

Support for this explanation comes from our analysis of
influence of irrelevant features on responses. In general,
such influence was greater for graphs than for tables. More
important for our present purpose, such influence increased
over the course of the study for graphs, exactly as would be
expected if responses in later sections were influenced by
visual patterns which had proven useful in earlier sections.
By contrast, influence of irrelevant features did not change
over the course of the study for tables, as one would expect
given the lesser salience of visual patterns in tables.

An alternate explanation for the reversal, in the secondary
effect section, of relative accuracies for graphs and tables
involves variation in the intrinsic difficulty of recognizing
different effects in different formats. Specifically, for
graphs, treatment and interaction effects may have been
relatively easy to detect, and secondary effects relatively
difficult, while for tables, there may have been less variation
in the ease of detecting the various effects. This possibility
is consistent with the hypothesis, stated in the Introduction,
that performance asymmetry between tasks should be great-
er for graphs than for tables, due to greater representational
asymmetry between variables in the former case. It is also
consistent with Shah and Freedman’s (2011) above-
mentioned finding that spontaneous interpretations of biva-
riate graphs tend to focus on main effects of the legend vari-
able (in our study, the treatment factor) rather than the x-
axis variable (in our study, the secondary factor).

However, two aspects of our results cannot easily be ex-
plained in terms of variation in intrinsic task difficulty. The
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first is the observed pattern of response times. Although
accuracy in the secondary effect section was lower for
graphs than for tables, reaction times showed the opposite
trend, i.e. faster responses for graphs. These faster respons-
es are consistent with reliance on automatic visual routines,
as described above, but less consistent with the assumption
that the task was more difficult to perform with graphs.
Second, variation in intrinsic task difficulty cannot explain
why influence of irrelevant features increased over the study
for graphs, but not for tables. However, this effect is pre-
dicted by the first account given above.

While available evidence favors the first over the second
account, further research could more definitively disambig-
uate between them by placing the secondary effect section at
the beginning, and the treatment effect section at the end. If
the first account, in terms of learned visual routines, is cor-
rect, then whichever section comes last should show nega-
tive transfer for graphs. If the second account, in terms of
intrinsic task difficulty, is correct, then performance on the
secondary effect section should be worse for graphs regard-
less of when it is encountered.

Another question investigated in our study was whether
comparing graphs and tables of the same data during train-
ing, as in the Comparing Representations condition, would
facilitate learning and transfer. However, this prediction
was not confirmed. Accuracy showed no effect of training
condition, suggesting that the Comparing Representations
condition was not more effective overall. Nor did accuracy
show any interaction of training condition with either format
or section, suggesting that the Comparing Representations
condition did not produce any particular benefits for trans-
fer, either to a novel format, i.e. verbal, or to a novel effect
type, i.e. secondary effect.

Importantly, this negative finding does not address the is-
sue of whether the use of multiple representations during
instruction can benefit learners, because multiple representa-
tions were included in all of our training conditions. How-
ever, our findings do suggest that the specific technique of
comparing different representations of the same data may
not produce any incremental learning benefit. This finding
stands in contrast to the considerable learning benefits that
can result from comparing semantically different instantia-
tions of the same concept (Gentner et al., 2003).

In conclusion, our findings are consistent with previous
research in finding an advantage for graphs over tables for
tasks involving complex relationships between data points.
Theories of graph comprehension suggest that salient visual
patterns in graphs may underlie this advantage. However, a
novel finding of the present study is that such visual patterns
may not always be helpful. In particular, when performing
novel tasks, graph readers may focus on visual features
which were relevant to previous tasks, and have difficulty
shifting perspective to focus on features which were previ-
ously irrelevant. By contrast, such shifts of perspective may
be relatively easier with representational formats in which
visual patterns are less salient, such as tables. These con-
siderations suggest that graphical presentation may be pref-

erable for performing well-practiced tasks which are known
in advance, while tabular presentation may be most suitable
when performing or learning to perform unfamiliar tasks.
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