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Abstract 

Past research suggests that spatial configurations play an im-
portant role in graph comprehension.  The present study in-
vestigates consequences of this fact for the relative utility of 
graphs and tables for interpreting data.  Participants judged 
presence or absence of various statistical effects in simulated 
datasets presented in various formats.  For the statistical ef-
fects introduced earlier in the study, performance was better 
with graphs than with tables, while for the effect introduced 
last in the study, this trend reversed.  Additionally, in the later 
sections of the study, responses with graphs, but not tables, 
reflected increasing influence from the presence of stimulus 
features which had been relevant earlier in the study, but were 
no longer relevant. The findings suggest that graphs, relative 
to tables, may better facilitate perception of complex relation-
ships among data points, but may also bias readers more 
strongly to favor some perspectives over others when inter-
preting data. 

Keywords: representations; graphs; tables; mathematics; sta-
tistics; human factors 

Introduction 

Humans have devised a variety of different formats for ex-

ternally representing information.  Often, the same infor-

mation may be represented in multiple representations that 

are informationally equivalent, in that each may be recon-

structed perfectly on the basis of any other.  Despite such 

equivalence, different representations may support perfor-

mance of specific cognitive tasks at different levels of effi-

ciency.  Such differences have important implications for 

the selection and design of external representations. 

The present study explores such differences with respect 

to graphs and tables, two of the most commonly-employed 

representational formats for quantitative information in a 

variety of fields.  The relative advantages of graphs and 

tables have been the subject of extensive research.  Tables 

appear to be at least as effective as graphs with respect to 

point reading tasks, which require one to estimate or read 

off individual data points (Meyer, Shamo, & Gopher, 1999; 

Porat, Oron-Gilad, & Meyer, 2009; Vessey & Galletta, 

1991).  However, graphs have often shown advantages for 

tasks involving complex relationships between multiple data 

points, such as estimating or comparing differences between 

points (Schonlau & Peters, 2012; Vessey & Galletta, 1991), 

projecting trends (Meyer et al., 1999), and detecting changes 

in function parameters (Porat et al., 2009). 

Models of graph comprehension (Carpenter & Shah, 

1998; Ratwani, Trafton, & Boehm-Davis, 2008) suggest a 

possible explanation for the latter findings.  According to 

these models, spatial configurations of data points are the 

raw material on which graph comprehension processes op-

erate.  Importantly, some configurations may be directly 

perceived as basic visual features (Pomerantz & Portillo, 

2012), allowing relationships between points to be “read 

off” directly without first encoding each point separately 

(Carpenter & Shah, 1998; Porat et al., 2009).  For example, 

distances between points may be used to determine or esti-

mate differences in the values they represent, without the 

need to encode those individual values at all (Pinker, 1990).  

Thus, in graphs, spatial configurations can act as cues for 

recognizing  relationships between data points.  Because 

such cues are unavailable or less salient in tables, this prop-

erty of graphs can account for their observed advantages in 

conveying relationships among data points. 

Many studies comparing task performance with graphs 

and tables have employed univariate datasets (Meyer et al., 

1999; Porat et al., 2009).  Consideration of bivariate data 

introduces another difference between graphs and tables.  In 

graphs of bivariate data, there is a representational asym-

metry between the two independent variables, in that one is 

often laid out along a spatial axis, typically the x-axis, while 

the other is typically represented by a non-spatial visual 

feature such as line color or thickness.  For tables, on the 

other hand, such representational asymmetry is reduced, 

because the levels of both independent variables are laid out 

along spatial axes, albeit horizontal in one case and vertical 

in the other. 

Can such representational asymmetries as exist in graphs 

of bivariate data lead to performance asymmetries in tasks 

involving one or the other variable?  A few studies have 

provided evidence in the affirmative (Carpenter & Shah, 

1998; Shah & Freedman, 2011).  For example, Shah and 

Freedman (2011) found that when asked to interpret graphs 

of bivariate data, participants were more likely to describe 

main effects of the variable depicted in the legend than of 

that depicted on the x-axis, and were more likely to describe 

interaction effects as moderating effects of the legend varia-

ble on the effect of the x-axis variable than vice versa. 

Such representational asymmetries in graphs, together 

with the intuition that these asymmetries are reduced in ta-

bles, suggest that performance asymmetries between tasks 

relating to one or the other independent variable in bivariate 

data should be greater for graphs than for tables.  While a 

few studies have compared performance with graphs and 

tables on tasks involving bivariate data (Schonlau & Peters, 

2012; Vessey & Galletta, 1991), the specific issue of how 
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display format affects performance asymmetry between 

tasks has not been directly investigated. 

Consideration of multiple tasks introduces the possibility 

of transfer, in which experience with one task affects subse-

quent performance on other tasks.  Such transfer could be 

positive or negative, depending on whether previously-

learned skills are correctly adapted for novel tasks, or ap-

plied without adaptation despite being inappropriate.  Dif-

ferences in the methods used to comprehend data in differ-

ent formats, such as greater reliance on spatial configura-

tions in graphs than in tables, could cause differences in 

ease of adaptation to novel tasks.  Consistent with this pos-

sibility, Porat et al. (2009) found evidence of greater nega-

tive transfer between tasks for tables than for graphs of uni-

variate data.  However, it is unclear whether, and to what 

extent, these findings may generalize to other tasks, and in 

particular, to tasks involving bivariate data. 

A related issue is how best to promote future positive 

transfer, and reduce negative transfer, when instructing 

learners to perform particular tasks.  Educational theories 

(e.g. Ainsworth, 2006) suggest that incorporating multiple 

representations into instruction may be one path to these 

goals.  Learners who integrate knowledge from multiple 

representations to form unified internal concepts are likely 

to show more robust and flexible learning.  Analogy re-

search suggests that comparison is a powerful tool to facili-

tate such integration and thus encourage positive transfer.  

For example, Gentner, Loewenstein, and Thompson (2003) 

found that management students who compared case studies 

illustrating a negotiation technique were more likely to ap-

ply the technique to novel cases.  Considering these two 

lines of research together suggests that comparing graphs 

and tables illustrating a concept may encourage learners to 

learn the concept in a more abstract way, and thus to apply 

and adapt them more flexibly when faced with novel tasks. 

The preceding discussion suggests several questions, 

which were investigated in the present study.  First, for tasks 

focusing on one or the other variable in bivariate datasets, 

does graphical presentation lead to greater performance 

asymmetry than tabular presentation with respect to the de-

picted variables?  Second, do graphs or tables show more 

positive (or less negative) influence of previous task prac-

tice on novel task performance?  Third, does comparing 

graphs and tables during training promote such positive 

transfer (and/or reduce negative transfer)? 

Method 

Participants received tutorials on different types of statistical 

effects in the context of 22 factorial designs with one ex-

perimentally-manipulated variable, or “treatment factor,” 

and one observed variable, or “secondary factor.”  The first 

two tutorials involved, respectively, main effects of the 

treatment factor and interaction effects of the two factors.  

Each tutorial explained how to judge the presence of the 

given effect in graphs and tables.  Each tutorial was fol-

lowed by a test requiring participants to judge whether the 

given effect was present in a series of graphs and tables. 

The first two tutorials and tests were followed by a third 

tutorial and test pertaining to main effects of the secondary 

factor.  This test required participants to perform the same 

task as for main effects of the treatment factor, namely mar-

ginalizing over one of the two factors, and differed only in 

which factor was to be marginalized.  Comparing perfor-

mance across test sections allowed us to tell whether the 

size of performance asymmetries across tasks differed by 

representational format.  Further, the first two tutorials ex-

plained explicitly how to determine whether the given ef-

fects were present.  By contrast, the third tutorial, regarding 

main effects of the secondary factor, did not.  Thus, the third 

test provided a measure of transfer to a novel task following 

practice with other related tasks.  The tests following each 

tutorial also included stimuli in a verbal format which was 

not shown during training.  Performance with these stimuli 

served as a measure of knowledge transfer to a task involv-

ing a novel representation. 

Participants 

Participants were N=127 undergraduate students from the 

Indiana University Psychology Department who participated 

in partial fulfillment of a course requirement. 

Materials 

A set of tables, graphs, and text passages representing pos-

sible outcomes of a fictional study were developed for use 

as test stimuli (Figure 1).  The study involved a drink taste 

test with two binary independent variables, drink flavor and 

participant age group, and one continuous dependent  varia-

ble, taste rating.  Drink flavor is referred to as the “treatment 

factor,” and age group as the “secondary factor.” 

Each stimulus represented a dataset comprising one taste 

      

 (a) 

 

(b) 

 

(c) 

 
 

Figure 1. Test stimuli in (a) graph, (b) table, and (c) verbal format for a single dataset. 

The pictured dataset shows a treatment effect and a treatment × secondary interaction, but no secondary effect. 
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rating for each combination of factor levels.  2 datasets were 

generated for each combination of presence or absence of 

effects of the treatment factor, secondary factor, and their 

interaction, yielding 16 datasets.  Each effect appeared in 

exactly half of the datasets, and no effect was correlated 

with any other.  3 stimuli were created for each dataset by 

presenting the data in each of 3 formats: table (Figure 1a), 

graph (Figure 1b), and verbal (Figure 1c), yielding 48 stimu-

li.  The secondary factor always appeared on the horizontal 

axis of the graphs and tables, while the treatment factor was 

laid out vertically in the tables and the graph legends, but 

these orientations were reversed in the verbal stimuli. 

Another fictional study, involving effects of cognitive en-

hancement drugs on test scores of males and females, was 

devised as a basis for examples to be shown in the tutorials.  

Analogous to our terminology for the test stimuli, drug is 

referred to as the treatment factor and sex as the secondary 

factor.  As for the test stimuli, 3 effects of these factors were 

possible: treatment effect, secondary effect, and treatment × 

secondary interaction.  For each effect, 2 datasets were de-

veloped: a “positive” dataset, which had the effect, and a 

“negative” one, which did not.  Using the same conventions 

as for the test stimuli, one graph and one table were created 

for each dataset, yielding 4 examples for each effect. 

Procedure 

The experiment was divided into 3 sections, one for each 

effect.  Each section consisted of a tutorial, followed by a 

test, for the given effect.  The sections were always present-

ed in the same order, namely (1) treatment effect, (2) inter-

action effect, and (3) secondary effect.  The tutorials and 

tests were presented via a computer interface. 

The tutorials for treatment and interaction effects fol-

lowed the same structure.  First, participants were shown a 

brief description of the cognitive enhancer study, together 

with 2 of the 4 examples for the given effect shown side-by-

side, and asked to judge whether or not the examples 

showed the given effect.  Second, they were told that the 

presence of the effect depended on certain values, i.e. dif-

ference in drug scores when marginalizing over sex in the 

case of treatment effect, or difference of differences be-

tween drugs for each sex in the case of interaction effect.  

They were required to calculate and compare the relevant 

values, and were then told in which example(s) the effect 

was present, using the calculated values as justification1.  

Next, participants were asked to compare the two examples.  

Finally, the above procedure was repeated for the remaining 

2 examples for the given effect. 

The tutorial for secondary effects followed the same pat-

tern as those for treatment and interaction effects, except 

that participants were not told which values they should 

calculate in order to judge the presence of secondary effects.  

Instead, after selecting which of the example(s) they thought 

                                                           
1  Participants were informed that normally a statistical test 

would be required, but for simplicity, they were to make their 

judgments using the standard that differences were significant if 

greater than or equal to 5, and not significant otherwise. 

showed effects of the secondary factor, they were asked to 

state how they thought the judgment should be made.  They 

were given no feedback on their responses to this question. 

Each participant was assigned randomly to one of three 

training conditions, which determined which examples were 

shown together in the tutorials.  (1) In the Comparing Rep-

resentations condition, the two positive examples, i.e. one 

graph and one table, were shown together first, followed by 

the two negative examples, again one graph and one table.  

(2) In the Contrasting Examples condition, the positive and 

negative examples in table format were shown together first, 

followed by the positive and negative examples in graph 

format.  (3) In the Control condition, the positive table and 

negative graph examples were shown together first, fol-

lowed by the negative table and positive graph examples. 

The Comparing Representations condition directly im-

plemented the idea, described in the introduction, of encour-

aging learners to compare different representations of the 

same information.  The Contrasting Examples condition was 

intended as a pedagogically plausible alternative approach 

that employed the same materials, and involved the same 

amount of training, but did not afford the above opportunity 

for comparison of different representations.  The Control 

condition was intended as a baseline with the same materi-

als and same amount of variation across examples as the 

other two conditions, but with the examples paired in a way 

not expected to be useful for learners.  N=42 participants 

were assigned to Comparing Representations, N=41 to Con-

trasting Examples, and N=44 to Control. 

Each tutorial was followed by a test.  Participants were 

shown a description of the taste test study and told that they 

would need to judge whether or not the effect about which 

they had just learned was present for various outcomes of 

the study.  For each trial, one test stimulus appeared and 

remained onscreen until a response was received.  No feed-

back was given.  Each test stimulus was presented once per 

test section, in random order, for a total of 48 trials. 

The experiment may be viewed online at 

http://perceptsconcepts.psych.indiana.edu/experiments/dwb/

MRIS_02/experiment_demo_live.html. 

Results 

Mean accuracy on test trials was 66%, and ranged from 25% 

to 100%.  Accuracy was significantly higher than chance, 

i.e. 50%, for all test sections and stimulus formats. 

Accuracy scores were submitted to a 333 mixed 

ANOVA with training condition as a between-subjects fac-

tor, and test section and stimulus format as within-subjects 

factors.  The main effect of training was not significant, 

F(2,124)=1.82, p=.166, nor were any of its interactions with 

other factors.  The main effect of section was significant, 

F(2,248)=23.67, p.000, indicating that accuracy was high-

est in the treatment section (74%), lower in the interaction 

section (69%), and lowest in the secondary section (63%).  

There was a marginal main effect of format, F(2,248)=2.82, 

p=.061, qualified by a significant section × format interac-

tion, F(4,496)=11.54, p.000.  Accuracy scores by test and 
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format are shown in Figure 2.  In the treatment and interac-

tion sections, accuracy was highest for graphs, lower for 

tables, and lowest for verbal, while in the secondary section, 

accuracy showed the opposite trend. 

 
 

Figure 2: Accuracy by Test Section and Format. 

Error bars indicate standard errors. 

 

Several of our research questions relate to graphs and ta-

bles only.  Thus, the above analysis was repeated with the 

data from verbal stimuli excluded.  The interaction of for-

mat with section was still significant, F(2,248)=3.61, p=.029.  

While accuracy decreased across the three sections for both 

graphs and tables, it decreased more for graphs (treatment: 

77%, interaction: 71%, secondary: 61%) than for tables 

(treatment: 75%, interaction: 69%, secondary: 63%). 

Response times for test trials were analyzed using the 

same ANOVA model structure.  The results strongly resem-

bled those for accuracy.  No significant effects involving 

training were found, ps>.25.  The main effects of test sec-

tion and format were both significant, F(2,248)=63.78, 

p.000 for section and F(2,248)=40.69, p.000 for format, 

as was their interaction, F(4,496)=3.04, p=.017.  Response 

times by section and format are shown in Figure 3.  Re-

sponses sped up over the course of the three test sections.  

Responses were, overall, faster for graphs than for tables 

and verbal, but these differences were more pronounced in 

the treatment section than in the later sections. 

 
 

Figure 3: Response Time by Test Section and Format. 

Error bars indicate standard errors. 

Just as for accuracy, the analysis of response time was re-

peated using for graph and table trials only.  The main effect 

of format was significant, F(1,124)=53.41, p.000, but the 

interaction of format with section was not, F(2,248)=.913, 

p=.403.  Thus, response times were faster for graphs (6209 

ms) than for tables (7230 ms) across all three sections. 

Accuracy scores reflect the differing utilities of graphs 

and tables for task performance in different test sections, but 

give little insight regarding the mental processes underlying 

task performance.  One way in which the latter might differ 

is the degree of influence exerted by different stimulus fea-

tures.  Each test stimulus was determined by presence or 

absence of treatment, interaction, and secondary effects, 

which may be viewed as three binary features.  In each test 

section, only one feature was relevant, but the two irrelevant 

features may also have influenced responses.  For example, 

in the secondary effect section, only the presence/absence of 

secondary effects was relevant, but a participant who had 

not adequately differentiated the three effects might give a 

positive response to a stimulus exhibiting treatment and 

interaction effects, even if no secondary effect was present.  

Thus, it could be useful to understand the influences of rele-

vant and irrelevant features on responses for different stimu-

lus formats and test sections. 

To this end, a measure of the degree Ix,s to which the pres-

ence of effect x influenced responses in the test section re-

garding effect s was calculated as follows: 

 

 
 

R=+ signifies a positive response, Ex=+ and Ex= signify, 

respectively, the presence and absence of effect x, and S=s 

signifies that the test section concerns effect s.  Thus, Ix,s 

represents the difference in probability of a positive re-

sponse regarding effect s when effect x is present, relative to 

when effect x is absent.  For a perfect responder, we would 

have Ix,s=100% when x is relevant, i.e. x=s, and Ix,s=0% 

when x is irrelevant, i.e. xs.  In other words, perfect re-

sponses would reflect total influence of relevant features 

and zero influence of irrelevant features. 

Influence Ix,s was calculated separately for each partici-

pant, stimulus format, effect x, and test section s.  The pat-

tern of results for relevant features closely resembled those 

for accuracy, and thus are not reported here.  The results for 

irrelevant features are shown in Figure 4.  The mean of Ix,s 

in these cases was 18%, and was significantly greater than 

0% for all combinations of format and test section.  Thus, 

participants were significantly biased towards positive re-

sponses by the presence of irrelevant features. 

The data for influence Ix,s over all cases where xs were 

analyzed using the same ANOVA model structure as for 

accuracy and response time.  No significant effects involv-

ing training condition were found, ps>.12, nor was the main 

effect of test section significant, F(2,248)=0.86, p=.423.  

However, a significant main effect of format was found, 

F(2,248)=5.68, p=.004, indicating that irrelevant features 

had the most influence for graphs (20.5%), less for tables 
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(18.7%), and least for verbal format (17.4%).  This effect 

was qualified by a format × test section interaction, 

F(4,496)=8.61, p.000.  As shown in Figure 4, the influence 

of irrelevant features increased over test sections for graphs, 

stayed about the same for tables, and decreased for verbal 

stimuli.  Separate ANOVAs conducted using the data for 

each format alone found a significant effect of test section 

on influence Ix,s for graphs, F(2,248)=8.41, p.000, but not 

for tables or verbal stimuli, ps>.38. 

 
 

Figure 4. Influence Ix,s for xs, i.e. for irrelevant features. 

Error bars indicate standard errors. 

Discussion 

In the first two sections of the study, participants were 

trained to judge whether treatment and interaction effects 

were present in bivariate data, and then tested on their abil-

ity to do so when the data was presented in graphical, tabu-

lar, or verbal format.  In both sections, responses were faster 

and more accurate for graphs than for tables.  Judging the 

presence of either effect requires assessing complex rela-

tionships between data points, i.e. comparing averages of 

pairs of data points for treatment effects or differences be-

tween pairs of data points for interaction effects.  The ad-

vantage shown by graphs over tables is thus consistent with 

the general view that complex relationships among data 

points are more easily assessed in graphical than in tabular 

format (Meyer et al., 1999; Porat et al., 2009; Schonlau & 

Peters, 2012; Vessey & Galletta, 1991). 

Accuracy was lower in the secondary effect section than 

in the previous two sections.  This result is not surprising, 

considering that participants were not told how to judge the 

presence of secondary effects.  However, interestingly, the 

effect of format on accuracy was reversed in this section.  

What might have caused this reversal?  One possible expla-

nation, detailed below, involves transfer.  Specifically, low 

accuracy with graphs in the secondary effect section may 

have reflected negative transfer from the previous sections 

that was absent, or reduced, in the case of tables. 

To flesh out this possibility, we consider how experience 

of the earlier sections of the study might have affected per-

formance in later sections.  In the earlier sections, partici-

pants were trained in explicit calculation methods to judge 

the presence of treatment and interaction effects.  With 

graphs, however, their judgments may have relied in part on 

visual patterns.  For example, a sideways “v” shape in the 

graphs (Figure 1a) could be a useful cue for the presence of 

both treatment and interaction effects.  Reliance on such 

visual patterns may have led to the creation of automatic 

visual routines (Ullman, 1984) that could support quick 

judgments regarding presence or absence of effects without, 

or before, performing the relevant calculations.  Important-

ly, such routines, once acquired in the earlier sections of the 

study, might continue to be used in the later sections. 

Thus, visual routines associating responses with visual 

patterns are one mechanism by which experience of the ear-

lier sections might influence performance in the later sec-

tions.  Importantly, this account predicts that such influence 

would be greater for graphs than for tables.  Visual patterns 

are believed to play an important role in graph comprehen-

sion (Carpenter & Shah, 1998; Pinker, 1990), but are much 

less salient in the case of tables.  Moreover, the above 

mechanism could lead to negative transfer.  Because visual 

patterns that were relevant earlier become irrelevant, even 

misleading, later, continuing to rely on them could hurt per-

formance.  For example, having learned in the first two sec-

tions to give positive responses when seeing the sideways 

“v” shape (Figure 1a), participants might continue to do so 

in the secondary effect section, even though that shape actu-

ally indicates the absence of a secondary effect.  In sum, the 

above account predicts greater negative transfer for graphs 

than for tables in the later sections of the study. 

Support for this explanation comes from our analysis of 

influence of irrelevant features on responses.  In general, 

such influence was greater for graphs than for tables.  More 

important for our present purpose, such influence increased 

over the course of the study for graphs, exactly as would be 

expected if responses in later sections were influenced by 

visual patterns which had proven useful in earlier sections.  

By contrast, influence of irrelevant features did not change 

over the course of the study for tables, as one would expect 

given the lesser salience of visual patterns in tables. 

An alternate explanation for the reversal, in the secondary 

effect section, of relative accuracies for graphs and tables 

involves variation in the intrinsic difficulty of recognizing 

different effects in different formats.  Specifically, for 

graphs, treatment and interaction effects may have been 

relatively easy to detect, and secondary effects relatively 

difficult, while for tables, there may have been less variation 

in the ease of detecting the various effects.  This possibility 

is consistent with the hypothesis, stated in the Introduction, 

that performance asymmetry between tasks should be great-

er for graphs than for tables, due to greater representational 

asymmetry between variables in the former case.  It is also 

consistent with Shah and Freedman’s (2011) above-

mentioned finding that spontaneous interpretations of biva-

riate graphs tend to focus on main effects of the legend vari-

able (in our study, the treatment factor) rather than the x-

axis variable (in our study, the secondary factor). 

However, two aspects of our results cannot easily be ex-

plained in terms of variation in intrinsic task difficulty.  The 
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first is the observed pattern of response times.  Although 

accuracy in the secondary effect section was lower for 

graphs than for tables, reaction times showed the opposite 

trend, i.e. faster responses for graphs.  These faster respons-

es are consistent with reliance on automatic visual routines, 

as described above, but less consistent with the assumption 

that the task was more difficult to perform with graphs.  

Second, variation in intrinsic task difficulty cannot explain 

why influence of irrelevant features increased over the study 

for graphs, but not for tables.  However, this effect is pre-

dicted by the first account given above. 

While available evidence favors the first over the second 

account, further research could more definitively disambig-

uate between them by placing the secondary effect section at 

the beginning, and the treatment effect section at the end.  If 

the first account, in terms of learned visual routines, is cor-

rect, then whichever section comes last should show nega-

tive transfer for graphs.  If the second account, in terms of 

intrinsic task difficulty, is correct, then performance on the 

secondary effect section should be worse for graphs regard-

less of when it is encountered. 

Another question investigated in our study was whether 

comparing graphs and tables of the same data during train-

ing, as in the Comparing Representations condition, would 

facilitate learning and transfer.  However, this prediction 

was not confirmed.  Accuracy showed no effect of training 

condition, suggesting that the Comparing Representations 

condition was not more effective overall.  Nor did accuracy 

show any interaction of training condition with either format 

or section, suggesting that the Comparing Representations 

condition did not produce any particular benefits for trans-

fer, either to a novel format, i.e. verbal, or to a novel effect 

type, i.e. secondary effect. 

Importantly, this negative finding does not address the is-

sue of whether the use of multiple representations during 

instruction can benefit learners, because multiple representa-

tions were included in all of our training conditions.  How-

ever, our findings do suggest that the specific technique of 

comparing different representations of the same data may 

not produce any incremental learning benefit.  This finding 

stands in contrast to the considerable learning benefits that 

can result from comparing semantically different instantia-

tions of the same concept (Gentner et al., 2003). 

In conclusion, our findings are consistent with previous 

research in finding an advantage for graphs over tables for 

tasks involving complex relationships between data points.  

Theories of graph comprehension suggest that salient visual 

patterns in graphs may underlie this advantage.  However, a 

novel finding of the present study is that such visual patterns 

may not always be helpful.  In particular, when performing 

novel tasks, graph readers may focus on visual features 

which were relevant to previous tasks, and have difficulty 

shifting perspective to focus on features which were previ-

ously irrelevant.  By contrast, such shifts of perspective may 

be relatively easier with representational formats in which 

visual patterns are less salient, such as tables.  These con-

siderations suggest that graphical presentation may be pref-

erable for performing well-practiced tasks which are known 

in advance, while tabular presentation may be most suitable 

when performing or learning to perform unfamiliar tasks. 
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