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Abstract 

We formalize the biased activation theory of anchoring using 
a bidirectional associative memory network. Anchors 
determine the starting state of this network. As the network 
settles, we show that the nodes representing numerical 
responses activate and deactivate consecutively, generating 
sequential adjustment. By demonstrating that anchoring as 
adjustment emerges naturally from the dynamics of the biased 
activation process, we are able to unify the two main theories 
of the anchoring effect, and subsequently provide a 
parsimonious explanation for a large range of findings 
regarding anchoring, and its determinants. Although we focus 
largely on phenomena related to anchoring, the results of this 
paper apply equivalently to all judgments under the influence 
of bidirectional processing, including those involving 
constraint satisfaction. 

Keywords: Decision Making, Neural Networks, Dynamic 
Processes, Anchoring Effect, Constraint Satisfaction 

Introduction 

Anchors have a powerful effect on human judgment. 

Responses to simple questions involving magnitude or time 

are systematically affected by uninformative numbers, 

known as anchors, displayed to the decision maker prior to 

the judgment task. High anchors generate high responses, 

low anchors generate low responses, and final judgments 

can be manipulated by selecting the appropriate anchor. 

The anchoring effect has been shown to emerge in a large 

number of domains, and is one of the best studied judgment 

biases in psychology. Yet despite its importance, the 

cognitive mechanisms responsible for the anchoring effect 

are still being debated. In their seminal paper on heuristic 

choice, Tversky and Kahneman (1974) proposed that 

anchoring is caused by an imperfect sequential adjustment 

process. At each step in this process, decision makers 

evaluate the validity of a particular response. The judgment 

process terminates if the response in consideration is 

adequate; otherwise it moves on to the next feasible value. 

Anchors determine the starting point in this process, and 

adjustment is insufficient. Subsequently responses are closer 

to the anchor than optimal.  

This explanation for the anchoring effect has been popular 

for many decades, and formal models of the anchoring 

effect have assumed that anchoring operates through 

sequential adjustment (Johnson & Busemeyer, 2005, but see 

also Choplin & Tawney, 2010).  A more recent approach, 

however, claims that anchoring is the product of biased 

activation (Chapman and Johnson, 1994, 1999; Mussweiler 

& Strack, 1999). Anchors, according to this view, increase 

the accessibility of cues supporting the anchor. This 

evidence subsequently generates final responses that are 

closer to the anchor than optimal.  

Is anchoring caused by sequential adjustment or biased 

activation? Both theories are supported by a large number of 

empirical findings (discussed in later sections), but neither 

is able to predict all of these findings by itself.  In this paper 

we provide a simple answer to this question. We show that 

these processes are not necessarily distinct: sequential 

adjustment emerges from the dynamics of biased activation. 

Anchoring, thus, is caused by both these mechanisms 

simultaneously, and a large range of findings regarding 

anchoring and its moderators, can be explained within a 

unitary, parsimonious, theoretical framework.  

Bidirectional Associative Memory 

Consider a very simple judgment task. The decision maker 

is asked to select one of N responses based on M cues stored 

in memory. We assume, for simplicity, that the relationship 

between the responses and the cues is binary, with each cue 

either supporting or opposing each response. We can write a 

response i as ri, and a cue j as cj. If cj supports ri then we can 

write sij=+1, and if it opposes ri then we can write sij=-1.  

These responses can be numeric, as in typical anchoring 

tasks, or non-numeric as in more general judgment tasks. 

For numeric responses, we assume that the N nodes are 

ordered in a sequence r1, r2, …, rN, corresponding to the 

sequence of available responses. For example, when 

considering the percentage of African countries in the 

United Nations, with responses in intervals of 1%, r1, r2, …, 

r100 correspond to the responses 1%, 2%, …, 100%.   

We can implement this structure in a two layer neural 

network, with the first layer consisting of M nodes 

representing the M different cues, and the second layer 

consisting of N nodes representing the N response options. 

The activation of the node corresponding to cj, at time t, can 

be written as Cj(t), and the activation of the  node 

corresponding to ri, at time t, can be written as Ri(t).  

The connections from the cue layer to the response layer 

are equal to the strength of support provided by the cues to 

the responses. As activated response options (such as 

anchors) also affect the activation of the available cues, 

these connections can be assumed to be recurrent. Hence the 

connections from cj to ri and from ri to cj are both simply sij. 
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At a given time t, the activated nodes in the response layer 

first send inputs, weighted by sij, into the cue layer. This 

affects the activation of the nodes in the cue layer. The 

activated nodes in the cue layer subsequently send inputs 

weighted by sij into the response layer, affecting the 

activation of the response nodes at t+1, at which point the 

process repeats. 

In addition to the inputs from the response layer, we 

assume that the nodes in the cue layer receive constant 

exogenous inputs with strength I=1.  These inputs ensure 

that evidence nodes are activated even when none of the 

response nodes are active, and that the judgment process can 

begin in the absence of a response bias. We also assume that 

all of the nodes in our network have the same binary 

activation function, with a threshold at zero. With this 

assumption we can write the activation functions of any ri as 

Ri(t)=H[qi], and any cj as Cj(t)=H[bj] such that qi=∑sij·Cj(t-

1), bj=∑sij·Ri(t) + 1, and H as the unit step function with 

H[x]=1 for x>0  and H[x]=0 for x≤0.     

We can now formalize the effect anchors have on the 

judgment process.  We assume that anchors determine the 

starting state of the network. Hence if ri is the anchor, then 

at t=1, we have Ri(1)=1, and Rk(1)=0 for k≠i. In the absence 

of an anchor, the network begins with Rk(1)=0 for all k. 

Finally, we assume that responses active once the network 

stabilizes are the ones that are selected, and that the 

response time is proportional to the time it takes for the 

network to settle.  

The proposed network is motivated primarily by the 

memory structure assumed to be at play in anchoring and 

related judgment tasks: indeed, it is one of the simplest 

possible cognitive instantiations of the biased activation 

theory of anchoring, which posits a recurrent relationship 

between cues and responses. That said, this network is 

ultimately a special case of the bidirectional associative 

memory (BAM) network, introduced in Kosko (1988). 

BAM itself generalizes the Hopfield network, which BAM 

resembles when node updating is asynchronous.  

 

 
Figure 1: The BAM network.  

Activation and Stability 

What determines the responses that get activated at any time 

period, in the BAM network? The answer is cue overlap. 

Assume that only ri is activated at time t. This activation 

causes only the cues that support ri to be activated at t. 

Intuitively, the decision maker focuses on the cues that 

support the activated response and suppresses the cues that 

oppose the activated response. Once these cue nodes are 

activated, the activation pattern in the response layer 

changes. At t+1, responses supported by most of the cues 

activated at t turn on. These include ri, but also other novel 

responses, that overlap sufficiently with ri in cue support. 

Eventually at t+2 these responses activate other responses 

that they overlap with, and this process continues until the 

network stabilizes. Stability is always guaranteed: any BAM 

network with any memory structure, starting at any point, 

will stabilize in a finite number of time steps (Kosko, 1988).  

Defining Sequential Adjustment 

We hope to show that this settling process of the BAM 

network in the presence of anchors resembles sequential 

adjustment. Before we can do this, however, we need to 

understand what sequential adjustment really is. Sequential 

adjustment is generally defined as the successive movement 

through the range of responses available to the decision 

maker. In the simplest case, this definition imposes a form 

of serial processing, according to which only one response 

is considered at any given time. For example, when judging 

the proportion of African countries in the U.N., decision 

makers may first consider 1%. After rejecting this response 

they would consider 2%. If this too is inadequate they 

would move on to 3%, and so on. We consider the more 

general (and more realistic) case in which multiple 

responses can be considered at the same time. This allows 

decision makers to focus on all the responses within a 

particular interval, such as 1-10%, simultaneously, before 

moving on to the next interval in the sequence.  

Such a dynamic is compatible with the general idea 

underlying sequential adjustment, as long as the responses 

activated are contiguous. Sequential adjustment does not 

permit the simultaneous consideration of different, non-

neighboring responses. For example decision makers who 

consider both 1% and 99% simultaneously, without 

considering the responses between these two numbers, 

would not appear to be displaying sequential adjustment.  

This then allows us to formalize the first requirement for 

sequential adjustment. This requirement, titled contiguous 

activation, states that sequential adjustment must not 

involve the simultaneous activation of multiple non-

neighboring responses. Responses must be considered 

individually or in contiguous intervals.  

Settling dynamics that display contiguous activation do 

not necessarily resemble sequential adjustment. It is 

possible for the decision maker to consider responses in 

contiguous intervals at any given time, but transition across 

different intervals in a non-sequential manner. For example, 

when evaluating the proportion of African countries in the 

U.N., decision makers could begin by considering the 

interval 1-10%, and then move to the interval 20-30%, 

without considering the interval 10-20%.  

We thus need an additional requirement for our definition 

of sequential adjustment, in order to rule out these types of 

dynamics. This requirement, titled sequential transitions, 

states that sequential adjustment must not involve changes 

in activation that skip over a set of responses. Changes to 

response activation must be successive.  
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Connected Memory 

Do the dynamics of the anchored BAM network satisfy 

contiguous activation and sequential transition? Not 

necessarily. However with a simple assumption about the 

underlying memory structure, these requirements can indeed 

be satisfied. This assumption relates to the distribution of 

cue support for the responses. In numeric judgments, cues 

can seldom support two disparate responses without 

supporting intermediate responses. For example, when 

judging the proportion of African countries in the UN, any 

cue that supports the 10% response, and the 12% response, 

should, in general, support the intermediate 11% response. 

This property, titled connectedness, more formally requires 

that a cue that supports ri and rk, also supports rl for i<l<k. 

Memory structures displaying this property involve cues 

with a single, connected, interval of supported responses, 

where as those that do not display this property have cues 

with multiple, fragmented, intervals of supported responses.  

While connectedness may not be satisfied in all judgment 

tasks, it is certainly a reasonable assumption when 

responses are ordered, as with the numerical scales used in 

anchoring tasks. Cues in these settings generally provide 

support for “large” responses, or “small” responses, or 

“medium” responses, or some other connected interval of 

responses. Very few cues provide support for a set of non-

neighboring responses, distributed sporadically across the 

response scale. Indeed it is quite difficult to think of 

memory structures with diagnostic cues for numerical 

responses that do not satisfy the connectedness property.  

The Emergence of Sequential Adjustment 

When memory structures satisfy connectedness, then the 

resulting BAM network, with the anchored response 

activated at the start of the decision process, satisfies both 

contiguous activation and sequential transition.  Of course, 

satisfying these properties does not imply that the decision 

maker necessarily adjusts away from the anchor. It may be 

the case that the anchor is stable. If there is adjustment, 

however, the adjustment is guaranteed to be sequential. 

Anchors trigger a cascade of activation in the response 

layer: Neighboring responses activate and deactivate 

consecutively. There are no jumps in response activation, 

nor do multiple non-neighboring responses activate, without 

the activation of the intermediate responses.  

 

 

Figure 2: The emergence of sequential adjustment.  

 

How does the connectedness property satisfy contiguous 

activation and sequential transitions? While the proof of this 

claim is in the appendix, the intuition for it is as follows. 

Due to connectedness, cues that support both the anchor and 

a non-neighboring non-anchored response must also support 

any intermediate responses, lying between the anchor and 

the non-neighboring response. Thus if the activation of the 

anchor activates cues that subsequently activate non-

neighboring responses, these cues must also activate all of 

these intermediate responses. Subsequently, response 

activation at t=2 must be contiguous, and any transitions 

that may have happened at t=1 must be sequential. This 

intuition however also applies for the contiguous interval of 

responses activated at t=2, implying that any further 

changes to activation after t=2 must be sequential. 

Additionally, once a contiguous interval of responses is 

activated, we can show that connectedness implies that this 

interval cannot splinter into smaller, non-contiguous 

activated intervals, implying that contiguous activation must 

also be satisfied after t=2. Mathematical induction shows 

that these properties then hold at all times. 

Connected BAM memory structures guarantee sequential 

activation. But can they generate insufficient adjustment? 

Let us consider the case with one correct response. When 

the memory structure is such that two nodes lying between 

the anchor and the correct response do not overlap on an 

appropriate number of cues, the sequential adjustment 

process described above will be insufficient: it will stabilize 

with the activation of response values closer to the anchor 

than the correct response.  

The intuition for this is fairly straight forward. If, for a 

low anchor, there exist two response nodes between the 

anchor and the correct response, whose cue support does not 

overlap sufficiently, then the activation of the lower 

response node will not lead to the activation of cues that 

activate the higher response node. As activation must be 

contiguous and transitions must be sequential, no higher 

nodes can be activated, the network will stabilize with the 

activation of incorrectly low responses, and the correct 

response will remain turned off. The same intuition holds 

for tasks involving a high anchor, in which the network will 

stabilize with the activation of incorrectly high responses, 

and the correct response will remain turned off.  

Demonstrations 

The above sections have shown that the BAM network with 

connected memory structures satisfies contiguous activation 

and sequential transition, and can generate insufficient 

adjustment. While this is an analytical result, proved in the 

appendix, and guaranteed to hold regardless of any 

underlying parameters, demonstrations of the types of 

sequential adjustment generated by connectedness can 

provide important insights regarding the behavior emerging 

from the BAM network.  

Figure 3 provides one such demonstration. It shows a 

hypothetical distribution of cue support for a sequence of 

responses, and the settling dynamics of the corresponding 

BAM network with a high anchor, low anchor, and without 

any anchor. The correct response in this network is r4, and 

this is the stable response in the absence of an anchor. When 

anchored at r6 (a high anchor), however, the network 
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stabilizes at r5. Similarly when anchored at r1 (a low 

anchor), the network stabilizes at r3. These behaviors 

indicate the presence of the anchoring effect. Additionally, 

the settling dynamics with these anchors display sequential 

adjustment: response nodes activate and deactivate 

consecutively until the network stabilizes.  

Why do we observe these behaviors? r1, r2, and r3 overlap 

on the component cues in such a way that the set of cues 

supported by ri also on average support ri+1, for i=1, 2. This 

means that activating r1 leads to the activation of r2, which 

then activates r3. The set of cues supporting r3 and r4 do not 

however overlap in this way, implying that the cascade of 

activation begun by anchoring the network at r1 ends with 

the stable activation of r3. A similar property holds for r5 

and r6. Also note that the network satisfies connectedness, 

which implies that the activation dynamics generated by the 

anchor display contiguous activation and sequential 

transitions, leading to sequential adjustment. 

 

 
Figure 3: Distribution of cue support, and resulting 

 network dynamics for low, high and no anchors. 
 

These dynamics also emerge with larger, randomly 

generated memory structures. Consider a setting with 

N=100 responses and M=1000 cues. Let us randomly 

generate support or opposition between these cues and these 

responses. For each cue we can pick a number from the 

normal distribution with mean 50 and variance 25, and 

round it to its nearest integer. We can subsequently take an 

interval of length 20 around this integer, to generate the set 

of responses supported by the cue. All other responses are 

opposed by the cue. Taking an interval of responses around 

the randomly chosen number generates a “blurring” in the 

underlying memory structure: it is seldom the case that 

individual cues support point estimates; rather their support 

is distributed across an interval of responses. 

As the randomly generated memory structure satisfies 

connectedness, it should be able to generate sequential 

adjustment. Figure 4 displays the dynamics of the BAM 

network instantiating this randomly generated memory 

structure, with a high anchor, r100 and a low anchor, r1. Note 

that the stable responses for the two anchors are different, 

with the stable responses for the low anchor lower than the 

stable responses for the high anchor. Additionally, 

activation at all points of time is contiguous, and all 

transitions are sequential: we can observe a cascade of 

activation in the response layer over time, with intervals of 

responses activating and deactivating consecutively before 

finally stabilizing.   

Note that the dynamics observed in figure 4 also emerge 

with alternate parameters in the model. In general, however, 

increasing the ratio of total responses to total cues and 

increasing the blurring in the cue support for the responses 

generates a higher likelihood of adjustment, as well as 

longer sequences of adjustment. This subsequently leads to 

weaker anchoring effects. Overall the anchoring bias is 

strongest when there are many relevant cues, and each cue 

supports few neighboring responses.  

 

 
 

Figure 4: Network dynamics for high and low  

anchors, with randomly generated memory. 

Explaining Anchoring Phenomena 

Anchoring is a well-studied phenomenon and the sequential 

adjustment and biased activation theories of anchoring have 

a large range of behavioral findings that they must be able 

to account for. The above sections have shown that these 

theories are almost identical: the process assumed by one, 

emerges directly from the process assumed by the other.  

This section shows how this result can explain most of the 

findings documented in anchoring research.  

Using a lexical decision task, Mussweiler and Strack 

(2000) find that decision makers identify “cold” related 

words quicker and more accurately after temperature 

judgments with low anchors, and identify “hot” related 

words quicker and more accurately after temperature 

judgments with high anchors. Sequential adjustment theory 

is unable to account for this finding, however, the BAM 

framework allows for both sequential adjustment and 

anchor dependent cue accessibility biases to emerge 

simultaneously: once the network settles, the cues that 

support the stable responses are themselves stable. If the 

judgment began with a low anchor then stable cues are more 

likely to support the low anchor than the high anchor. The 

opposite holds if the judgment began with a high anchor.  

The biased activation theory of anchoring also predicts 

that exogenous factors influencing cue accessibility can 

affect anchoring. This has been verified by Chapman and 
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Johnson (1999) and Mussweiler et al. (2000). Unlike 

sequential adjustment theory, the BAM model can explain 

these findings. If we assume that exogenous influences on 

cue attention affect the inputs, I, into the cue layer, then 

directing attention towards cues that oppose the anchored 

response ri, leads to stronger inputs, I>1, into these cues. 

Due to these inputs, these cues are not inhibited by feedback 

from the activated anchor in the response layer. 

Subsequently all cues are activated at the start of the 

decision process, the pattern of activation on the cue layer 

resembles the pattern observed in the absence of an anchor, 

and the network stabilizes without an anchoring bias.   

According to the traditional sequential adjustment theory, 

all types of anchors, regardless of underlying cue support, 

should lead to the anchoring effect. Research by Chapman 

and Johnson (1994), however, finds that implausible 

anchors (anchors that are not supported by any cues) have a 

much weaker effect than plausible anchors. BAM provides a 

simple explanation for this result. When implausible 

anchors are activated at the start of the decision process, all 

cues are suppressed (as these anchors are not supported by 

any cues).  Subsequently none of the response nodes 

activate in the next time period. This leads the network to a 

state identical to the starting state of the network in the 

absence of an anchor. Implausible anchors thus do not 

generate an anchoring effect.  

A fourth finding supporting the biased activation theory 

of anchoring pertains to the effect of multiple anchors. 

Sequential adjustment theory predicts that the decision 

maker adjusts sequentially away from the one anchor 

presented in the decision task. This theory cannot make 

predictions for settings with multiple anchors. Switzer and 

Sniezek (1991) and Whyte and Sebenius (1997), however, 

demonstrate that multiple anchors affect judgment 

differently relative to single anchors. Single anchors paired 

with more extreme anchors generate a stronger anchoring 

effect than the single anchors alone, whereas single anchors 

paired with less extreme anchors generate a weaker 

anchoring effect than the single anchors alone.  

BAM can account for the effect of multiple anchors. The 

activation of multiple response nodes at the start of the 

judgment process leads to the activation of all the cues 

supporting these anchors. When a single anchor is paired 

with a more extreme anchor then the set of cues activated 

are more likely to support extreme responses, relative to 

when the single anchor is activated by itself. This can lead 

to the stable activation of responses close to the extreme 

anchor, generating a stronger anchoring effect. The opposite 

happens when a single anchor is paired with a less extreme 

anchor. Here the activated cues are less likely to support 

extreme responses. This can lead to the ultimate stable 

activation of responses close to the moderate anchor, 

generating a weaker anchoring effect.   

The cue accessibility, exogenous attentional influence, 

implausible anchor and multiple anchor results discussed 

above present strong evidence for the biased activation 

theory of anchoring. The standard biased activation theory 

cannot however provide a comprehensive account of all the 

moderators of the anchoring effect. Research by Reitsma-

van Rooijen and Daamen (2006), for example, finds that 

time pressure increases the anchoring effect. This has 

traditionally seen as providing evidence for the sequential 

adjustment theory of anchoring, according to which time 

pressure limits the number of adjustments possible, thereby 

increasing the strength of the anchoring effect. As the BAM 

network proposed in this paper generates sequential 

adjustment, it is able to provide an explanation for these 

results as well. The BAM network often does not settle at its 

stable response in one time step; rather its response nodes 

activate and deactivate consecutively over time, before 

stabilizing at the final response (as in e.g. figure 4). When 

the decision maker is faced with time pressure, the network 

is not allowed to stabilize and the adjustment process 

generated in this network is curtailed, generating a stronger 

anchoring effect.  

Another finding providing evidence for sequential 

adjustment theory relates to the role of incentives on 

anchored judgment. Particularly, Simmons et al. (2010) find 

that financial incentives reduce the anchoring effect. This 

cannot be explained by biased activation theory. If, 

however, we assume that incentivized decision makers send 

stronger inputs into the cue activation layer (perhaps due to 

increased attention towards all cues relevant to the decision 

task) then the BAM network can in fact explain this effect. 

As discussed above, when I>1, the exogenous inputs 

override the inhibitory feedback from the anchor in the 

response layer. Cue activation subsequently resembles the 

unbiased decision process, and the anchoring effect 

disappears.  

Anchoring as Constraint Satisfaction 

The bidirectionality assumed in this paper is a property of a 

general class of models that have been used to explain 

findings on inference across a variety of domains. These are 

models of constraint satisfaction (see e.g. Holyoak & 

Simon, 1999 for a review). Constraint satisfaction models 

provide a powerful approach to studying the 

interrelationships between cues and responses, and the ways 

that these relationships affect the dynamics of the decision 

process. Indeed, the anchoring effect can be seen as just a 

specific instantiation of the general type of starting point 

sensitivity displayed by these models: if the memory 

structures in these models satisfy connectedness then these 

models will also generate sequential adjustment. In this 

light, the BAM network is not just a model of anchoring, 

but rather a model of constraint satisfaction; one which 

provides a tractable framework with which to understand 

the cognitive dynamics that constraint satisfaction entails, 

and the behaviors that these dynamics can generate.  

Conclusion 

We have used the bidirectional associative memory network 

to study the anchoring effect. The BAM network provides a 

simple model for the biased activation theory of anchoring. 
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We have shown that the settling dynamics of this BAM 

network generate sequential adjustment. Anchors trigger a 

cascade of activation in the response layer of the BAM 

network, with nodes in this layer activating and deactivating 

consecutively. This progression of activation is generally 

insufficient and final responses depend critically on starting 

anchor values. By reconciling two contrasting theories 

within one framework, the BAM network is able to provide 

a parsimonious explanation for a wide range of findings 

regarding anchoring and its moderators.  

APPENDIX 

Here we shall show that BAM networks with connected 

memory structures satisfy contiguous activation and 

sequential transition. Let us define Di to be the set of cues 

supporting ri, D
t
 to be the set of cues activated at t, Ej to be 

the set of responses supported by cj and E
t
 to be the set of 

responses activated at t. |X| shall indicate set X’s cardinality. 

Now consider the following propositions:  

Proposition 1a: If a contiguous interval of responses, ri, 

ri+1, … rk is activated at t (and all other responses are 

deactivated at t), and for l>k, rl is activated at t+1, then it is 

the case that rk, rk+1 … r1-1 are activated at t+1. Proof:  cjϵD
t
 

implies cjϵDiUDi+1…UDk. Since rlϵE
t+1

, we have 

|Dl∩D
t
|>|D

t
|/2. Connectedness implies that if 

cjϵDiUDi+1…UDk and cjϵDl then cjϵDl’ for l>l’≥k. Hence if 

|Dl∩D
t
|>|D

t
|/2 we also have |Dl’∩D

t
|>|D

t
|/2 for all l>l’≥k, 

which means that rlϵE
t+1

 implies rl’ϵE
t+1

 for l>l’≥k.  

Proposition 1b: If a contiguous interval of responses, ri, 

ri+1, … rk is activated at t (and all other responses are 

deactivated at t), and for l<i, rl is activated at t+1, then it is 

the case that rl+1, rl+2, … ri are activated at t+1. Proof: The 

proof for this is identical to that for proposition 1a.  

Proposition 2: If a contiguous interval of responses, ri, 

ri+1, … rk is activated at t (and all other responses are 

deactivated at t), then for any p and q with k>p>q>i, if rq 

and rp are activated at t+1 then so is any rl for p>l>q. Proof: 

cjϵD
t
 implies |Ej∩E

t
|≥|E

t
|/2. As Ej is contiguous (by 

connectedness), and E
t 

is contiguous, Ej∩E
t 

is also 

contiguous. Hence if cjϵD
t
 it supports at least |E

t
|/2=(k-

i+1)/2 contiguous responses in E
t
. Assume that q<(k+i)/2. If 

cjϵDq∩D
t 

then as cj supports at least (k-i+1)/2 neighboring 

responses in E
t
, we must also have cjϵDq+1. Hence if 

|Dq∩D
t
|>|D

t
|/2, as is implied by rqϵE

t+1
, then we have 

|Dq+1∩D
t
|>|D

t
|/2, which implies that rq+1ϵE

t+1
. Now we can 

use this method again to show that rq+2ϵE
t+1

, and keep 

iterating it to show that rlϵE
t+1

 for all (k+i)/2≥l≥q. Now if 

(k+i)/2≥p then our proof is done. If not then note that we 

can use the same logic as above to show that rlϵE
t+1

for 

p≥l≥(k+i)/2. This then gives us our result.  

Now, propositions 1a and 1b show that if a contiguous 

interval of responses is activated at time t then a response 

that does not neighbor this contiguous interval, cannot be 

activated at t+1 without activating all intermediate 

responses. Proposition 2 shows that if a contiguous interval 

of responses is activated at time t then this interval cannot 

splinter into two or more non-contiguous intervals of 

activated responses at t+1. Together these results imply both 

contiguous activation and sequential transitions. 
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