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Abstract

We formalize the biased activation theory of anchoring using
a bidirectional associative memory network. Anchors
determine the starting state of this network. As the network
settles, we show that the nodes representing numerical
responses activate and deactivate consecutively, generating
sequential adjustment. By demonstrating that anchoring as
adjustment emerges naturally from the dynamics of the biased
activation process, we are able to unify the two main theories
of the anchoring effect, and subsequently provide a
parsimonious explanation for a large range of findings
regarding anchoring, and its determinants. Although we focus
largely on phenomena related to anchoring, the results of this
paper apply equivalently to all judgments under the influence
of bidirectional processing, including those involving
constraint satisfaction.
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Introduction

Anchors have a powerful effect on human judgment.
Responses to simple questions involving magnitude or time
are systematically affected by uninformative numbers,
known as anchors, displayed to the decision maker prior to
the judgment task. High anchors generate high responses,
low anchors generate low responses, and final judgments
can be manipulated by selecting the appropriate anchor.

The anchoring effect has been shown to emerge in a large
number of domains, and is one of the best studied judgment
biases in psychology. Yet despite its importance, the
cognitive mechanisms responsible for the anchoring effect
are still being debated. In their seminal paper on heuristic
choice, Tversky and Kahneman (1974) proposed that
anchoring is caused by an imperfect sequential adjustment
process. At each step in this process, decision makers
evaluate the validity of a particular response. The judgment
process terminates if the response in consideration is
adequate; otherwise it moves on to the next feasible value.
Anchors determine the starting point in this process, and
adjustment is insufficient. Subsequently responses are closer
to the anchor than optimal.

This explanation for the anchoring effect has been popular
for many decades, and formal models of the anchoring
effect have assumed that anchoring operates through
sequential adjustment (Johnson & Busemeyer, 2005, but see
also Choplin & Tawney, 2010). A more recent approach,
however, claims that anchoring is the product of biased

activation (Chapman and Johnson, 1994, 1999; Mussweiler
& Strack, 1999). Anchors, according to this view, increase
the accessibility of cues supporting the anchor. This
evidence subsequently generates final responses that are
closer to the anchor than optimal.

Is anchoring caused by sequential adjustment or biased
activation? Both theories are supported by a large number of
empirical findings (discussed in later sections), but neither
is able to predict all of these findings by itself. In this paper
we provide a simple answer to this question. We show that
these processes are not necessarily distinct: sequential
adjustment emerges from the dynamics of biased activation.
Anchoring, thus, is caused by both these mechanisms
simultaneously, and a large range of findings regarding
anchoring and its moderators, can be explained within a
unitary, parsimonious, theoretical framework.

Bidirectional Associative Memory

Consider a very simple judgment task. The decision maker
is asked to select one of N responses based on M cues stored
in memory. We assume, for simplicity, that the relationship
between the responses and the cues is binary, with each cue
either supporting or opposing each response. We can write a
response i as r;, and a cue j as ¢;. If ¢ supports r; then we can
write s;=+1, and if it opposes r; then we can write s;=-1.

These responses can be numeric, as in typical anchoring
tasks, or non-numeric as in more general judgment tasks.
For numeric responses, we assume that the N nodes are
ordered in a sequence ry, Iy, ..., Iy, corresponding to the
sequence of available responses. For example, when
considering the percentage of African countries in the
United Nations, with responses in intervals of 1%, ry, 1o, ...,
I'100 COrrespond to the responses 1%, 2%, ..., 100%.

We can implement this structure in a two layer neural
network, with the first layer consisting of M nodes
representing the M different cues, and the second layer
consisting of N nodes representing the N response options.
The activation of the node corresponding to ¢;, at time t, can
be written as Cj(t), and the activation of the node
corresponding to r;, at time t, can be written as Ry(t).

The connections from the cue layer to the response layer
are equal to the strength of support provided by the cues to
the responses. As activated response options (such as
anchors) also affect the activation of the available cues,
these connections can be assumed to be recurrent. Hence the
connections from ¢; to r; and from r; to c; are both simply s;;.
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At a given time t, the activated nodes in the response layer
first send inputs, weighted by s, into the cue layer. This
affects the activation of the nodes in the cue layer. The
activated nodes in the cue layer subsequently send inputs
weighted by s; into the response layer, affecting the
activation of the response nodes at t+1, at which point the
process repeats.

In addition to the inputs from the response layer, we
assume that the nodes in the cue layer receive constant
exogenous inputs with strength I1=1. These inputs ensure
that evidence nodes are activated even when none of the
response nodes are active, and that the judgment process can
begin in the absence of a response bias. We also assume that
all of the nodes in our network have the same binary
activation function, with a threshold at zero. With this
assumption we can write the activation functions of any r; as
Ri(t)=H[ai], and any ¢; as C;(t)=H[b;] such that g;=3 s;;-Cj(t-
1), b= si-Ri(t) + 1, and H as the unit step function with
H[x]=1 for x>0 and H[x]=0 for x<0.

We can now formalize the effect anchors have on the
judgment process. We assume that anchors determine the
starting state of the network. Hence if r; is the anchor, then
at t=1, we have Rj(1)=1, and Ry(1)=0 for k#i. In the absence
of an anchor, the network begins with R,(1)=0 for all k.
Finally, we assume that responses active once the network
stabilizes are the ones that are selected, and that the
response time is proportional to the time it takes for the
network to settle.

The proposed network is motivated primarily by the
memory structure assumed to be at play in anchoring and
related judgment tasks: indeed, it is one of the simplest
possible cognitive instantiations of the biased activation
theory of anchoring, which posits a recurrent relationship
between cues and responses. That said, this network is
ultimately a special case of the bidirectional associative
memory (BAM) network, introduced in Kosko (1988).
BAM itself generalizes the Hopfield network, which BAM
resembles when node updating is asynchronous.

" Inputs (1)
Figure 1: The BAM network.

Activation and Stability

What determines the responses that get activated at any time
period, in the BAM network? The answer is cue overlap.
Assume that only r; is activated at time t. This activation
causes only the cues that support r; to be activated at t.
Intuitively, the decision maker focuses on the cues that
support the activated response and suppresses the cues that
oppose the activated response. Once these cue nodes are
activated, the activation pattern in the response layer

changes. At t+1, responses supported by most of the cues
activated at t turn on. These include r;, but also other novel
responses, that overlap sufficiently with r; in cue support.
Eventually at t+2 these responses activate other responses
that they overlap with, and this process continues until the
network stabilizes. Stability is always guaranteed: any BAM
network with any memory structure, starting at any point,
will stabilize in a finite number of time steps (Kosko, 1988).

Defining Sequential Adjustment

We hope to show that this settling process of the BAM
network in the presence of anchors resembles sequential
adjustment. Before we can do this, however, we need to
understand what sequential adjustment really is. Sequential
adjustment is generally defined as the successive movement
through the range of responses available to the decision
maker. In the simplest case, this definition imposes a form
of serial processing, according to which only one response
is considered at any given time. For example, when judging
the proportion of African countries in the U.N., decision
makers may first consider 1%. After rejecting this response
they would consider 2%. If this too is inadequate they
would move on to 3%, and so on. We consider the more
general (and more realistic) case in which multiple
responses can be considered at the same time. This allows
decision makers to focus on all the responses within a
particular interval, such as 1-10%, simultaneously, before
moving on to the next interval in the sequence.

Such a dynamic is compatible with the general idea
underlying sequential adjustment, as long as the responses
activated are contiguous. Sequential adjustment does not
permit the simultaneous consideration of different, non-
neighboring responses. For example decision makers who
consider both 1% and 99% simultaneously, without
considering the responses between these two numbers,
would not appear to be displaying sequential adjustment.

This then allows us to formalize the first requirement for
sequential adjustment. This requirement, titled contiguous
activation, states that sequential adjustment must not
involve the simultaneous activation of multiple non-
neighboring responses. Responses must be considered
individually or in contiguous intervals.

Settling dynamics that display contiguous activation do
not necessarily resemble sequential adjustment. It is
possible for the decision maker to consider responses in
contiguous intervals at any given time, but transition across
different intervals in a non-sequential manner. For example,
when evaluating the proportion of African countries in the
U.N., decision makers could begin by considering the
interval 1-10%, and then move to the interval 20-30%,
without considering the interval 10-20%.

We thus need an additional requirement for our definition
of sequential adjustment, in order to rule out these types of
dynamics. This requirement, titled sequential transitions,
states that sequential adjustment must not involve changes
in activation that skip over a set of responses. Changes to
response activation must be successive.

1900



Connected Memory

Do the dynamics of the anchored BAM network satisfy
contiguous activation and sequential transition? Not
necessarily. However with a simple assumption about the
underlying memory structure, these requirements can indeed
be satisfied. This assumption relates to the distribution of
cue support for the responses. In numeric judgments, cues
can seldom support two disparate responses without
supporting intermediate responses. For example, when
judging the proportion of African countries in the UN, any
cue that supports the 10% response, and the 12% response,
should, in general, support the intermediate 11% response.
This property, titled connectedness, more formally requires
that a cue that supports r; and r, also supports r; for i<I<k.
Memory structures displaying this property involve cues
with a single, connected, interval of supported responses,
where as those that do not display this property have cues
with multiple, fragmented, intervals of supported responses.
While connectedness may not be satisfied in all judgment
tasks, it is certainly a reasonable assumption when
responses are ordered, as with the numerical scales used in
anchoring tasks. Cues in these settings generally provide
support for “large” responses, or “small” responses, or
“medium” responses, or some other connected interval of
responses. Very few cues provide support for a set of non-
neighboring responses, distributed sporadically across the
response scale. Indeed it is quite difficult to think of
memory structures with diagnostic cues for numerical
responses that do not satisfy the connectedness property.

The Emergence of Sequential Adjustment

When memory structures satisfy connectedness, then the
resulting BAM network, with the anchored response
activated at the start of the decision process, satisfies both
contiguous activation and sequential transition. Of course,
satisfying these properties does not imply that the decision
maker necessarily adjusts away from the anchor. It may be
the case that the anchor is stable. If there is adjustment,
however, the adjustment is guaranteed to be sequential.
Anchors trigger a cascade of activation in the response
layer: Neighboring responses activate and deactivate
consecutively. There are no jumps in response activation,
nor do multiple non-neighboring responses activate, without
the activation of the intermediate responses.

Figure 2: The emergence of sequential adjustment.

How does the connectedness property satisfy contiguous
activation and sequential transitions? While the proof of this
claim is in the appendix, the intuition for it is as follows.
Due to connectedness, cues that support both the anchor and

a non-neighboring non-anchored response must also support
any intermediate responses, lying between the anchor and
the non-neighboring response. Thus if the activation of the
anchor activates cues that subsequently activate non-
neighboring responses, these cues must also activate all of
these intermediate responses. Subsequently, response
activation at t=2 must be contiguous, and any transitions
that may have happened at t=1 must be sequential. This
intuition however also applies for the contiguous interval of
responses activated at t=2, implying that any further
changes to activation after t=2 must be sequential.
Additionally, once a contiguous interval of responses is
activated, we can show that connectedness implies that this
interval cannot splinter into smaller, non-contiguous
activated intervals, implying that contiguous activation must
also be satisfied after t=2. Mathematical induction shows
that these properties then hold at all times.

Connected BAM memory structures guarantee sequential
activation. But can they generate insufficient adjustment?
Let us consider the case with one correct response. When
the memory structure is such that two nodes lying between
the anchor and the correct response do not overlap on an
appropriate number of cues, the sequential adjustment
process described above will be insufficient: it will stabilize
with the activation of response values closer to the anchor
than the correct response.

The intuition for this is fairly straight forward. If, for a
low anchor, there exist two response nodes between the
anchor and the correct response, whose cue support does not
overlap sufficiently, then the activation of the lower
response node will not lead to the activation of cues that
activate the higher response node. As activation must be
contiguous and transitions must be sequential, no higher
nodes can be activated, the network will stabilize with the
activation of incorrectly low responses, and the correct
response will remain turned off. The same intuition holds
for tasks involving a high anchor, in which the network will
stabilize with the activation of incorrectly high responses,
and the correct response will remain turned off.

Demonstrations

The above sections have shown that the BAM network with
connected memory structures satisfies contiguous activation
and sequential transition, and can generate insufficient
adjustment. While this is an analytical result, proved in the
appendix, and guaranteed to hold regardless of any
underlying parameters, demonstrations of the types of
sequential adjustment generated by connectedness can
provide important insights regarding the behavior emerging
from the BAM network.

Figure 3 provides one such demonstration. It shows a
hypothetical distribution of cue support for a sequence of
responses, and the settling dynamics of the corresponding
BAM network with a high anchor, low anchor, and without
any anchor. The correct response in this network is r4, and
this is the stable response in the absence of an anchor. When
anchored at rg (a high anchor), however, the network
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stabilizes at rs. Similarly when anchored at r; (a low
anchor), the network stabilizes at r; These behaviors
indicate the presence of the anchoring effect. Additionally,
the settling dynamics with these anchors display sequential
adjustment: response nodes activate and deactivate
consecutively until the network stabilizes.

Why do we observe these behaviors? ry, r,, and r3 overlap
on the component cues in such a way that the set of cues
supported by r; also on average support r;.q, for i=1, 2. This
means that activating r, leads to the activation of r,, which
then activates rs. The set of cues supporting rz and r, do not
however overlap in this way, implying that the cascade of
activation begun by anchoring the network at r; ends with
the stable activation of r;. A similar property holds for rs
and rg. Also note that the network satisfies connectedness,
which implies that the activation dynamics generated by the
anchor display contiguous activation and sequential
transitions, leading to sequential adjustment.

RiR2 RsRsRsRs RiR2 RsRsRsRs RiRa RiR4RsRe
=] #00000|0000C0®|000000
=2 @@0000|000008(000@®00
=3 008000000080 (000®00
=4 O0C@0CO(0000®0|(000®00
=5 00@000(0C000@0|000®00

Low Anchor High Anchor No Anchor

Figure 3: Distribution of cue support, and resulting
network dynamics for low, high and no anchors.

These dynamics also emerge with larger, randomly
generated memory structures. Consider a setting with
N=100 responses and M=1000 cues. Let us randomly
generate support or opposition between these cues and these
responses. For each cue we can pick a number from the
normal distribution with mean 50 and variance 25, and
round it to its nearest integer. We can subsequently take an
interval of length 20 around this integer, to generate the set
of responses supported by the cue. All other responses are
opposed by the cue. Taking an interval of responses around
the randomly chosen number generates a “blurring” in the
underlying memory structure: it is seldom the case that
individual cues support point estimates; rather their support
is distributed across an interval of responses.

As the randomly generated memory structure satisfies
connectedness, it should be able to generate sequential
adjustment. Figure 4 displays the dynamics of the BAM
network instantiating this randomly generated memory
structure, with a high anchor, ryp and a low anchor, r;. Note
that the stable responses for the two anchors are different,
with the stable responses for the low anchor lower than the
stable responses for the high anchor. Additionally,
activation at all points of time is contiguous, and all
transitions are sequential: we can observe a cascade of
activation in the response layer over time, with intervals of

responses activating and deactivating consecutively before
finally stabilizing.

Note that the dynamics observed in figure 4 also emerge
with alternate parameters in the model. In general, however,
increasing the ratio of total responses to total cues and
increasing the blurring in the cue support for the responses
generates a higher likelihood of adjustment, as well as
longer sequences of adjustment. This subsequently leads to
weaker anchoring effects. Overall the anchoring bias is
strongest when there are many relevant cues, and each cue
supports few neighboring responses.

Time

10 20 30 10 s0 60 0 30 ) 100
Response Activation (low anchor)

Time

o 10 20 30 40 50 60 ™0 80 0 100

Response Activation (high anchor)

Figure 4: Network dynamics for high and low
anchors, with randomly generated memory.

Explaining Anchoring Phenomena

Anchoring is a well-studied phenomenon and the sequential
adjustment and biased activation theories of anchoring have
a large range of behavioral findings that they must be able
to account for. The above sections have shown that these
theories are almost identical: the process assumed by one,
emerges directly from the process assumed by the other.
This section shows how this result can explain most of the
findings documented in anchoring research.

Using a lexical decision task, Mussweiler and Strack
(2000) find that decision makers identify “cold” related
words quicker and more accurately after temperature
judgments with low anchors, and identify “hot” related
words quicker and more accurately after temperature
judgments with high anchors. Sequential adjustment theory
is unable to account for this finding, however, the BAM
framework allows for both sequential adjustment and
anchor dependent cue accessibility biases to emerge
simultaneously: once the network settles, the cues that
support the stable responses are themselves stable. If the
judgment began with a low anchor then stable cues are more
likely to support the low anchor than the high anchor. The
opposite holds if the judgment began with a high anchor.

The biased activation theory of anchoring also predicts
that exogenous factors influencing cue accessibility can
affect anchoring. This has been verified by Chapman and
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Johnson (1999) and Mussweiler et al. (2000). Unlike
sequential adjustment theory, the BAM model can explain
these findings. If we assume that exogenous influences on
cue attention affect the inputs, I, into the cue layer, then
directing attention towards cues that oppose the anchored
response r;, leads to stronger inputs, 1>1, into these cues.
Due to these inputs, these cues are not inhibited by feedback
from the activated anchor in the response layer.
Subsequently all cues are activated at the start of the
decision process, the pattern of activation on the cue layer
resembles the pattern observed in the absence of an anchor,
and the network stabilizes without an anchoring bias.

According to the traditional sequential adjustment theory,
all types of anchors, regardless of underlying cue support,
should lead to the anchoring effect. Research by Chapman
and Johnson (1994), however, finds that implausible
anchors (anchors that are not supported by any cues) have a
much weaker effect than plausible anchors. BAM provides a
simple explanation for this result. When implausible
anchors are activated at the start of the decision process, all
cues are suppressed (as these anchors are not supported by
any cues). Subsequently none of the response nodes
activate in the next time period. This leads the network to a
state identical to the starting state of the network in the
absence of an anchor. Implausible anchors thus do not
generate an anchoring effect.

A fourth finding supporting the biased activation theory
of anchoring pertains to the effect of multiple anchors.
Sequential adjustment theory predicts that the decision
maker adjusts sequentially away from the one anchor
presented in the decision task. This theory cannot make
predictions for settings with multiple anchors. Switzer and
Sniezek (1991) and Whyte and Sebenius (1997), however,
demonstrate that multiple anchors affect judgment
differently relative to single anchors. Single anchors paired
with more extreme anchors generate a stronger anchoring
effect than the single anchors alone, whereas single anchors
paired with less extreme anchors generate a weaker
anchoring effect than the single anchors alone.

BAM can account for the effect of multiple anchors. The
activation of multiple response nodes at the start of the
judgment process leads to the activation of all the cues
supporting these anchors. When a single anchor is paired
with a more extreme anchor then the set of cues activated
are more likely to support extreme responses, relative to
when the single anchor is activated by itself. This can lead
to the stable activation of responses close to the extreme
anchor, generating a stronger anchoring effect. The opposite
happens when a single anchor is paired with a less extreme
anchor. Here the activated cues are less likely to support
extreme responses. This can lead to the ultimate stable
activation of responses close to the moderate anchor,
generating a weaker anchoring effect.

The cue accessibility, exogenous attentional influence,
implausible anchor and multiple anchor results discussed
above present strong evidence for the biased activation
theory of anchoring. The standard biased activation theory

cannot however provide a comprehensive account of all the
moderators of the anchoring effect. Research by Reitsma-
van Rooijen and Daamen (2006), for example, finds that
time pressure increases the anchoring effect. This has
traditionally seen as providing evidence for the sequential
adjustment theory of anchoring, according to which time
pressure limits the number of adjustments possible, thereby
increasing the strength of the anchoring effect. As the BAM
network proposed in this paper generates sequential
adjustment, it is able to provide an explanation for these
results as well. The BAM network often does not settle at its
stable response in one time step; rather its response nodes
activate and deactivate consecutively over time, before
stabilizing at the final response (as in e.g. figure 4). When
the decision maker is faced with time pressure, the network
is not allowed to stabilize and the adjustment process
generated in this network is curtailed, generating a stronger
anchoring effect.

Another finding providing evidence for sequential
adjustment theory relates to the role of incentives on
anchored judgment. Particularly, Simmons et al. (2010) find
that financial incentives reduce the anchoring effect. This
cannot be explained by biased activation theory. If,
however, we assume that incentivized decision makers send
stronger inputs into the cue activation layer (perhaps due to
increased attention towards all cues relevant to the decision
task) then the BAM network can in fact explain this effect.
As discussed above, when 1>1, the exogenous inputs
override the inhibitory feedback from the anchor in the
response layer. Cue activation subsequently resembles the
unbiased decision process, and the anchoring effect
disappears.

Anchoring as Constraint Satisfaction

The bidirectionality assumed in this paper is a property of a
general class of models that have been used to explain
findings on inference across a variety of domains. These are
models of constraint satisfaction (see e.g. Holyoak &
Simon, 1999 for a review). Constraint satisfaction models
provide a powerful approach to studying the
interrelationships between cues and responses, and the ways
that these relationships affect the dynamics of the decision
process. Indeed, the anchoring effect can be seen as just a
specific instantiation of the general type of starting point
sensitivity displayed by these models: if the memory
structures in these models satisfy connectedness then these
models will also generate sequential adjustment. In this
light, the BAM network is not just a model of anchoring,
but rather a model of constraint satisfaction; one which
provides a tractable framework with which to understand
the cognitive dynamics that constraint satisfaction entails,
and the behaviors that these dynamics can generate.

Conclusion

We have used the bidirectional associative memory network
to study the anchoring effect. The BAM network provides a
simple model for the biased activation theory of anchoring.
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We have shown that the settling dynamics of this BAM
network generate sequential adjustment. Anchors trigger a
cascade of activation in the response layer of the BAM
network, with nodes in this layer activating and deactivating
consecutively. This progression of activation is generally
insufficient and final responses depend critically on starting
anchor values. By reconciling two contrasting theories
within one framework, the BAM network is able to provide
a parsimonious explanation for a wide range of findings
regarding anchoring and its moderators.

APPENDIX

Here we shall show that BAM networks with connected
memory structures satisfy contiguous activation and
sequential transition. Let us define D; to be the set of cues
supporting r;, D'to be the set of cues activated at t, E; to be
the set of responses supported by ¢; and E' to be the set of
responses activated at t. |X| shall indicate set X’s cardinality.
Now consider the following propositions:

Proposition 1a: If a contiguous interval of responses, r;,
riv1, ... I is activated at t (and all other responses are
deactivated at t), and for I>k, r, is activated at t+1, then it is
the case that ry, .y ... ri-; are activated at t+1. Proof: ccht
implies  ¢jeD;UDy;...UDy.  Since reE™, we have
|D,ND|>|D/2. Connectedness implies  that if
CjeDiUDi4s...UDy and cieDy then cieD, for 1>/>k. Hence if
ID;NDY>|DY/2 we also have |DND'|>|DY|/2 for all 1>1>k,
which means that r,eE™" implies r,<E™* for I>/>k.

Proposition 1b: If a contiguous interval of responses, r;,
ri«1, ... I is activated at t (and all other responses are
deactivated at t), and for I<i, r, is activated at t+1, then it is
the case that ry.q, M.y, ... I are activated at t+1. Proof: The
proof for this is identical to that for proposition la.

Proposition 2: If a contiguous interval of responses, r;,
riv1, ... I is activated at t (and all other responses are
deactivated at t), then for any p and q with k>p>g>i, if ry
and r, are activated at t+1 then so is any r, for p>I>q. Proof:
cieD' implies |E;NE'>|E'/2. As E; is contiguous (by
connectedness), and E' is contiguous, E;NE' is also
contiguous. Hence if c;eD' it supports at least |E'|/2=(k-
i+1)/2 contiguous responses in E'. Assume that q<(k+i)/2. If
c,-chﬂDt then as c; supports at least (k-i+1)/2 neighboring
responses in E', we must also have clchqﬂ. Hence if
ID,ND'>|DY/2, as is implied by reeE™, then we have
IDg+1ND'[>|D')/2, which implies that rg.;eE™. Now we can
use this method again to show that rq+2eE“l, and keep
iterating it to show that reE™* for all (k+i)/2>/>q. Now if
(k+i)/2>p then our proof is done. If not then note that we
can use the same logic as above to show that reE"for
p=I>(k+i)/2. This then gives us our result.

Now, propositions 1a and 1b show that if a contiguous
interval of responses is activated at time t then a response
that does not neighbor this contiguous interval, cannot be
activated at t+1 without activating all intermediate
responses. Proposition 2 shows that if a contiguous interval
of responses is activated at time t then this interval cannot
splinter into two or more non-contiguous intervals of

activated responses at t+1. Together these results imply both
contiguous activation and sequential transitions.
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