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Abstract

In this paper, we introduce a novel dynamical Bayesian
network model for probabilistic language modeling. We
refer to this as the Hidden Stochastic Automaton. This
model, while based on a generalization of the Hid-
den Markov model, has qualitatively greater generative
power than either the Hidden Markov model itself or
any of its existing variants and generalizations. This al-
lows the Hidden Stochastic Automaton to be used as a
probabilistic model of natural languages in a way that is
not possible with existing dynamical Bayesian networks.
Its relevance to Cognitive Science is primarily as a com-
putational — in the Marr (1982) sense of the term —
model of cognition, but potentially also as a model of
resource bounded cognitive processing, and as a model
of the implementation of computation in physical dy-
namical systems.

A probabilistic language model is a hypothetical gen-
erative model of a language, where a language is defined
most generally as a set of strings concatenated out of
a finite set of symbols. By far the most widely used
formalisms for specifying probabilistic language mod-
els are stochastic grammars, which are symbol rewrit-
ing rules with accompanying probabilities. The use of
grammars is motivated by the fact that human languages
are structurally complex, with properties that place
them between the so-called context-free and context-
sensitive formal languages (see, e.g., Chomsky, 1956,
1963; Shieber, 1985), and formal grammars are compu-
tationally universal in the sense that they can generate
any recursively enumerable set (see, e.g., Hopcroft, Mot-
wani, & Ullman, 2001).

By contrast to the case of language modeling, in
probabilistic modeling more generally, the most widely
used formalism for specifying probabilistic models is the
graphical model (see, e.g., Koller & Friedman, 2009; Jor-
dan, 2004). Graphical models are directed or undirected
graphs whose vertices are identified with random vari-
ables and whose edges indicate conditional dependen-
cies. The appeal of graphical models is their flexibility
to represent complex relationships between large num-
bers of variables, and their graph-theoretic properties
that afford general and computationally efficient algo-
rithms for probabilistic inference, whether exactly or
approximately by, for example, Monte Carlo methods.
As a result, graphical models have effectively become
a graph-based modeling language for developing and ex-
tending probabilistic models. They have had widespread
application in fields such as bioinformatics (e.g., Fried-

man, 2004), computer vision (e.g., Oliver, Rosario, &
Pentland, 2000), machine learning (e.g., Bishop, 2006,
2013), expert systems (e.g., Lauritzen & Spiegelhalter,
1988; Pearl, 1988), information retrieval (e.g., Salakhut-
dinov & Hinton, 2009), and in cognitive science (see,
e.g., Chater & Oaksford, 2008; Griffiths, Chater, Kemp,
Perfors, & Tenenbaum, 2010, for overviews).

Despite their breadth of appeal, graphical models have
had a rather limited role as language models, if by lan-
guage models we specifically mean generative models of
language. There are at least two important reasons for
this. On the one hand, stochastic grammars can not, in
general, be represented as graphical models. (In some
cases, notably stochastic regular grammars, the termi-
nal and nonterminal variables of the grammar can be
identified with vertices of a directed Markovian graph.
For the super-regular grammars, however, this is not
the case and the variables of the grammar can not be
identified with the vertices of any fixed graph). On the
other hand, the most widely used graphical models for
sequential probabilisitic modeling, including the Hidden
Markov model and its extensions, are limited in their
generative power to the regular languages (i.e. the Type-
3 languages in the Chomsky hierarchy). In other words,
graphical models have had a relatively limited role as
language models because the most widely used proba-
bilistic models that have sufficient generative power to
model human languages can not be represented as graph-
ical models, and the most widely used graphical models
for sequential structures do not have sufficient generative
power to model natural languages.

There is, however, no inherent limitation to the gen-
erative power of graphical models. In this paper, we
introduce a graphical model, specifically a dynamical
Bayesian network, whose generative power is equivalent
to that of an arbitrary stochastic grammar. This model,
that we will refer to as the Hidden Stochastic Automa-
ton, is based on a novel generalization of the widely used
Hidden Markov model. As such, it retains many of the
appealing characteristics of the Hidden Markov model
while extending its generative power.

Hidden Stochastic Automata

To introduce the Hidden Stochastic Automaton (HSA),
it is necessary to first briefly describe the Hidden Markov
model (HMM). Given a set of J independent discrete
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valued sequences wi,wz...Ww;...wy, where the jth
sequence is wW; = wj1, Wiz ... Wi ... Win,, the genera-
tive model assumed by the HMM treats each wj; as
drawn from one of K discrete probability distributions
¢1,02 ... ¢k ... oK over a finite vocabulary of length V.
Which distribution is chosen for wj; is determined by
the value of the unobserved variable z;; € {1... K} that
corresponds to wj;. For all j, each xj1,zj2. .. Tji ... Tjn,
is a first-order Markov chain, with initial distribution 7
and a K x K transition matrix §. More formally, the
HMM assumes that for all j,

wj|zji, ¢ ~ Categorical(wji| ¢z, ) 1<i<ny,
xji|m ~ Categorical(z ;| ) i=1,
Tji| 251,60 ~ Categorical (20, ,) 1<i<mn;.

The graphical model for the HMM is shown below.
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Figure 1: The graphical model or dynamical
Bayesian network for the Hidden Markov model.
The shaded nodes indicate the observed variables.
For simplicity, we have omitted the priors on ¢, ™
and 6.

Precisely because graphical models naturally afford
generalizations and extensions, the HMM has lead to
many variants. Most notably, these include the mixed
memory HMM (Saul & Jordan, 1999), the coupled HMM
(Brand, Oliver, & Pentland, 1997), the factorial HMM
(Ghahramani & Jordan, 1997), and the hierarchical
HMM (Fine, Singer, & Tishby, 1998). These extensions
are often based on introducing additional chains of la-
tent variables with varying degrees of conditional inde-
pendence between them. Despite the evident value of
these models, they do not qualitatively alter the formal
generative complexity of the underlying model. In all of
these extensions, the sequences generated are equivalent
to regular or Type-3 formal languages

From HMM’s to Hidden Stochastic

Automata

It is possible, however, to generalize the HMM in such a
way that its generative complexity is increased. This can

be done by replacing the single valued x;; in the HMM
by a variable sized array or vector. In other words, while
in the HMM, each state variable is xj; € {1... K}, this
may be generalized to xj; € {1...K}*. Here * indicates
Kleene star, or the union of all concatenations of the el-
ements from {1... K} and {(}. This change clearly in-
creases the cardinality of the state space to a countably
infinite set. Importantly, however, as we will elaborate,
if the set of operations that can increase or decrease the
state-vector are limited to a finite set, and if the the con-
ditional dependencies on this state-vector are limited to
a finite range of elements, then inference in this general-
ized model is almost identical in kind to inference in the
standard HMM.

For reasons that will be made clear, we will collectively
refer to generalizations of the HMM using a state-vector
as Hidden Stochastic Automata (HSA). For the purposes
of this paper, however, we will mostly concentrate on one
specific form of the HSA. For simplicity, we will also refer
to this particular case of the model as the HSA, with the
understanding that it is but one of many variants based
on the same principles.

Just as with the HMM, the HSA is a generative
model of discrete valued sequences. It assumes that
each variable w;; in the sequence of observations w; =
W1, Wy . . . Wi . .. Wi, is drawn from one of (H +1) x K
discrete probability distributions ¢g1, ¢os - . . Onk - .- PHK
over a length V vocabulary. Which of these (H+1) x K
distributions is chosen is determined by the values of two
latent or unobserved state variables that correspond to
wj;. On the one hand, there is a standard finite state
variable zj; € {1...K}. On the other hand, there is
an additional state-vector variable z;; € {1... H}*, with
wj; being conditional on only the first element of zj;, if
zj; # 0. In other words, wj; is sampled from ¢[z;i7$ji]7
where zj; indicates the value of the first element of the
state-vector zj;, or else 0 when z;; = 0.

For all j, the sequence (xj1,2j:),(;2,%5)- .-
(2ji, 2ji) - - (Tjn,,25) is a first-order Markov chain
of coupled state variables. The distribution over x;;
is given by the K wvalued distribution w, and the
value of zj; is deterministically set to z;; = 0. For
1 < i < ny, both z;; and zj; are conditional on x4
and, if z;; # 0, the first element of zj;. The value of
xj; is determined by sampling from the K dimensional
probability distribution specified by 9[2;i717£ji—1]’ where
0 is a (H+ 1) x K x K stochastic transition matrix,
and 2]1‘141 is as above. The value of zj; is determined
by applying one of H + 1 different operations to
zji1, specifically prepending z;;4 by one symbol from
{1...H} or removing the first element from z;; ;. For
example, if oy0903 (with each o; € {1...H}) is the
value of the state-vector z;1, a possible sequence of
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operations and their effect on the state-vector could be

remove
Zji1 = 010203 ——— Zjj = 0203,

prepend 3
Zji = 0903 ————— Zjiyl — 30503,

ZjiHl = 30’203 M) Zji2 = 230’203.
Which of these H + 1 operations is applied is deter-
mined by sampling from the H + 1 dimensional prob-
ability distribution specified by Q[z; ;,;i1], where Q
isa (H+1)x K x (H+ 1) stochastic transition matrix.
More formally, the probabilistic generative model de-
fined by this HSA is, for i <17 < ny,

wji|xj¢, ij', ¢ ~ Categorical(wji\gb[z}wzji]),

and for i =1,

xj;|m ~ Categorical(z;;|m), z;; =0,

and for 1 <14 < njy,

xji|Tjia, Zjio1, 0 ~ Categomcal(zji|9[Z]1_Z_717zji_1]),
Zji\uji—h Zji-1 = O[uj,i,l}(zji—l)»

Uji-1 |$j'i—17 Zji-1s Q~ Categorical(uﬁ_l|Q[231_H,mji_1]).

Here, we use the auxilary variable u;; to refer to the
operation applied to z;;, and O is the set of (H + 1)
functions that map z;; to 2,1 when these operations are
applied. In other words, this makes clear that the value
of ;1 is a deterministic function of z;; when the value of
uj; is known, but this value is stochastically conditional
on z;; and z;;. In terms of the original variables, the
graphical model for the HSA is as follows:

@ N

%

N

\
ool

Figure 2: The graphical model or dynamical Bayesian
network for the Hidden Stochastic Automaton. As
with Figure 1, shaded nodes indicate observed vari-
ables and we have omitted the priors on ¢, 7, § and
Q.

Generative Power of Hidden Stochastic
Automata

The generative power of the HSA model (as shown in
Figure 2) relative to that of the standard HMM (as
shown in Figure 1) arises from the fact that the state-
space of the state-vector z;;, namely {1...H}*, is a
countably infinite set yet the conditional relationships to
and from z;; are finitely specifiable. The consequences
of this can be better appreciated by reference to discrete
automata of the kind that form the foundations of theo-
retical computer science (see, e.g., Hopcroft et al., 2001).

As we have described it, the state-vector z;; is iden-
tical to a pushdown stack with a symbol set {1...H}.
Prepending an element to the state-vector is equivalent
to a push operation, while removing the first element is
a pop operation. Assuming known values for 2, which
operation is applied to z;; is dependent only on the value
of the finite state variable ;4 and the first element or
head of zj 1. Likewise, assuming known values for 6,
the value taken by z;; is also dependent only on x4
and the head of zj;1. In other words, the HSA model
described above is equivalent to a stochastic generative
version of a pushdown stack automaton.

If we allow a greater variety of operations on the state-
vector than just prepending or removing symbols from
the left, the computational power of the HSA can be
beyond that of a generative pushdown stack automaton.
For example, if

0'10'20"30’40’50'6

is the value of the state-vector, we may treat an arbi-
trary element — in this cases o3 — as its head. If we
allow for the appending of new elements to the left or
the right of the head, or for the deleting of the element
at the head, followed by the moving of the head pointer
to the left or right, then this state-vector is equivalent
to a two-way memory tape. As before, assuming known
values for €2, which of the operations is applied to the
state-vector z;; is again dependent only on the value of
the finite state variable x ;1 and the head of z;;. Like-
wise, as before, assuming known values for 6, the value
taken by zj; is also dependent only on x;;1 and the head
element of z;; 1. As such, with these changes the HSA is
now equivalent to a stochastic generative version of the
Turing machine.

Inference

As is clear from Figure 2, only the variables w = {w; ...
Wi+ Win, }3-]:1 are observed. In general, therefore, the
problem of inference in the HSA is the problem of infer-
ring the joint posterior

P(07 (?b? Q’ 71—7 X7z‘w7 a? ﬂ? 75 V)’

where x and z are the set of finite state and state-vectors
variables, and «, 3, 7y, v are the Dirichlet priors for 6, ¢,
Q, 7, respectively.
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The procedure for inference that we will follow is to
use a collapsed Gibbs sampler to draw samples from the
posterior

P(x,z|lw,a, §,7,v),

that integrates over the values of 6, ¢, 2, m. This Gibbs
sampler is identical in nature to the collapsed sampler
used in Andrews and Vigliocco (2010) for the case of a
hierarchical mixture of Hidden Markov models.

Forallje{l...J}andi € {1...n;}, the Gibbs sam-
pler iteratively draws samples from the posterior over
xj; and over zj;, conditioned on sampled values for all
remaining variables.

The posterior distribution over z;;, conditioned on
known values for all the other variables is!

P(Iji|wjiazjiamﬁjiawﬁji7Zﬁjiaaaﬂa'}/) X
P(wjil i, 2ji, @) P(lw—ji, 2—ji, 253, B)de ¥

P(Zji—l-l |1’j7;, Zji, Q)P(Q|IIZ_\JZ, Z=jis ’y)dQ X

\\\

This leads to the following closed form:

P(z;; = k|wjz',ij',ﬂﬂﬁji’wﬁjnZﬁji,a,ﬂﬁ)
Sﬁ” +0b ﬁﬂ +c
Ry, + 0k iy + )BT + )

R;;il +0k_k+a

Here, we are assuming that the value of the observed
variable at ji is v, the value of head of the state-vector
at ji is h, its value at ji—1 is h_, the value of the finite
state variable at ji—1 is k_ and its value at ji+1 is k4.
The S, Q and R are rank-3 arrays of frequencies, with
the superscript of —ji indicating that they are based on
excluding variables at ji. As such, Sﬂj ' is the number
of times the observed variable has a Value of v when
the finite state variables has the value k£ and the head
(e.g., the first) element of state-vector takes the value of
he{0...H}, Qﬁjl is the number of times that state-
vector operation g occurs whenever the head element
of the state-vector takes the value of k and the finite
state variable takes the value of k, and R;ﬁ gives the
number of times the finite state variable takes the value
k4 whenever its value at the previous index is k and
the value of the head of the state-vector at the previous
index is h. The dot in place of the third index, e.g.,
S,i', indicates a sum over the index. The term 0p_ 4k,

"We will provide the conditional distributions for values
of xj; and z;; where 1 < ¢ < nj. The distributions for the
cases where ¢ = 1 and i = n; require minor modifications,
which we will omit here in the interests in space.

P(l’j#ﬂ(ﬂji, Zji, 9)P($ji|.’£ji,1, Zjiflv Q)P(H‘.’Eﬂ]“ Zﬂji, Ck)d9

takes the value of 1is k_ = k = k; and takes the value
of zero otherwise. Likewise, d;_ ; takes the value of 1
when k_ = k, and takes the value of 0 otherwise. The
terms a, b and ¢ are the sums of «, (3, 7, respectively.

For the case of the posterior distribution of the state-
vector, it is sufficient to infer the distribution over op-
erations applied to it. As mentioned, the value of the
state-vector zj; is deterministic function of zj; when
the operation ;1 is known. The posterior distribution
over uj; is given by

P(ujilwji, 2ji, T—ji, Wjiy 2-jis @, B, 7y) X

X /P(ij1 Wi [Tt - Xy Zjigd - Zng, @)
P(dlu o ﬁ)d«o]

X /P(:cjm T T X, Zji e Zjny1, 0)
P(0lz_ 5 zﬁﬁ,ﬁ)(w]

X P(zjis1 - - 2jn, |Wjis 254)

< [ Pl 250 PO g2 5, 1)d

where we see that because a change to the operation u;
deterministically changes the values of 2y ... Zjn;, the
likelihood terms for the u;; variable include the variables
WjiH - - - Wi and Ljitl - - - SijH_lz. In the above, the nota-
tion —ﬁ, e.g., in x_, indicates the exclusion of variables
ji...jn;. This distribution leads to the closed form

P(uj; = Q|'wji7zjiyx—'jizw—'jhZﬂjiaay/Ba’Y) x
S e _‘JZ
inko: 57,501 [Tt ™ Spih + B +5
St —1 ﬁ]z
[in: s2, >0y ITs26 +b+s

H{hkq:Q . >0}H e ;i;+7q+5

X

X
[ink: @1, >0y Hszo' ﬁﬂ tets

R?Lkl71 ﬁ]l
Iinee: me, oy ITs26" Ry +u+s

—‘]’L

R}, —1 ’
nk: re >0y 1267~ Buj Fa+s

Here, Shkv, Qhkq and R}, have the same meaning as

,?,g;, Q;i; and R;ﬁ with the difference being that the
frequencies are calculated excluding variables at the in-
dices ij...jn;. By contrast, the arrays S, , Qf,, and
R}, are the frequencies of the co-occurrences the values

2In graphical model terms, the variables Wiyl - -
Tjitl - - T and Zji - . - Zjn; are all children of uj;.

- Wyit,
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Figure 3: Strings generated by the probabilistic context-free grammar S — 051 (p = 0.66),.5 — 01 (p = 0.34) were
used as observed data in a HSA. Shown above are samples of the binary strings generated by the HSA model on
the basis of estimates of the parameters ¢, 8, Q and 7 after 3, 5, 10, 20, 50 and 100 iterations of the Gibbs sampler.
The dark shade codes the value of 1. It is evident that by over 50 iterations, the HSA has inferred the correct
generative model of the probabilistic language. By 100 iterations, it is only generating strings from the language

L={0"1":n>0}.

of the variables after operation ¢ is applied to the state-
vector zj;1 and the changes to the subsequent state-
vectors are deterministically applied.

Demonstration

We demonstrate inference of a language from data by
using the textbook example of a simple context-free lan-
guage, namely L = {0"1": n > 0}. We can generate
strings from a probabilistic version of this language us-
ing the probabilistic context-free grammar

S — 051,
— 01,

p = 0.66,
p = 0.34.

We sample J = 25 strings from this language and use
them as the data w = wyi,wo...w;...wy for a HSA
model of the kind described.

Using the collapsed Gibbs sampler, we can sample
from the posterior over the finite state and state-vector
trajectories conditional on w. From these, we may then
draw sample estimates of ¢, 6, Q and 7. Shown in Fig-
ure 3 are strings generated by the HSA model with pa-
rameters ¢, 0, Q and 7 as estimated after, from left to
right, 3, 5, 10, 20, 50 and 100 iterations of the Gibbs
sampler.

Relevance for Cognitive Science

Our initial motivation for the HSA model was put in
terms of the computational advantages of graphical mod-
els as formalisms for probabilistic modeling. Graphical

models, we have argued, have effectively become a graph-
based modeling language for developing and extending
probabilistic models. They have had a remarkable in-
fluence on the progress of probabilistic modeling in a
wide variety of fields, including cognitive science. It is
notable, therefore, that graphical models have had a rel-
atively limited role in the probabilistic modeling of nat-
ural language. The obvious reason for this is due to the
structurally complex nature of natural languages. While
this structure is modeled well by probabilistic grammars,
grammars can not, in general, be represented by graph-
ical models. By contrast, the graphical models most
widely used for modeling sequential data do not have
the structural complexity necessary for modeling natu-
ral language.

We have introduced the HSA as a dynamical Bayesian
network model that is capable of modeling structurally
complex sequences. Its principal relevance to cognitive
science is therefore as a computational model of cogni-
tion, where by computational model we specifically mean
the Marr (1982) sense of the term: a model of the ab-
stract nature of problem being faced and of its ratio-
nal solution. However, the HSA model is potentially
as relevant as a model of the resource limited practice,
or possibly even the physical implementation, of cogni-
tion. For example, the HSA is an incremental state-
space model, where inference is naturally modeled by
the kind of sequential Monte Carlo methods, particu-
larly particle filters, that have been advocated by, for
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example, Griffiths, Vul, and Sanborn (2012); Sanborn,
Griffiths, and Navarro (2010); Levy, Reali, and Griffiths
(2009) as models of memory and time constrained ap-
proximations to rational computational models. On the
other hand, from the point of view of physical implemen-
tation, the state-vector of the HSA can be represented
naturally by a real-valued variable. If the state-vector is
0103 ...0;...0q, this can be represented exactly by the
real number Y, o;(H+1) " and the operations applied
to the state vector correspond to real-valued functions.
For example, if the state-vector is binary, prepending a
o €{0,1} to o102...0;...0, is identical to multiplying
> ,0:27" by 3 and adding §. By treating the finite
state variable as another real number, this allows us to
represent the HSA exactly as a stochastic nonlinear dy-
namical system that is directly comparable to a recur-
rent neural network (see, e.g., Tabor, 2000, for related
discussion).
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