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Abstract
Learning to represent hierarchical structure and its
nonadjacent dependencies (NDs) is thought to be
difficult. I present three simulations of ND learning
using a simple recurrent network (SRN). In Simulation
1, I show that the model can learn distance-invariant
representations of nonadjacent dependencies. In
Simulation 2, I show that purely localist SRNs can
learn abstract rule-like relationships. In Simulation 3, I
show that SRNs exhibit facilitated learning when there
are correlated perceptual and semantic cues to the
structure  (just as people do). Together, these
simulations show that (contrary to previous claims)
SRNs are capable of learning abstract and rule-like
nonadjacent  dependencies, and show critical
perceptual- and semantics-syntax interactions during
learning. The studies refute the claim that neural
networks and other associative models are
fundamentally incapable of representing hierarchical
structure, and show how recurrent networks can
provide insight about principles underlying human
learning and the representation of hierarchical structure.
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Background

Human concepts, languages, goals, and patterns of
action are all describable in terms of complex
hierarchical structures, but our experience of them as
inputs, and our production of them as outputs, is often
arranged in linear strings that unfold over time. A
necessary consequence of this transformation of
complex structure into linear strings is that most
human knowledge involves many nonadjacent
dependencies, where one element predicts another
element, but at a distance. These nonadjacent
dependencies, whether in thought, language, or action,
enormously expand the computational complexity of
representing the structure of the world.

In several subfields of cognitive science, difficulty
learning and representing nonadjacent dependencies
has generated considerable theoretical controversy. In
linguistics, the limitation of simple associative
structures has been a cornerstone of arguments for
abstract syntactic structures (Chomsky, 1957). In
cognitive psychology, researchers argued that
associative mechanisms cannot learn the vast range of
nonadjacent dependencies in the world, and thus rule-

based representations are necessary for human
cognition (Bever et al., 1968). In early artificial
intelligence, arguments about the limitations of
associative systems led to a focus on symbolic, rule-
based systems (Newell & Simon, 1961).

However, recent research has questioned the need
for rule-based representations of nonadjacent structure.
A number of studies have demonstrated or modeled
simple learning of nonadjacent structure in memory
(Cleeremans & McClelland, 1991), goals and event
structure (Botvinick & Plaut, 2004; visual sequences
(Fiser & Aslin, 2002), and artificial grammars using
linguistic stimuli (Gomez, 2002; Newport & Aslin,
2004). These results have changed the nature of the
debate concerning the extent to which knowledge of
nonadjacent dependencies requires a rule-based or an
association-based explanation. Although there are
many specific examples of learning or failing to learn
in particular situations, what is lacking is a general
account of nonadjacent dependency learning. As a
result, the many subfields of cognitive science (such as
linguistics, cognitive psychology, and artificial
intelligence) continue working on the problem
separately, without a clear theory or explanation for
some of the most foundational human behaviors.

The current work aims to make progress toward a
general account by examining whether a fairly simple
neural network model, the simple recurrent network
(SRN; Elman, 1990) can provide a general model of
nonadjacent dependency learning. An SRN was used
because previous research (Botvinick & Plaut, 2006;
Cleeremans & McClelland, 1991; Elman, 1991)
suggests that SRNs and other recurrent networks are
capable of learning nonadjacent structure. However,
there is controversy about whether they can serve as
general solution for all cases, especially those
involving abstract, rule-like relationships (Marcus,
2000) or complex interactions between structure and
meaning (Fodor & Pylyshyn, 1988).

In the service of testing the viability of SRNs, the
current work had two distinct sub-goals. First, to be a
general model of nonadjacent dependency learning,
SRNs ought to be able to learn nonadjacent
dependencies of the types that exist in the natural
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world. This includes abstract, rule-like nonadjacent
dependencies, such as learning “distance-invariant”
representations (for example, learning the link between
the and a noun, independent of how many adjectives
come between them). Second, SRNs ought to capture
behavioral phenomena observed in laboratory
experiments, such as facilitated learning in the
presence of perceptual (Newport & Aslin, 2004) and
semantic (Willits, Lany, & Saffran, 2013) cues. Close
analysis of model behavior can then shed light on the
bases of the empirical effects. The following three
studies test SRNs’ abilities to satisfy these criteria.

General Methodology

The three studies shared three core features common
in connectionist-modeling approaches (Rumelhart &
McClelland, 1986). First, all simulations used sets of
interconnected units and weights specifying how
strongly each unit was connected to each other unit.
The units in the model were divided into an input
group, used to specify the input stimulus in each
sequence; an output group, used to specify the output
response (which also served as a prediction about the
next item in the sequence); and a hidden group that
mediated between the input and output groups.
Second, the models featured recurrent connectivity,
allowing the model to feed back information about its
own previous internal state in ways critical to forming
internal representations of sequential structure. Third,
the models all made use of weight-based encoding,
where the network’s knowledge was encoded in the
weighted connections between units.

The goal of the network was to learn a set of weights
such that, for any given input, the model’s weights led
to activation in the output layer that was a correct
prediction of the next item in the sequence. During
training, a model was given an input, its output
activation was treated as a prediction of what the next
input would be. This prediction was compared to the
target output, and divergence error was calculated
across each unit and was used to adjust the weights of
the model, wusing a version of recurrent
backpropagation through time. For each simulation, 30
different randomly initialized models were trained.
Each model was trained until it reached a
predetermined level of overall error, corresponding to
optimal prediction performance in the task. The
critical test in each simulation was the relative rate of
learning across the different conditions in that study.

Study 1: Distance Invariance
In experiments on nonadjacent dependencies using
artificial grammars, the distance between dependent

items is usually fixed, with one intervening item
separating dependent items. However, in many real-
world cases (such as the distance between
nonadjacently related events in the world, or words in
language) the distance between dependent items
varies. In fact, learning a “distance-invariant”
representation of a nonadjacent dependency has been
considered a critical phenomenon, proving the need
for a rule-based mechanism.

In Simulation 1, I attempted to train an SRN to learn
distance-invariant representations of nonadjacent
dependencies by exposing them to the same
nonadjacent dependency at multiple spans of distance
between the related items. A second issue of interest
was whether SRNs would show facilitation in learning
longer-distance dependencies if they also had
experience with the dependency at a shorter distance, a
learning effect that has been demonstrated in both
infants and adults (Lany & Gomez, 2008).

Stimuli and Design

The models in Study 1 were trained on sequences
where the first element (hereafter the 4 item) perfectly
predicted the last element in each sequence (hereafter
the B item), with the sequences having a number of
items (hereafter the X items) intervening between
them. The sequences were of lengths 2 to 5, resulting
in distances between the 4 and B items spanning from
zero (adjacent dependencies) to three. There were two
AB pairs (A; & By, A, & B;) and six possible
intervening X-items (X;...Xe). The x-items were
distributed across trials such that they provided zero
predictive value for which B would occur. The only
way to predict the correct B (B; or B,) was to have
stored which 4 (A; or A,) initiated the sequence. The
full set of stimuli used in Study 1 is shown in Table 1.

Thirty different networks (starting from different
randomly initialized weights) were trained in each of
six different training conditions: (1) only Span O trials;
(2) only Span 1 trials; (3) only Span 2 trials; (4) only
Span 3 trials; (5) a mixture of all Span trials; (6) a
mixture of all Span trials except Span 3.

Over the course of training, networks from all six
conditions were tested on stimuli from all Span
conditions (without updating the network weights
during those test trials), to assess the network’s
performance on strings of various spans. Networks
were compared at points where they had experienced
the same number of trials, controlling for the amount
of experience the networks had with each 4B pair.

Network Architecture
The network had 10 input and output units (one for
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each 4, B, and X) and 25 hidden units. A simplification

of the network architecture is shown in Figure 1.

Table 1. Stimulus inputs used in Study 1.

Span 0 Span 1
A By A x; B Ayx; By
A; By A x: B Ayx; By
Span 2 Span 3
A x;x3 By Al X X3 X5 By As X X3 X5 By
A1 X1 X4 B1 A1 X1 X4 X5 B1 A2 X1 X4 X5 B2
Al x2x3 By Al X2 X3 X5 By As X5 X3 X5 By
A1 X7 X4 B1 A1 X7 X4 X35 B1 A2 X7 X4 X5 B2
As X1 X3 B Al X1 X3 X6 By As X1 X3 X6 By
A2 X1 X4 Bz A1 X1 X4 Xg B1 A2 X1 X4 Xg B2
As X2 X3 By A} X2 X3 X6 By As X5 X3 X6 By
A2 X7 X4 Bz A1 X7 X4 Xg B1 A2 X7 X4 Xg B2
Output Layer
A A X X X, X, B B,
2\
Vi -
Hidden S Y ! C:“
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b
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Figure 1. A simplified depiction of the network architecture
used in Study 1. The actual model had 8 X-units (X;...Xg)
and 25 units in the hidden layer.

Hypotheses

Three main hypotheses were under investigation.
First, do networks trained on longer-distance
dependencies (bigger Spans) take longer to learn the
dependency, as people do? Second, do networks
trained in more variable conditions (Conditions 5 & 6)
learn more slowly due to increased variability and
noise? Or do they, like people (e.g. Lany & Gomez,
2008) show facilitated learning of more distant
dependencies due to experience with shorter
dependencies? Third, are SRNs capable of learning a
distance-invariant representation? Specifically, do the
networks that are trained only on Spans of 0, 1, and 2,
predict the correct B item on Span 3 trials, even
though they have never before experienced the
dependency at that distance?

Results & Discussion

Figure 2 shows the average SRN performance
predicting the correct B (the network’s activation level
for the correct B output, on X trials) for networks

trained on only a single Span, when tested on the same
Span. Networks showed strong effect of taking longer
to learn, as the distance between the dependent items
increased. Figure 3 shows the average performance on
items of Span3 distance, for networks (1) trained on
Span3, compared to (2) networks trained on a mixture
of all the spans (SpanX) and (3) to networks trained on
all the spans except Span3 (SpanX-3). At the earliest
stages of training (trials 0-1000), the networks that
experienced more variability showed slight decrements
in performance on Span3 test items, relative to
networks trained on Span3 alone. However, at later
stages of training, both SpanX and SpanX-3 networks
outperformed the Span3 network on Span3 items.

1

E 08

=)

~—

: 500

5=

9 ‘%0'4 e S pan(

g <02 emm—=Spanl

E Span2

8 0 4 Span3
t20  t820 t1620 t2420 t3220 t4020 t4820

Trial

Figure 2. Average SRN performance for networks trained
on a single span between nonadjacently dependent items,
when tested on items of the same span. The y-axis is the
network’s softmax activation level of the correct B unit,
when the network was presented with the preceding X item.
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Figure 3. Average SRN performance for networks trained
on Span 3, a mixture of all Span conditions (SpanX), or all
Span conditions except Span3 (SpanX-3).

Thus, in Study 1 I show that SRNs display three
critical features of human learning: (1) they show
increased difficulty with longer dependencies; (2) they
show facilitated learning when they have had
experience with shorter-distance variations of that
dependency; (3) they learn distance-invariant
representations of nonadjacent dependencies, making
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the correct prediction for Span3 items even in the
SpanX-3 condition, where they had no training with
dependencies of that span. This evidence that SRNs
can learn a distance-invariant representations of
nonadjacent dependencies is a critical finding, as it
undercuts one of the fundamental arguments against
association-based representations of knowledge, and in
favor of rule-based explanations of cognition.

Study 2: Abstract Rules

Marcus et al. (1999) performed a learning study with
infants, where the infants where played sequences of
syllables following either an ABB repetition pattern
(e.g. “go-la-la”) or an ABA alternation pattern (e.g.
“go-la-go™). After hearing many examples repeated
multiple times, infants then heard novel test sequences
that either followed or violated that rule, and showed
evidence of discriminating the legal and illegal
sequences. Marcus argued that because no items were
co-present at training and test, associative accounts
were inadequate and only rule-based models could
explain behavior. Marcus (2000) further argued that
SRNs (like in Figure 4), could not in principle account
for this finding. A number of researchers (Altmann &
Dienes, 1999; Christiansen & Curtin, 1999) presented
distributed SRN models of this phenomenon, where
microfeatures (but not items) were co-present at
training and test. Marcus, however, argued that
resorting to such microfeatures was proof that SRNs
and other network models are fundamentally incapable
of learning abstract, algebraic rules, which some
believe to be fundamental to human cognition.

In Study 2, I show that a simple, localist SRN
without any distributed microfeature information
learns to represent abstract, rule-like structure.
Marcus’s (2000) characterization of SRNs was correct;
a localist SRN trained in the manner he described
cannot show transfer of the rule-like knowledge. That
is because the network learns (during the initial
training) that the elements in the test items never
occur, and thus their weights are set to zero, making
them unable to make use of any information about the
previous items’ sequential structure that may have
been learned and stored in the network’s recurrent or
output connections. However, there is no reason to
restrict training in this way; one could instead allow
the model to continue learning during the test phase,
and again determine whether the model learns about
the rule consistent test strings more quickly than the
rule-violating ones.

Stimuli and Design
The models in Study 2 (using the architecture in
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Figure 4. A depiction of the architecture in Study 2. The
actual model had 12 A- and B-units and 25 hidden units.

Figure 4) were trained on the exact design from
Marcus et al., shown in Table 2. During the first
training phase, models were trained in one of two
conditions: (1) an ABA condition, where the first item
perfectly predicted the last item, and predicted that it
would be repetition of itself; (2) an ABB condition,
where the middle item perfectly predicted the last
item, again a repetition of itself. These ABA and ABB
strings were composed of six possible A’s and B’s,
which all occurred in all possible combinations, thus
making all transition probabilities uninformative, and
leaving the item-independent ABA or ABB rule as the
only way to correctly predict whether the final element
should be an A or B. The models were then given a
second training phase, where they were trained on a
new ABA or ABB sequences using new A and B
items, and tested to see if they learned these sequences
more quickly if the new rule was consistent with the
rule on which they had been trained in phase 1.

Table 2. Stimulus inputs used in Study 2.

ABA1 ABBI1 ABA2 ABB2
A1B1A1 A1B1B2 A7B7A7 A7B7B7
AleAl A1B2B2 A7B8A7 A7B8Bg
A1B3A1 A1B3B3 A7B9A7 A7B9B9
A1B6A1 A1B6B6 A7B12A7 A7B12B12
A6B6A6 A6B6B6 A12B12A12 A12B12B12

Results & Discussion

The results from Study 2 are shown in Figure 5.
When the model was allowed to continue learning
during the second training phase, it shows facilitated
learning if the new items follow the same structural
sequence as the items in the first phase. Follow-up
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analyses of the network’s weight configurations show
this is because the network’s recurrent and output
weights are effectively learning the abstract structural
order of the sequence. Because of this, if the new set
of items are following the same structural rule, all the
network needs to do is learn to adjust the input weights
for the new items so that they work well with the
already-learned recurrent and output weights.
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Figure 5. Average SRN performance during the second
stage of learning in Study 2.

These findings have very significant implications, as
they (along with the findings in Simulation 2), refute
claims that associative models are not capable of
learning the abstract and rule-like knowledge that
seems fundamental to human cognition.

Study 3: Perceptual/Semantic Bootstrapping

Previous research on nonadjacent dependencies
has mainly focused on learning to represent sequences
of events, actions, or words independent of other cues
about those entities, such as perceptual or semantic
features or similarity. Learning structure in such a
purely symbolic way would be hard. However, there is
no reason to limit attention to this type of
impoverished input, which is uncharacteristic of
naturalistic conditions.. Studies that have examined the
use of correlated perceptual cues (Newport & Aslin) or
semantic cues Willits et al.), have found that under
these circumstances nonadjacent dependencies are
significantly easier to learn. For example, Willits et al.
found that when the items to be learned are from the
same category (e.g. nonadjacently related items both
foods), both infants and adults learn the dependency
more easily. Learners even learn the nonadjacent
dependency if the two words form a consistent
mapping between categories (e.g. across set of
nonadjacent pairs, foods are always paired with an
animals). These findings are critical, because many of
the nonadjacent dependencies people need to learn
have these kinds of correlated perceptual and semantic
attributes.

The question, then, is whether SRNs also exhibit
facilitated learning from correlated cues, thus
broadening their appeal as a general model of
dependency learning, and whether they provide any
insights as to why learning might be easier under these
circumstances. This was investigated in Study 3.

Stimuli and Design

The models in Study 3 were trained using the
architecture in Figure 4. This architecture allowed for
tests of whether correlated similarity structure affected
learning by allowing each input to activate two units:
(1) one item-specific unit (either an Ay, Xy, or By),
where the letter refers to which category the item is
from); (2) a category-specific unit (either Categorya,
Categoryx, or Categoryg), where the category unit
turned on for all inputs that came from that category.

Output Layer

Recurrent
Connections

Layer

Input Layer

Figure 6. A depiction of the architecture used in Study 3.
The actual model had 25 hidden units.

The models were trained in one of three conditions
(shown in Table 3). In the Consistently Same
condition, the nonadjacently dependent items were
always from the same category (e.g. the first item in
each sequence would activate the A; unit and the
Categorya unit, and third item would activate the A;
unit and the Category, unit). In the Consistently
Different condition, the nonadjacently dependent items
were consistently from opposite A & B categories. In
the Inconsistent condition, the dependent items’

Table 3. Stimulus inputs used in Study 3

Consistently Consistently Different Inconsistent
Same Category Categories Categories
A X, A A, X, B; A X, Ay
A, X, A, A, X, B, A, X, B,
B, X, B; B, X, A; B, X, B;
B, X, B, B, X, A, B, X, A,

categories were not predictable in terms of the other
unit in the dependency. Across training trials, the
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models were compared to see if any of the conditions
showed facilitated learning.

Results & Discussion

The results for Study 3 are shown in Figure 7. SRNs
showed facilitated learning in both consistent
conditions, but not the inconsistent conditions, results
similar to behavioral experiments with infants and
adults. Follow-up analyses of network behavior show
this is because the network has an easier time learning
the category sequences, an intriguing hypothesis to test
in future work with human learners.
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Figure 7. Average SRN performance for the three training
conditions in Study 3.

Conclusions
Nonadjacent  dependencies are a necessary
consequence of experiencing a hierarchically

structured world though a linear sequence of inputs
and actions. The current studies support the notion that
SRNs and other recurrent networks are viable models
of the representation of hierarchical knowledge. They
are capable of learning to represent abstract, rule-like
structure (Study 1 & 2), and they show critical
learning effects that people exhibit, such as the
interaction between structure and similarity (Study 3).

In addition, these simulations also provide evidence
for the hypothesis that many learning situations that
are thought to be especially difficult (of which the
learning of nonadjacent dependencies is but one
example) are only difficult because the problem has
been underepresented. Many cues learners might use
are stripped away in overly controlled experiments,
making the problem harder than it is in the real world.
Complexity is not the same thing as noise, if that
complexity provides learners with useful cues to the
structure of the world.
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