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Abstract 

Learning to represent hierarchical structure and its 
nonadjacent dependencies (NDs) is thought to be 
difficult. I present three simulations of ND learning 
using a simple recurrent network (SRN). In Simulation 
1, I show that the model can learn distance-invariant 
representations of nonadjacent dependencies. In 
Simulation 2, I show that purely localist SRNs can 
learn abstract rule-like relationships. In Simulation 3, I 
show that SRNs exhibit facilitated learning when there 
are correlated perceptual and semantic cues to the 
structure (just as people do). Together, these 
simulations show that (contrary to previous claims) 
SRNs are capable of learning abstract and rule-like 
nonadjacent dependencies, and show critical 
perceptual- and semantics-syntax interactions during 
learning. The studies refute the claim that neural 
networks and other associative models are 
fundamentally incapable of representing hierarchical 
structure, and show how recurrent networks can 
provide insight about principles underlying human 
learning and the representation of hierarchical structure. 
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Background 
Human concepts, languages, goals, and patterns of 

action are all describable in terms of complex 
hierarchical structures, but our experience of them as 
inputs, and our production of them as outputs, is often 
arranged in linear strings that unfold over time. A 
necessary consequence of this transformation of 
complex structure into linear strings is that most 
human knowledge involves many nonadjacent 
dependencies, where one element predicts another 
element, but at a distance. These nonadjacent 
dependencies, whether in thought, language, or action, 
enormously expand the computational complexity of 
representing the structure of the world. 

In several subfields of cognitive science, difficulty 
learning and representing nonadjacent dependencies 
has generated considerable theoretical controversy. In 
linguistics, the limitation of simple associative 
structures has been a cornerstone of arguments for 
abstract syntactic structures (Chomsky, 1957). In 
cognitive psychology, researchers argued that 
associative mechanisms cannot learn the vast range of 
nonadjacent dependencies in the world, and thus rule-

based representations are necessary for human 
cognition (Bever et al., 1968). In early artificial 
intelligence, arguments about the limitations of 
associative systems led to a focus on symbolic, rule-
based systems (Newell & Simon, 1961). 

However, recent research has questioned the need 
for rule-based representations of nonadjacent structure. 
A number of studies have demonstrated or modeled 
simple learning of nonadjacent structure in memory 
(Cleeremans & McClelland, 1991), goals and event 
structure (Botvinick & Plaut, 2004; visual sequences 
(Fiser & Aslin, 2002), and artificial grammars using 
linguistic stimuli (Gomez, 2002; Newport & Aslin, 
2004). These results have changed the nature of the 
debate concerning the extent to which knowledge of 
nonadjacent dependencies requires a rule-based or an 
association-based explanation. Although there are 
many specific examples of learning or failing to learn 
in particular situations, what is lacking is a general 
account of nonadjacent dependency learning. As a 
result, the many subfields of cognitive science (such as 
linguistics, cognitive psychology, and artificial 
intelligence) continue working on the problem 
separately, without a clear theory or explanation for 
some of the most foundational human behaviors. 

The current work aims to make progress toward a 
general account by examining whether a fairly simple 
neural network model, the simple recurrent network 
(SRN; Elman, 1990) can provide a general model of 
nonadjacent dependency learning. An SRN was used 
because previous research (Botvinick & Plaut, 2006; 
Cleeremans & McClelland, 1991; Elman, 1991) 
suggests that SRNs and other recurrent networks are 
capable of learning nonadjacent structure. However, 
there is controversy about whether they can serve as 
general solution for all cases, especially those 
involving abstract, rule-like relationships (Marcus, 
2000) or complex interactions between structure and 
meaning (Fodor & Pylyshyn, 1988). 

In the service of testing the viability of SRNs, the 
current work had two distinct sub-goals. First, to be a 
general model of nonadjacent dependency learning, 
SRNs ought to be able to learn nonadjacent 
dependencies of the types that exist in the natural 
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world. This includes abstract, rule-like nonadjacent 
dependencies, such as learning “distance-invariant” 
representations (for example, learning the link between 
the and a noun, independent of how many adjectives 
come between them). Second, SRNs ought to capture 
behavioral phenomena observed in laboratory 
experiments, such as facilitated learning in the 
presence of perceptual (Newport & Aslin, 2004) and 
semantic (Willits, Lany, & Saffran, 2013) cues. Close 
analysis of model behavior can then shed light on the 
bases of the empirical effects. The following three 
studies test SRNs’ abilities to satisfy these criteria. 
 

General Methodology 
The three studies shared three core features common 

in connectionist-modeling approaches (Rumelhart & 
McClelland, 1986). First, all simulations used sets of 
interconnected units and weights specifying how 
strongly each unit was connected to each other unit. 
The units in the model were divided into an input 
group, used to specify the input stimulus in each 
sequence; an output group, used to specify the output 
response (which also served as a prediction about the 
next item in the sequence); and a hidden group that 
mediated between the input and output groups. 
Second, the models featured recurrent connectivity, 
allowing the model to feed back information about its 
own previous internal state in ways critical to forming 
internal representations of sequential structure. Third, 
the models all made use of weight-based encoding, 
where the network’s knowledge was encoded in the 
weighted connections between units. 

The goal of the network was to learn a set of weights 
such that, for any given input, the model’s weights led 
to activation in the output layer that was a correct 
prediction of the next item in the sequence. During 
training, a model was given an input, its output 
activation was treated as a prediction of what the next 
input would be. This prediction was compared to the 
target output, and divergence error was calculated 
across each unit and was used to adjust the weights of 
the model, using a version of recurrent 
backpropagation through time. For each simulation, 30 
different randomly initialized models were trained. 
Each model was trained until it reached a 
predetermined level of overall error, corresponding to 
optimal prediction performance in the task. The 
critical test in each simulation was the relative rate of 
learning across the different conditions in that study. 
 

Study 1: Distance Invariance 
In experiments on nonadjacent dependencies using 

artificial grammars, the distance between dependent 

items is usually fixed, with one intervening item 
separating dependent items. However, in many real-
world cases (such as the distance between 
nonadjacently related events in the world, or words in 
language) the distance between dependent items 
varies. In fact, learning a “distance-invariant” 
representation of a nonadjacent dependency has been 
considered a critical phenomenon, proving the need 
for a rule-based mechanism. 

In Simulation 1, I attempted to train an SRN to learn 
distance-invariant representations of nonadjacent 
dependencies by exposing them to the same 
nonadjacent dependency at multiple spans of distance 
between the related items. A second issue of interest 
was whether SRNs would show facilitation in learning 
longer-distance dependencies if they also had 
experience with the dependency at a shorter distance, a 
learning effect that has been demonstrated in both 
infants and adults (Lany & Gomez, 2008). 
 

Stimuli and Design  
The models in Study 1 were trained on sequences 

where the first element (hereafter the A item) perfectly 
predicted the last element in each sequence (hereafter 
the B item), with the sequences having a number of 
items (hereafter the X items) intervening between 
them. The sequences were of lengths 2 to 5, resulting 
in distances between the A and B items spanning from 
zero (adjacent dependencies) to three. There were two 
AB pairs (A1 & B1, A2 & B2) and six possible 
intervening X-items (X1…X6). The x-items were 
distributed across trials such that they provided zero 
predictive value for which B would occur. The only 
way to predict the correct B (B1 or B2) was to have 
stored which A (A1 or A2) initiated the sequence. The 
full set of stimuli used in Study 1 is shown in Table 1. 

Thirty different networks (starting from different 
randomly initialized weights) were trained in each of 
six different training conditions: (1) only Span 0 trials; 
(2) only Span 1 trials; (3) only Span 2 trials; (4) only 
Span 3 trials; (5) a mixture of all Span trials; (6) a 
mixture of all Span trials except Span 3. 

Over the course of training, networks from all six 
conditions were tested on stimuli from all Span 
conditions (without updating the network weights 
during those test trials), to assess the network’s 
performance on strings of various spans. Networks 
were compared at points where they had experienced 
the same number of trials, controlling for the amount 
of experience the networks had with each AB pair. 

 

Network Architecture 
The network had 10 input and output units (one for 
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each A, B, and X) and 25 hidden units. A simplification 
of the network architecture is shown in Figure 1. 

 

Table 1. Stimulus inputs used in Study 1. 
Span 0   Span 1  
A1 B1 
A2 B2 

 A1 x1 B1    A2 x1 B2 
A1 x2 B1    A2 x2 B2 

Span 2   Span 3 
A1 x1 x3 B1 
A1 x1 x4 B1 
A1 x2 x3 B1 
A1 x2 x4 B1 
A2 x1 x3 B2 
A2 x1 x4 B2 
A2 x2 x3 B2 
A2 x2 x4 B2 

 A1 x1 x3 x5 B1 
A1 x1 x4 x5 B1 
A1 x2 x3 x5 B1 
A1 x2 x4 x5 B1 
A1 x1 x3 x6 B1 
A1 x1 x4 x6 B1 
A1 x2 x3 x6 B1 
A1 x2 x4 x6 B1 

A2 x1 x3 x5 B2 
A2 x1 x4 x5 B2 
A2 x2 x3 x5 B2 
A2 x2 x4 x5 B2 
A2 x1 x3 x6 B2 
A2 x1 x4 x6 B2 
A2 x2 x3 x6 B2 
A2 x2 x4 x6 B2 

 

 
Figure 1. A simplified depiction of the network architecture 
used in Study 1. The actual model had 8 X-units (X1…X8) 
and 25 units in the hidden layer. 

 

Hypotheses 
Three main hypotheses were under investigation. 

First, do networks trained on longer-distance 
dependencies (bigger Spans) take longer to learn the 
dependency, as people do? Second, do networks 
trained in more variable conditions (Conditions 5 & 6) 
learn more slowly due to increased variability and 
noise? Or do they, like people (e.g. Lany & Gomez, 
2008) show facilitated learning of more distant 
dependencies due to experience with shorter 
dependencies? Third, are SRNs capable of learning a 
distance-invariant representation? Specifically, do the 
networks that are trained only on Spans of 0, 1, and 2, 
predict the correct B item on Span 3 trials, even 
though they have never before experienced the 
dependency at that distance?  

 

Results & Discussion 
Figure 2 shows the average SRN performance 

predicting the correct B (the network’s activation level 
for the correct B output, on X trials) for networks 

trained on only a single Span, when tested on the same 
Span. Networks showed strong effect of taking longer 
to learn, as the distance between the dependent items 
increased. Figure 3 shows the average performance on 
items of Span3 distance, for networks (1) trained on 
Span3, compared to (2) networks trained on a mixture 
of all the spans (SpanX) and (3) to networks trained on 
all the spans except Span3 (SpanX-3). At the earliest 
stages of training (trials 0-1000), the networks that 
experienced more variability showed slight decrements 
in performance on Span3 test items, relative to 
networks trained on Span3 alone. However, at later 
stages of training, both SpanX and SpanX-3 networks 
outperformed the Span3 network on Span3 items. 

 
Figure 2. Average SRN performance for networks trained 
on a single span between nonadjacently dependent items, 
when tested on items of the same span. The y-axis is the 
network’s softmax activation level of the correct B unit, 
when the network was presented with the preceding X item. 

 
Figure 3. Average SRN performance for networks trained 
on Span 3, a mixture of all Span conditions (SpanX), or all  
Span conditions except Span3 (SpanX-3). 

 

Thus, in Study 1 I show that SRNs display three 
critical features of human learning: (1) they show 
increased difficulty with longer dependencies; (2) they 
show facilitated learning when they have had 
experience with shorter-distance variations of that 
dependency; (3) they learn distance-invariant 
representations of nonadjacent dependencies, making 
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the correct prediction for Span3 items even in the 
SpanX-3 condition, where they had no training with 
dependencies of that span. This evidence that SRNs 
can learn a distance-invariant representations of 
nonadjacent dependencies is a critical finding, as it 
undercuts one of the fundamental arguments against 
association-based representations of knowledge, and in 
favor of rule-based explanations of cognition. 

 

Study 2: Abstract Rules 
Marcus et al. (1999) performed a learning study with 

infants, where the infants where played sequences of 
syllables following either an ABB repetition pattern 
(e.g. “go-la-la”) or an ABA alternation pattern (e.g. 
“go-la-go”). After hearing many examples repeated 
multiple times, infants then heard novel test sequences 
that either followed or violated that rule, and showed 
evidence of discriminating the legal and illegal 
sequences. Marcus argued that because no items were 
co-present at training and test, associative accounts 
were inadequate and only rule-based models could 
explain behavior. Marcus (2000) further argued that 
SRNs (like in Figure 4), could not in principle account 
for this finding. A number of researchers (Altmann & 
Dienes, 1999; Christiansen & Curtin, 1999) presented 
distributed SRN models of this phenomenon, where 
microfeatures (but not items) were co-present at 
training and test. Marcus, however, argued that 
resorting to such microfeatures was proof that SRNs 
and other network models are fundamentally incapable 
of learning abstract, algebraic rules, which some 
believe to be fundamental to human cognition.  

In Study 2, I show that a simple, localist SRN 
without any distributed microfeature information 
learns to represent abstract, rule-like structure. 
Marcus’s (2000) characterization of SRNs was correct; 
a localist SRN trained in the manner he described 
cannot show transfer of the rule-like knowledge. That 
is because the network learns (during the initial 
training) that the elements in the test items never 
occur, and thus their weights are set to zero, making 
them unable to make use of any information about the 
previous items’ sequential structure that may have 
been learned and stored in the network’s recurrent or 
output connections. However, there is no reason to 
restrict training in this way; one could instead allow 
the model to continue learning during the test phase, 
and again determine whether the model learns about 
the rule consistent test strings more quickly than the 
rule-violating ones. 

 

Stimuli and Design  
The models in Study 2 (using the architecture in  

 
Figure 4. A depiction of the architecture in Study 2. The 
actual model had 12 A- and B-units and 25 hidden units. 
 

Figure 4) were trained on the exact design from 
Marcus et al., shown in Table 2. During the first 
training phase, models were trained in one of two 
conditions: (1) an ABA condition, where the first item 
perfectly predicted the last item, and predicted that it 
would be repetition of itself; (2) an ABB condition, 
where the middle item perfectly predicted the last 
item, again a repetition of itself. These ABA and ABB 
strings were composed of six possible A’s and B’s, 
which all occurred in all possible combinations, thus 
making all transition probabilities uninformative, and 
leaving the item-independent ABA or ABB rule as the 
only way to correctly predict whether the final element 
should be an A or B. The models were then given a 
second training phase, where they were trained on a 
new ABA or ABB sequences using new A and B 
items, and tested to see if they learned these sequences 
more quickly if the new rule was consistent with the 
rule on which they had been trained in phase 1. 

 

Table 2. Stimulus inputs used in Study 2. 
ABA1  ABB1  ABA2  ABB2  
A1B1A1 
A1B2A1 
A1B3A1 
… 
A1B6A1 
… 
A6B6A6 

 A1B1B2 
A1B2B2 
A1B3B3 
… 
A1B6B6 
… 
A6B6B6 

 A7B7A7 
A7B8A7 
A7B9A7 
… 
A7B12A7 
… 
A12B12A12 

 A7B7B7 
A7B8B8 
A7B9B9 
… 
A7B12B12 
… 
A12B12B12 

 

Results & Discussion 
The results from Study 2 are shown in Figure 5. 

When the model was allowed to continue learning 
during the second training phase, it shows facilitated 
learning if the new items follow the same structural 
sequence as the items in the first phase. Follow-up 
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analyses of the network’s weight configurations show 
this is because the network’s recurrent and output 
weights are effectively learning the abstract structural 
order of the sequence. Because of this, if the new set 
of items are following the same structural rule, all the 
network needs to do is learn to adjust the input weights 
for the new items so that they work well with the 
already-learned recurrent and output weights. 
 

 
Figure 5. Average SRN performance during the second 
stage of learning in Study 2. 
 

These findings have very significant implications, as 
they (along with the findings in Simulation 2), refute 
claims that associative models are not capable of 
learning the abstract and rule-like knowledge that 
seems fundamental to human cognition. 
 

Study 3: Perceptual/Semantic Bootstrapping 
Previous research on nonadjacent dependencies 

has mainly focused on learning to represent sequences 
of events, actions, or words independent of other cues 
about those entities, such as perceptual or semantic 
features or similarity. Learning structure in such a 
purely symbolic way would be hard. However, there is 
no reason to limit attention to this type of 
impoverished input, which is uncharacteristic of 
naturalistic conditions.. Studies that have examined the 
use of correlated perceptual cues (Newport & Aslin) or 
semantic cues Willits et al.), have found that under 
these circumstances nonadjacent dependencies are 
significantly easier to learn. For example, Willits et al. 
found that when the items to be learned are from the 
same category (e.g. nonadjacently related items both 
foods), both infants and adults learn the dependency 
more easily. Learners even learn the nonadjacent 
dependency if the two words form a consistent 
mapping between categories (e.g. across set of 
nonadjacent pairs, foods are always paired with an 
animals). These findings are critical, because many of 
the nonadjacent dependencies people need to learn 
have these kinds of correlated perceptual and semantic 
attributes. 

The question, then, is whether SRNs also exhibit 
facilitated learning from correlated cues, thus 
broadening their appeal as a general model of 
dependency learning, and whether they provide any 
insights as to why learning might be easier under these 
circumstances. This was investigated in Study 3. 
 

Stimuli and Design  
The models in Study 3 were trained using the 

architecture in Figure 4. This architecture allowed for 
tests of whether correlated similarity structure affected 
learning by allowing each input to activate two units: 
(1) one item-specific unit (either an AN, XN, or BN), 
where the letter refers to which category the item is 
from); (2) a category-specific unit (either CategoryA, 
CategoryX, or CategoryB), where the category unit 
turned on for all inputs that came from that category. 

Figure 6. A depiction of the architecture used in Study 3. 
The actual model had 25 hidden units. 
 

The models were trained in one of three conditions 
(shown in Table 3). In the Consistently Same 
condition, the nonadjacently dependent items were 
always from the same category (e.g. the first item in 
each sequence would activate the A1 unit and the 
CategoryA unit, and third item would activate the A3 
unit and the CategoryA unit). In the Consistently 
Different condition, the nonadjacently dependent items 
were consistently from opposite A & B categories. In 
the Inconsistent condition, the dependent items’ 

 

Table 3. Stimulus inputs used in Study 3 
Consistently 

Same Category 
 Consistently Different 

Categories 
 Inconsistent 

Categories 
A1 Xn A3 
A2 Xn A4 
B1 Xn B3 
B2 Xn B4 

 A1 Xn B3 
A2 Xn B4 
B1 Xn A3 
B2 Xn A4 

 A1 Xn A3 
A2 Xn B4 
B1 Xn B3 
B2 Xn A4 

categories were not predictable in terms of the other 
unit in the dependency. Across training trials, the 
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models were compared to see if any of the conditions 
showed facilitated learning. 
 

Results & Discussion 
The results for Study 3 are shown in Figure 7. SRNs 

showed facilitated learning in both consistent 
conditions, but not the inconsistent conditions, results 
similar to behavioral experiments with infants and 
adults.  Follow-up analyses of network behavior show 
this is because the network has an easier time learning 
the category sequences, an intriguing hypothesis to test 
in future work with human learners. 

 
Figure 7. Average SRN performance for the three training 
conditions in Study 3. 

 

Conclusions 
Nonadjacent dependencies are a necessary 

consequence of experiencing a hierarchically 
structured world though a linear sequence of inputs 
and actions. The current studies support the notion that 
SRNs and other recurrent networks are viable models 
of the representation of hierarchical knowledge. They 
are capable of learning to represent abstract, rule-like 
structure (Study 1 & 2), and they show critical 
learning effects that people exhibit, such as the 
interaction between structure and similarity (Study 3). 

In addition, these simulations also provide evidence 
for the hypothesis that many learning situations that 
are thought to be especially difficult (of which the 
learning of nonadjacent dependencies is but one 
example) are only difficult because the problem has 
been underepresented. Many cues learners might use 
are stripped away in overly controlled experiments, 
making the problem harder than it is in the real world. 
Complexity is not the same thing as noise, if that 
complexity provides learners with useful cues to the 
structure of the world. 
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