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Abstract 

Recent findings show that human inferences and decisions 
interfere in ways analogous to incompatible quantum 
observables, and conceptual judgments are inseparable in 
ways similar to entangled quantum states. This discovery has 
led a group of physicists and psychologists to form a new 
field called “quantum cognition,” which uses mathematical 
principles of quantum theory to explain human cognitive 
behavior. The power of this new theoretical approach is 
illustrated here by testing an a priori and precise prediction 
derived from quantum theory regarding question order effects 
commonly observed in survey research. The test of quantum 
theory was statistically satisfied across a set of 26 national 
surveys on presidential job approval and country satisfaction 
in past 10 years. These results suggest that quantum theory, 
initially invented to explain order effects on measurements in 
physics, provides a powerful prediction for measurement 
order effects in social and behavioral sciences too.  
 
 
The human brain is a powerful and massively complex 

neural system. It provides the biological substrate for an 
emergent mind capable of producing highly intelligent 
cognitive behaviors, such as inferences and decisions. How 
this happens remains a topic of intense investigation in 
cognitive neuroscience. The possibility that the brain’s 
tremendous power arises from parallel computations of 
quantum physical neuronal interactions has been raised 
(Hameroff & Penrose, 1996; Hagan, Hameroff & 
Tuszynski, 2002) but strongly criticized (Tegmark, 2000; 
McKemmish, Reimers, McKenzie, Mark & Hush, 2009).  
However, what if it is our behavior – rather than our brains 
– that follows quantum rules?  

Supporting this idea, latest evidence shows that human 
inferences and decisions interfere in ways analogous to 
incompatible quantum observables (Pothos & Busemeye, 
2009; Busemeyer, Wang & Lambert-Mogiliansky, 2008), 
and conceptual judgments are inseparable in ways similar to 
entangled quantum states (Aerts & Sozzo, 2011). Formal 
principles that quantum theorists invented to deal with 
properties of complex physical systems provide a powerful 
mathematical description of human behavior (Busemeyer & 
Bruza, 2012; Khrennikov, 2010). This discovery has led a 

group of physicists and psychologists to work together and 
form the new field of “quantum cognition,” which uses 
mathematical principles of quantum theory to explain 
human cognitive behavior. It has successfully accounted for 
various puzzling findings in psychological literature, 
ranging across perception (Atmanspacher, Filk & Romer, 
2004), associative memory (Bruza, Kitto, Nelson & 
McEvoy, 2009), conceptual reasoning (Aerts, 2009), 
probability judgments (Busemeyer, Pothos, Franco & 
Trueblood, 2011), decision making (Yukalov & Sornette, 
2011), and strategic game behavior (Lambert-Mogiliansky 
& Busemeyer, 2012). It is plausible that the underlying 
neural systems follow classical dynamic laws, but the 
emergent cognitive behaviors are coarse “quantized” 
descriptions (Atmanspacher & Graben, 2007). In fact, more 
than half a century ago, founding fathers of quantum theory 
speculated that fundamental quantum principles have 
implications outside of physics to human cognitive behavior 
(Pauli, 1950; Bohr, 1958).  

Here we tested a new, a priori and precise prediction 
derived from quantum theory regarding question order 
effects commonly observed in survey research. This type of 
exact prediction is rare in social and behavioral sciences. 
The prediction was statistically supported across a set of 26 
national surveys in past 10 years on two important public 
opinion questions in the U.S.: presidential job approval and 
country satisfaction. This surprisingly accurate test 
illustrates the theoretical power of our new approach to use 
quantum theory as a mathematical tool to explain and 
predict human cognitive behaviors. We show that quantum 
theory, initially invented to explain order effects of 
measurements in physics, provides a powerful prediction for 
order effects of measurements in psychology. 

 

Measurement Order Effects 
One of the prime paradoxes of physics explained by 

quantum mechanics is that the order of measurements 
affects the observed statistics. For example, when testing the 
direction of spin ½ particles, the results depend on whether 
the “up-down” direction is tested before versus after the 
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“left-right” direction (Sakurai, 1994). In the terminology of 
quantum theory, observables like these are defined as 
incompatible, and the theory was built on a non-
commutative algebra of operators (Von Neumann, 1932).  

Order effects of measurements are not unique to physics. 
It has long been recognized that the order of questions can 
influence human judgments and decisions (Schuman & 
Presser, 1981; Sudman & Bradburn, 1974). For example, 
the Pew Research Center conducted a telephone survey 
experiment during June 10-14, 2009 with a nationally 
representative sample of 1,502 U.S. adults. A random half 
of the sample was asked, “Do you approve or disapprove of 
the way Barack Obama is handling his job as President?” 
followed by “All in all, are you satisfied or dissatisfied with 
the way things are going in this country today?” The other 
half was asked the exact same questions but in the opposite 
order. It turns out that the presidential job approval rate was 
63.38% when it was asked first and dropped to 58.58% 
when asked second.  

Gauging public opinions is an enormously important task 
in any democracy. Among many challenges that survey 
researchers must manage, question order effects are one of 
the most important (Schuman & Presser, 1981; Moore, 
2002). A common practice is rotating question orders 
between randomly-split samples to balance out question 
order effects. Whether the order of two questions produces 
significant effects can be easily tested. Denote p(AyBn) as 
the probability of agreeing (“yes”) to question A and then 
disagreeing (“no”) to question B, and p(BnAy) as the 
probability of the same answers when the questions were 
asked in the opposite order. Similarly, probabilities of the 
remaining response combinations, p(AnBy) and p(ByAn), 
are defined. The two order conditions produce a pair of 2×2 
contingency tables, which, according to the null hypothesis, 
should be equivalent except for sampling error (e.g., 
p(AyBn) = p(BnAy)). Discrepancy from the null hypothesis 
is measured by χ2. If the null hypothesis is correct, the χ2 
statistic should have a χ2(3) distribution.  

Table 1 shows χ2 results for two Gallup survey 
experiments reported in a seminal article on question order 
effects (Moore, 2002). Each sampled around 1,000 U.S. 
adults using the split sample paradigm. In the first poll, 
people were asked whether Bill Clinton was honest and 
trustworthy, and whether Al Gore was honest and 
trustworthy. In the second poll, people were asked whether 
white people dislike black people, and whether black people 
dislike white people. Each 2×2 contingency table in Table 1 
summarizes the observed proportions for the four response 
combinations in one question order. As shown by the χ2 test 
on the order effects, both experiments produced large order 
effects with strikingly different patterns.  Now we come 
backto the presidential job approval and country satisfaction 
questions. Is there a robust order effect for this pair of 
important public opinion questions? To examine this, we 
obtained from the Pew Research Center all its survey 
experiments that included this pair of questions in past 10 

Table 1: Observed proportions for each order condition, 

and χ2 tests for testing order effects and the QQ equality. 
See Appendix on the χ2 tests. 
 

 
 

years. There are 26 surveys in total, with a nationally 
representative sample between 815 and 3,006 U.S. adults (M 
= 1,644, SD = 422.24). Of each sample in each survey, a 
random half was asked the presidential job approval 
question first while the other half was asked the country 
satisfaction question first. The χ2 test indicates significant 
question order effects across the 26 surveys (see Figure 1).  
 

 
 

Figure 1: χ2 frequency distributions for testing the order 
effects and the QQ equality. The navy bars show the 
observed frequencies of χ2 values for order effects 
distributed across 10 categories separated at 9 deciles (.1, .2, 
.3, .4, .5, .6, .7, .8, .9); the green bars show those for the QQ 
equality test; the dotted line shows the expected frequency 
by the null hypothesis. The observed frequency distribution 
of order effects significantly differs from the expected 
frequency (χ2(9) = 37.675, p < .0001), but that of the QQ 
equality is not (χ2(9) = 9.5485, p = .3935). So, as predicted 
by the quantum model, there is a significant measurement 
order effects but the QQ equality holds across the 26 
nationals surveys. See Appendix on the χ2 tests. 

A Quantum Model for Question Order Effects 
It would be a speculative leap, however, to think that 

quantum theory can be applied to human behavior simply 
because the behavior displays measurement orders effects. 
Indeed, quantum models of cognition need to be rigorously 
tested. A precise and empirically testable prediction has 
been derived from a quantum model for the question order 
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experimental paradigm (Busemeyer & Bruza, 2012; Wang 
& Busemeyer, in press). The model is simple, intuitive, but 
general. First, as illustrated in Figure 2, a person’s prior 
belief state is represented by a unit length vector (denoted 
by S) within an N-dimensional vector space. This use of 
feature vectors to represent belief or knowledge is consistent 
with many other cognitive models of memory. Second, each 
answer to a question is represented by a subspace within the 
vector space. Each subspace corresponds to a projector (see 
Figure 2). Denote PX as the projector corresponding to 
agreement to a question, and I−PX is the projector 
corresponding to disagreement to the question, where I is 
the identity operator. Third, how to compute response 
probabilities in quantum models? For example, following 
quantum probability rules, the probability of agreeing to 
question A and then disagreeing to question B equals the 
squared length of the result obtained by sequentially 
projecting the prior belief state on the subspace for agreeing 
to A and then on the subspace for disagreeing to B, that is, 
p(AyBn) = ||(I−PB)PAS||2. If the subspaces for the two 
questions are incompatible (i.e., not spanned by a common 
basis), then their projectors are non-commutative (i.e., PBPA 
≠ PAPB), and question order effects are predicted to occur.  
 

 
Figure 2: An illustration of basic quantum principles used 

in the question order model. The figure illustrates a simple 
3-dimensional vector space, but the space can be arbitrarily 
high-dimensional. The probability of agreeing to question X 
is the squared length of the projection Px*S obtained by 
projecting the belief state S to the X-Y plane representing 
the subspace for agreeing to question X.  If question X was 
asked after another question, the belief state would have 
already been changed by answering the preceding question, 
and the probability of agreeing to question X (conditioned 
on the preceding answer) becomes the squared length of the 
result obtained by projecting the adjusted belief state on the 
subspace for question X.  
  
 This model makes an a priori and precise prediction, 
named the Quantum Question (QQ) equality (see Appendix 

for proof): [p(AyBn)+p(AnBy)] − [p(ByAn)+p(BnAy)] = 0. 
Intuitively, this means, the probability of having different 
responses to the two questions (e.g., saying “yes” to one and 
“no” to the other) should remain the same across the two 
question orders. As shown in the proof, this equality must 
hold for any belief state and any pair of projectors in any 
high-dimensional vector space. This precise prediction can 
be easily tested empirically: if it holds, the difference in 
observed proportions on the left hand of the QQ equality, 
defined as q, should not statistically differ from zero as 
tested by χ2 for difference in proportions.  

The QQ equality prediction was tested using the 
aforementioned two Gallup data sets and was supported 
with high accuracy (see Table 1). To generalize the results, 
it was further tested using the 26 Pew national survey 
experiments. If it holds, the observed frequency distribution 
of χ2 (shown as the green bars in Figure 1) should be 
distributed according to a χ2 (1) distribution. Indeed as 
predicted, the observed distribution is not significantly 
different from the expected distribution (see Figure 1). In 
summary, although the 26 Pew studies exhibit significant 
questions order effects, there are not significant deviations 
from the predicted QQ equality.  

Can a Classical Brain Give Rise to Quantum 
Cognitive Behaviors?   

The surprisingly accurate predictions generated by the 
quantum model for question order effects is one example of 
an accumulating body of evidence supporting the general 
applicability of quantum theory for explaining a wide range 
of human cognitive behavior findings that are paradoxical 
from a classical probability perspective (Busemeyer & 
Bruza, 2012). This, however, leaves a question: can a 
classical brain give rise to behavior that follows quantum 
principles? Recently, mathematical physicists have provided 
a mathematical answer to this puzzle. Essentially, coarse 
measurements of a classical dynamic system typically 
generate incompatible observables that result in 
unresolvable uncertainty relations and entangled 
correlations (beim Graben & Atmanspacher, 2006; beim 
Graben, Filk & Atmanspacher, in press). According to 
quantum theory, order effects occurs for incompatible 
observables.  

A key idea is to distinguish “ontic” states (e.g., states of a 
dynamic neural network) in a classical phase space from 
“epistemic” states (e.g., discrete choices or judgments 
across time) obtained from an observable. The mapping 
from ontic to epistemic states usually is many to one, where 
the epistemic states generated by an observable form a 
partition of the ontic phase space. Knowing the epistemic 
state does not completely determine the ontic state, but a 
sequence of measurements across time refines the partition 
of the phase space. In the limit, the partition reaches a 
“finest dynamic refinement,” denoted by℘.  Now suppose 
two observables (f,g) produce different finest dynamic 
refinements (℘f  ≠℘g) and neither converge to the identity 
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partition, as illustrated in Figure 3. This means that no ontic  
state is accessible by a sequence of measurements from 
either observable. Then there exists an epistemic state (a set 
of ontic states) Fa ∈℘f that determines the value a produced 
by the observable f, but the value of the observable g must 
remain dispersive. Likewise, there exists an epistemic state 

 

 
Figure 3. An illustration showing how uncertainty 

relations are generated by coarse descriptions of classical 
dynamic systems. The underlying classical phase space X is 
inconsistently partitioned by two different observables, f and 
g. The cell within X that always assigns a value a to the 
observable f assigns a range of different possible values 
(w,u,z) to the observable g. In this case, there exists an 
epistemic state that determines the value a produced by the 
observable f, but the value of the observable g must remain 
dispersive. 
 
(a set of ontic states) Gv ∈℘g that determines the value v 
produced by the observable g, but the value of the 
observable f remains dispersive. It is impossible to 
simultaneously determine the value a from observable f and 
the value v from the observable g with arbitrary precision, 
so that the two observables are incompatible. Consequently, 
the partitions generated by the two incompatible observables 
produce incompatible Boolean algebras of events, and the 
entire collection forms a partial rather than a complete 
Boolean algebra. Quantum theory is specifically suitable to 
assign probabilities to events defined on a partial Boolean 
algebra.  

Discussion 
Scientists are still far from understanding how mental 

states emerge from the neural substrates. It is too early to 
conclude whether or not quantum physics plays a significant 
role in neural processing. Nevertheless, even if the brain is 
classical, the ubiquitous nature of incompatible observables 
provides a good reason to consider using quantum theory as 
a mathematical tool for predicting human behavior 
(Busemeyer & Bruza, 2012; Khrennikov, 2010). As our 
quantum question order model encapsulates and illustrates, 
at least four motivations drives the development of this new 
field of quantum cognition. (a) Judgments and decisions are 

not simply read out from memory, but rather, they are 
constructed from the cognitive state for the question at 
hand; and (b) drawing a conclusion from one judgment or 
decision changes the context and disturbs the cognitive 
system, which then (c) affects the next judgment or 
decision, producing order effects, so that (d) human 
judgments and decisions do not obey the commutative rule 
of Boolean logic. If we replace “judgments or decisions” 
with “physical measurements” and replace “cognitive 
system” with “physical system,” then these are exactly the 
same reasons that forced physicists to develop quantum 
theory in the first place. Traditionally, quantum theory has 
rarely been applied outside of physics, but now a growing 
number of researchers are successfully using it to explain 
human cognitive behavior. 
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Appendix 
1. Proof of the QQ equality. 

Here we briefly introduce the basic axioms of quantum 
theory and then derive the QQ equality. We use the Dirac 
bracket notation so that 〈S|T〉 represents the inner product 
between two vectors. According to quantum theory, events 
represented as subspaces of a Hilbert space. Corresponding 
to each event A there is a orthogonal projector PA. The state 
of a quantum system is represented by a unit length vector S 
within the Hilbert space. The probability of event A equals 
the squared length of the projection p(A) = ||PAS||2.  If event 
A is observed, then the state is updated according to Lüder’s 
rule SA = PAS/||PAS||.   

Define S as the initial state. Denote the projector for 
saying yes to question C as PC and denote PG as the 

projector for saying yes to question G.  We start by 
expanding the probability for answering “yes” to question 
C: 

||PC ⋅S||2 = ||PC ⋅I⋅S||2 =||PC ⋅(PG + (I−PG))⋅S||2 =||PC ⋅PG ⋅S 
+ PC ⋅ (I−PG)⋅S||2  

= ||PC ⋅PG ⋅S||2 + ||PC ⋅(I−PG)⋅S||2 + 〈S|⋅PG ⋅PC ⋅PC 
⋅(I−PG)|S〉 + 〈S|(I−PG)⋅PC ⋅PC ⋅PG |S〉 

= ||PC ⋅PG ⋅S||2 + ||PC ⋅(I−PG)⋅S||2 + 〈S|PG ⋅PC ⋅PC 
⋅(I−PG)|S〉 + 〈S|⋅PG ⋅PC ⋅PC ⋅(I−PG)|S〉* 

= ||PC ⋅PG ⋅S||2 + ||PC ⋅(I−PG)⋅S||2 + 2⋅Re[〈S|PG ⋅PC ⋅PC 
⋅(I−PG)|S〉] 

= ||PC ⋅PG ⋅S||2 + ||PC ⋅(I−PG)⋅S||2 + 2⋅Re[〈S|PG ⋅PC 
⋅(I−PG)|S〉], 

and the latter follows from the idempotent property of 
projectors. (The symbol x* used in the above derivation 
refers to the complex conjugate of x.) Define the total 
probability to say yes to question C when G was asked first 
as  

TPC   = ||PG ⋅S||2 ⋅||PC ⋅SG||2 +||P~G ⋅S|2 ⋅||PC ⋅S~G||2   
= ||PC ⋅PG ⋅S||2 + ||PC ⋅(I−PG)⋅S||2. 

An order effect for question C when G was asked first 
expressed as 

CC  =  TPC  − ||PC ⋅S||2  = −2⋅ Re[〈S|PG ⋅PC ⋅(I−PG)|S〉]. 
Immediately we see that if PG  and PC commute so that  

PG ⋅PC  =  PC ⋅PG  then PG ⋅PC ⋅(I−PG)  = PC ⋅PG ⋅(I−PG) = 0 
and we predict NO order effect. Thus non-commuting 
projectors are a necessary condition for order effects. Now 
let us re-examine 

CC =  TPC  − ||PC ⋅S||2  = −2⋅ Re[〈S|PG ⋅PC ⋅(I−PG)|S〉]. 
= −2⋅Re[〈S|PG ⋅PC|S〉 − 〈S|PG ⋅PC ⋅PG|S〉]  
= −2⋅Re[〈S|PG ⋅PC|S〉 − ||PC ⋅PG ⋅S||2]  
= −2⋅Re[〈S|PG ⋅PC|S〉] + 2⋅||PC ⋅PG ⋅S||2  
= 2⋅||PG ⋅S||2⋅||PC ⋅SG||2 − 2⋅Re[〈S|PG ⋅PC|S〉]  . 

In general, the inner product is a complex number which 
always can be expressed as 〈S|PG ⋅PC|S〉  = 
|〈S|PG⋅PC|S〉|⋅[cos(φ) + i⋅sinφ]. The real part equals Re[〈S|PG 
⋅PC|S〉] = |〈S|PG ⋅PC|S〉|⋅cos(φ). By defining the ratio  

R =  |〈S|PG ⋅PC|S〉| / (||PC ⋅S||⋅||PG ⋅S||), 
then according to the Cauchy-Schwarz inequality, 0 ≤ R ≤ 1. 
Finally we can express   

CC  =  TPC  − ||PC ⋅S||2  = 2⋅||PC ⋅PG ⋅S||2 − 2⋅R⋅cos(φ)⋅||PC 
⋅S||⋅||PG ⋅S||  

= 2⋅||PG ⋅S||2⋅||PC ⋅SG||2 − 2⋅θ⋅||PC ⋅S||⋅||PG ⋅S||, 
with  θ = R⋅cos(φ) and −1 ≤  θ  ≤ +1, which is the similarity 
index referred to in the main text. Similarly, the order effect 
for question G when C was asked first equals  

CG = TPG  − ||PG ⋅S||2  = 2⋅||PG ⋅PC ⋅S||2 − 2⋅Re[〈S|PC 
⋅PG|S〉], but Re[〈S|PC ⋅PG|S〉] = Re[〈S|PG ⋅PC|S〉]  

so that  
CG  =  2⋅||PC ⋅S||2⋅||PG ⋅SC||2 − 2⋅θ⋅||PC ⋅S||⋅||PG ⋅S||. 

These two order effects share the same term, 2⋅θ⋅||PC ⋅S||⋅||PG 
⋅S||, and therefore together they imply the relation 

0 = (2⋅||PCPG ⋅S||2 − CC) − (2⋅||PGPC ⋅S||2 − CG) 
= (2⋅||PCPG ⋅S||2 −||PCPG ⋅S||2 − ||PCP~G⋅S||2 + ||PC ⋅S||2) − 

(2⋅||PGPC ⋅S||2 − ||PGPC ⋅S||2 − ||PGP~C⋅S||2 + ||PG ⋅S||2)   
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= (||PCPG ⋅S||2 − ||PCP~G⋅S||2 + ||PC ⋅S||2) − (||PGPC ⋅S||2 − 
||PGP~C⋅S||2 + ||PG ⋅S||2)   

= [||PCPG ⋅S||2 − ||PCP~G⋅S||2 + (||PG⋅SC||2 + ||P~G⋅SC||2)⋅||PC 
⋅S||2] − [||PGPC ⋅S||2 − ||PGP~C⋅S||2 + (||PC⋅SG||2 + 
||P~C⋅SG||2)⋅||PG ⋅S||2 ] 

= (||PCPG ⋅S||2 − ||PCP~G⋅S||2 + ||PG⋅SC||2||PC ⋅S||2 + 
||P~G⋅SC||2||PC ⋅S||2) − (||PGPC ⋅S||2 − ||PGP~C⋅S||2 + 
||PC⋅SG||2||PG ⋅S||2 + ||P~C⋅SG||2||PG ⋅S||2)  

= (||PCPG ⋅S||2 − ||PCP~G⋅S||2 + ||PGPC ⋅S||2 +||P~GPC ⋅S||2) 
− (||PGPC ⋅S||2 − ||PGP~C⋅S||2 + ||PCPG ⋅S||2 +||P~CPG 
⋅S||2)   

= (||P~GPC ⋅S||2  − ||PCP~G⋅S||2) − (||P~CPG ⋅S||2 − 
||PGP~C⋅S||2)   

= (||P~GPC ⋅S||2 + ||PGP~C⋅S||2) − (||P~CPG ⋅S||2 + 
||PCP~G⋅S||2) = 0.   Q.E.D. 

The last line is the QQ equality expressed as quantum 
probabilities.  
2. χ2 tests used in Table 1.   

First we present the χ2 test for order effects. Define nYN as 
the frequency of saying “yes” to question C when C was 
asked first and saying “no” to question G when G was asked 
second, and the other combinations of answers are defined 
similarly. Define n = nYY + nYN + nNY + nNN. Define mYN as 
the frequency of “yes” to question G when G was asked first 
and “no” to question C when C was asked second, and the 
other combinations of answers are defined similarly. Define 
m = mYY + mYN + mNY + mNN. The log likelihood for the 
unconstrained model that allows order effects is defined by 

GU = [nYY⋅ln(nYY/n) + nYN⋅ln(nYN/n) + nNY⋅ln(nNY/n) + 
nNN⋅ln(nNN/n) + mYY⋅ln(mYY/m) + mYN⋅ln(mYN/m) + 
mNY⋅ln(mNY/m) + mNN⋅ln(mNN/m)].    (1a) 

The log likelihood for the constrained model that assumes 
no order effects is defined by 

GC = [(nYY + mYY)⋅ln((nYY + mYY)/(n+m)) + (nYN + 
mNY)⋅ln((nYN + mNY)/(n+m)) + (nNY + mYN)⋅ln((nNY 
+ mYN)/(n+m)) + (nNN + mNN)⋅ln((nNN + 
mNN)/(n+m))].       (1b) 

The χ2 statistic is defined by the difference χ2 = −2⋅(GC – 
GU). The unconstrained model involves (4−1) + (4−1) = 6 
free parameters and the constrained model involves 4−1 = 3 
free parameters, and so the χ2 statistic has df = 3.  

Next we define the χ2 test for the QQ equality. The log 
likelihood for the unconstrained model is defined as  

GU = [ (nYN + nNY)⋅ln((nYN + nNY)/n) + (nYY + nNN)⋅ln((nYY + 
nNN)/n)  

= (mYN + mNY)⋅ln((mYN + mNY)/m) + (mYY + mNN)⋅ln((mYY 
+ mNN)/m)].       (2a) 

The log likelihood for the model constrained by the QQ 
equality equals  

GC = [ (nYN + nNY +mYN + mNY) ⋅ln((nYN + nNY +mYN +  
mNY)/(n + m)) +  (nYY + nNN +mYY + mNN) ⋅ln((nYY + nNN 
+mYM + mNN)/(n + m)) ].      (2b) 

The χ2 statistic is defined by the difference χ2 = −2⋅(GC – 
GU). The unconstrained model involves (2−1) + (2−1) = 2 

free parameters and the constrained model involves 2−1 = 1 
free parameter, and so the χ2 statistic has df = 1.  
3. χ2 tests used in Figure 1. 

First we describe the χ2 test for order effects. The χ2 
statistic for testing an order effect for each of the 26 data 
sets was computed using Equations 1a and 1b defined 
above, producing 26 observed χ2 values. If the null 
hypothesis is correct, these should be distributed according 
to a χ2 distribution with df = 6. Ten categories were 
constructed by computing the 9 category bounds: .5844 
equals the 10th percentile, 1.0052 equals the 20th percentile, 
1.4237 equals the 30th percentile, 1.8692 equals the 40th 
percentile, 2.3660 equals the 50th percentile, 3.9462 equals 
the 60th percentile, 3.6649 equals the 70th percentile, 4.6416 
equals the 80th percentile, and 6.2514 equals the 90th 
percentile. (For example, Pr[χ2(6) < 6.2514 | H0] = .90.) 
These category bounds divide the expected frequency 
distribution (under the null hypotheses) into two 10 equally 
likely categories, with 2.6 expected frequency within each 
of the 10 categories using these cutoffs. Then frequency of 
the 26 observed χ2 values were counted for each category. 
Denote fi as the observed frequency for category i = 1,10.  
The log likelihood for the unconstrained model equals 

GU = ∑i  fi⋅ln(fi /26).    (3a) 
The log likelihood for the expected frequencies according to 
the null hypothesis equals 

GC = ∑i  fi⋅ln(2.6 /26) .    (3b) 
The χ2 statistic is defined by the difference χ2 = −2⋅(GC – 

GU). The unconstrained model involves 10−1 = 9 free 
parameters and the constrained model has no free 
parameters, and so the χ2 statistic has df = 9.  

Next we describe the χ2 test for the QQ equality. The χ2 
statistic for testing the QQ equality for each of the 26 data 
sets was computed using Equations 2a and 2b defined 
above, producing 26 observed χ2 values.  If the null 
hypothesis is correct, these should be distributed according 
to a χ2 distribution with df = 1. Ten categories were 
constructed by computing the 9 category bounds: .0158 
equals the 10th percentile, .0642 equals the 20th percentile, 
.1485 equals the 30th percentile, .2750 equals the 40th 
percentile, .4549 equals the 50th percentile, .7083 equals the 
60th percentile, 1.0742 equals the 70th percentile, 1.6424 
equals the 80th percentile, and 2.7055 equals the 90th 
percentile. (For example, Pr[χ2(1) < 2.7055 | H0] = .90.)  
These category bounds divide the expected frequency 
distribution (under the null hypotheses) into two 10 equally 
likely categories, with 2.6 expected frequency within each 
of the 10 categories using these cutoffs. Then frequency of 
the 26 observed χ2 values were counted for each category. 
Denote fi as the observed frequency for category i = 1,10. 
Then Equations 3a and 3b were used to compute the log 
likelihoods of the unconstrained and constrained models. 
Once again, the χ2 statistic is defined by the difference χ2 = 
−2⋅(GC – GU). The unconstrained model involves 10−1 = 9 
free parameters and the constrained model has no free 
parameters, and so the χ2 statistic has df = 9. 
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