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Abstract

Recent findings show that human inferences and decisions
interfere in ways analogous to incompatible quantum
observables, and conceptual judgments are inseparable in
ways similar to entangled quantum states. This discovery has
led a group of physicists and psychologists to form a new
field called “quantum cognition,” which uses mathematical
principles of quantum theory to explain human cognitive
behavior. The power of this new theoretical approach is
illustrated here by testing an a priori and precise prediction
derived from quantum theory regarding question order effects
commonly observed in survey research. The test of quantum
theory was statistically satisfied across a set of 26 national
surveys on presidential job approval and country satisfaction
in past 10 years. These results suggest that quantum theory,
initially invented to explain order effects on measurements in
physics, provides a powerful prediction for measurement
order effects in social and behavioral sciences too.

The human brain is a powerful and massively complex
neural system. It provides the biological substrate for an
emergent mind capable of producing highly intelligent
cognitive behaviors, such as inferences and decisions. How
this happens remains a topic of intense investigation in
cognitive neuroscience. The possibility that the brain’s
tremendous power arises from parallel computations of
quantum physical neuronal interactions has been raised
(Hameroff & Penrose, 1996; Hagan, Hameroff &
Tuszynski, 2002) but strongly criticized (Tegmark, 2000;
McKemmish, Reimers, McKenzie, Mark & Hush, 2009).
However, what if it is our behavior — rather than our brains
— that follows quantum rules?

Supporting this idea, latest evidence shows that human
inferences and decisions interfere in ways analogous to
incompatible quantum observables (Pothos & Busemeye,
2009; Busemeyer, Wang & Lambert-Mogiliansky, 2008),
and conceptual judgments are inseparable in ways similar to
entangled quantum states (Aerts & Sozzo, 2011). Formal
principles that quantum theorists invented to deal with
properties of complex physical systems provide a powerful
mathematical description of human behavior (Busemeyer &
Bruza, 2012; Khrennikov, 2010). This discovery has led a

group of physicists and psychologists to work together and
form the new field of “quantum cognition,” which uses
mathematical principles of quantum theory to explain
human cognitive behavior. It has successfully accounted for
various puzzling findings in psychological literature,
ranging across perception (Atmanspacher, Filk & Romer,
2004), associative memory (Bruza, Kitto, Nelson &
McEvoy, 2009), conceptual reasoning (Aerts, 2009),
probability judgments (Busemeyer, Pothos, Franco &
Trueblood, 2011), decision making (Yukalov & Sornette,
2011), and strategic game behavior (Lambert-Mogiliansky
& Busemeyer, 2012). It is plausible that the underlying
neural systems follow classical dynamic laws, but the
emergent cognitive behaviors are coarse “quantized”
descriptions (Atmanspacher & Graben, 2007). In fact, more
than half a century ago, founding fathers of quantum theory
speculated that fundamental quantum principles have
implications outside of physics to human cognitive behavior
(Pauli, 1950; Bohr, 1958).

Here we tested a new, a priori and precise prediction
derived from quantum theory regarding question order
effects commonly observed in survey research. This type of
exact prediction is rare in social and behavioral sciences.
The prediction was statistically supported across a set of 26
national surveys in past 10 years on two important public
opinion questions in the U.S.: presidential job approval and
country satisfaction. This surprisingly accurate test
illustrates the theoretical power of our new approach to use
quantum theory as a mathematical tool to explain and
predict human cognitive behaviors. We show that quantum
theory, initially invented to explain order effects of
measurements in physics, provides a powerful prediction for
order effects of measurements in psychology.

Measurement Order Effects

One of the prime paradoxes of physics explained by
quantum mechanics is that the order of measurements
affects the observed statistics. For example, when testing the
direction of spin Y particles, the results depend on whether
the “up-down” direction is tested before versus after the
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“left-right” direction (Sakurai, 1994). In the terminology of
quantum theory, observables like these are defined as
incompatible, and the theory was built on a non-
commutative algebra of operators (Von Neumann, 1932).

Order effects of measurements are not unique to physics.
It has long been recognized that the order of questions can
influence human judgments and decisions (Schuman &
Presser, 1981; Sudman & Bradburn, 1974). For example,
the Pew Research Center conducted a telephone survey
experiment during June 10-14, 2009 with a nationally
representative sample of 1,502 U.S. adults. A random half
of the sample was asked, “Do you approve or disapprove of
the way Barack Obama is handling his job as President?”
followed by “All in all, are you satisfied or dissatisfied with
the way things are going in this country today?” The other
half was asked the exact same questions but in the opposite
order. It turns out that the presidential job approval rate was
63.38% when it was asked first and dropped to 58.58%
when asked second.

Gauging public opinions is an enormously important task
in any democracy. Among many challenges that survey
researchers must manage, question order effects are one of
the most important (Schuman & Presser, 1981; Moore,
2002). A common practice is rotating question orders
between randomly-split samples to balance out question
order effects. Whether the order of two questions produces
significant effects can be easily tested. Denote p(AyBn) as
the probability of agreeing (“yes”) to question A and then
disagreeing (“no”) to question B, and p(BnAy) as the
probability of the same answers when the questions were
asked in the opposite order. Similarly, probabilities of the
remaining response combinations, p(AnBy) and p(ByAn),
are defined. The two order conditions produce a pair of 2x2
contingency tables, which, according to the null hypothesis,
should be equivalent except for sampling error (e.g.,
p(AyBn) = p(BnAy)). Discrepancy from the null hypothesis
is measured by x°. If the null hypothesis is correct, the
statistic should have a y°(3) distribution.

Table 1 shows y° results for two Gallup survey
experiments reported in a seminal article on question order
effects (Moore, 2002). Each sampled around 1,000 U.S.
adults using the split sample paradigm. In the first poll,
people were asked whether Bill Clinton was honest and
trustworthy, and whether Al Gore was honest and
trustworthy. In the second poll, people were asked whether
white people dislike black people, and whether black people
dislike white people. Each 2x2 contingency table in Table 1
summarizes the observed proportions for the four response
combinations in one question order. As shown by the % test
on the order effects, both experiments produced large order
effects with strikingly different patterns. Now we come
backto the presidential job approval and country satisfaction
questions. Is there a robust order effect for this pair of
important public opinion questions? To examine this, we
obtained from the Pew Research Center all its survey
experiments that included this pair of questions in past 10

Table 1: Observed proportions for each order condition,

and ” tests for testing order effects and the QQ equality.
See Appendix on the ¥’ tests.

Observed proportions in the two different question orders

Clinton-Gore ‘White-Black

Gy Gn By Bn
Cy 4899 .0447 Wy 3987 .0174
Cn 1767 .2886 Wn 1612 4227
Gore-Clinton Black-White
Cy Cn Wy Wn
Gy .5625 1991 By 4012 .0597
Gn .0255 .2130 Bn 1379 4012

Discrepancy tests

Order effects %2 (3) = 10.14, p < .05 %2 (3) = 73.04, p < .001

g--.003 q--02
2 (1)=.01,p=91 2 (1)= 56,p = 46

QQ equality

years. There are 26 surveys in total, with a nationally
representative sample between 815 and 3,006 U.S. adults (M
= 1,644, SD = 422.24). Of each sample in each survey, a
random half was asked the presidential job approval
question first while the other half was asked the country
satisfaction question first. The y” test indicates significant
question order effects across the 26 surveys (see Figure 1).

m x2 for testing order effects
x2 for testing QQ equality

The expected frequency
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Figure 1: %’ frequency distributions for testing the order
effects and the QQ equality. The navy bars show the
observed frequencies of 7y’ values for order effects
distributed across 10 categories separated at 9 deciles (.1, .2,
3, .4,.5,.6,.7, .8, .9); the green bars show those for the QQ
equality test; the dotted line shows the expected frequency
by the null hypothesis. The observed frequency distribution
of order effects significantly differs from the expected
frequency (x°(9) = 37.675, p < .0001), but that of the QQ
equality is not ()°(9) = 9.5485, p = .3935). So, as predicted
by the quantum model, there is a significant measurement
order effects but the QQ equality holds across the 26
nationals surveys. See Appendix on the % tests.

A Quantum Model for Question Order Effects

It would be a speculative leap, however, to think that
quantum theory can be applied to human behavior simply
because the behavior displays measurement orders effects.
Indeed, quantum models of cognition need to be rigorously
tested. A precise and empirically testable prediction has
been derived from a quantum model for the question order
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experimental paradigm (Busemeyer & Bruza, 2012; Wang
& Busemeyer, in press). The model is simple, intuitive, but
general. First, as illustrated in Figure 2, a person’s prior
belief state is represented by a unit length vector (denoted
by S) within an N-dimensional vector space. This use of
feature vectors to represent belief or knowledge is consistent
with many other cognitive models of memory. Second, each
answer to a question is represented by a subspace within the
vector space. Each subspace corresponds to a projector (see
Figure 2). Denote Py as the projector corresponding to
agreement to a question, and /-Py is the projector
corresponding to disagreement to the question, where 7 is
the identity operator. Third, how to compute response
probabilities in quantum models? For example, following
quantum probability rules, the probability of agreeing to
question A4 and then disagreeing to question B equals the
squared length of the result obtained by sequentially
projecting the prior belief state on the subspace for agreeing
to A and then on the subspace for disagreeing to B, that is,
p(AyBn) = |[(I-Pg)P,S|]’. If the subspaces for the two
questions are incompatible (i.e., not spanned by a common
basis), then their projectors are non-commutative (i.e., PgP,
= P,Pp), and question order effects are predicted to occur.

An N-dimentional vector space

0.2~ Projector Px®
[]

Belief state vector S

0.15 —

Event X subspace

Projection Px*S

Figure 2: An illustration of basic quantum principles used
in the question order model. The figure illustrates a simple
3-dimensional vector space, but the space can be arbitrarily
high-dimensional. The probability of agreeing to question X
is the squared length of the projection Px*S obtained by
projecting the belief state S to the X-Y plane representing
the subspace for agreeing to question X. If question X was
asked after another question, the belief state would have
already been changed by answering the preceding question,
and the probability of agreeing to question X (conditioned
on the preceding answer) becomes the squared length of the
result obtained by projecting the adjusted belief state on the
subspace for question X.

This model makes an a priori and precise prediction,
named the Quantum Question (QQ) equality (see Appendix

for proof): [p(AyBn)+p(AnBy)] - [p(ByAn)+p(BnAy)] = 0.
Intuitively, this means, the probability of having different
responses to the two questions (e.g., saying “yes” to one and
“no” to the other) should remain the same across the two
question orders. As shown in the proof, this equality must
hold for any belief state and any pair of projectors in any
high-dimensional vector space. This precise prediction can
be easily tested empirically: if it holds, the difference in
observed proportions on the left hand of the QQ equality,
defined as ¢, should not statistically differ from zero as
tested by j for difference in proportions.

The QQ equality prediction was tested using the
aforementioned two Gallup data sets and was supported
with high accuracy (see Table 1). To generalize the results,
it was further tested using the 26 Pew national survey
experiments. If it holds, the observed frequency distribution
of x° (shown as the green bars in Figure 1) should be
distributed according to a y° (1) distribution. Indeed as
predicted, the observed distribution is not significantly
different from the expected distribution (see Figure 1). In
summary, although the 26 Pew studies exhibit significant
questions order effects, there are not significant deviations
from the predicted QQ equality.

Can a Classical Brain Give Rise to Quantum
Cognitive Behaviors?

The surprisingly accurate predictions generated by the
quantum model for question order effects is one example of
an accumulating body of evidence supporting the general
applicability of quantum theory for explaining a wide range
of human cognitive behavior findings that are paradoxical
from a classical probability perspective (Busemeyer &
Bruza, 2012). This, however, leaves a question: can a
classical brain give rise to behavior that follows quantum
principles? Recently, mathematical physicists have provided
a mathematical answer to this puzzle. Essentially, coarse
measurements of a classical dynamic system typically
generate  incompatible  observables that result in
unresolvable  uncertainty  relations and entangled
correlations (beim Graben & Atmanspacher, 2006; beim
Graben, Filk & Atmanspacher, in press). According to
quantum theory, order effects occurs for incompatible
observables.

A key idea is to distinguish “ontic” states (e.g., states of a
dynamic neural network) in a classical phase space from
“epistemic” states (e.g., discrete choices or judgments
across time) obtained from an observable. The mapping
from ontic to epistemic states usually is many to one, where
the epistemic states generated by an observable form a
partition of the ontic phase space. Knowing the epistemic
state does not completely determine the ontic state, but a
sequence of measurements across time refines the partition
of the phase space. In the limit, the partition reaches a
“finest dynamic refinement,” denoted by £. Now suppose
two observables (f,g) produce different finest dynamic
refinements (£, =4,) and neither converge to the identity
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partition, as illustrated in Figure 3. This means that no ontic
state is accessible by a sequence of measurements from
either observable. Then there exists an epistemic state (a set
of ontic states) F, € &7 that determines the value a produced
by the observable f, but the value of the observable g must
remain dispersive. Likewise, there exists an epistemic state

Figure 3. An illustration showing how uncertainty
relations are generated by coarse descriptions of classical
dynamic systems. The underlying classical phase space X is
inconsistently partitioned by two different observables, fand
g. The cell within X that always assigns a value a to the
observable f assigns a range of different possible values
(w,u,z) to the observable g. In this case, there exists an
epistemic state that determines the value a produced by the
observable £, but the value of the observable g must remain
dispersive.

(a set of ontic states) G, €@, that determines the value v
produced by the observable g, but the value of the
observable f remains dispersive. It is impossible to
simultaneously determine the value a from observable f and
the value v from the observable g with arbitrary precision,
so that the two observables are incompatible. Consequently,
the partitions generated by the two incompatible observables
produce incompatible Boolean algebras of events, and the
entire collection forms a partial rather than a complete
Boolean algebra. Quantum theory is specifically suitable to
assign probabilities to events defined on a partial Boolean
algebra.

Discussion

Scientists are still far from understanding how mental
states emerge from the neural substrates. It is too early to
conclude whether or not quantum physics plays a significant
role in neural processing. Nevertheless, even if the brain is
classical, the ubiquitous nature of incompatible observables
provides a good reason to consider using quantum theory as
a mathematical tool for predicting human behavior
(Busemeyer & Bruza, 2012; Khrennikov, 2010). As our
quantum question order model encapsulates and illustrates,
at least four motivations drives the development of this new
field of quantum cognition. (a) Judgments and decisions are

not simply read out from memory, but rather, they are
constructed from the cognitive state for the question at
hand; and (b) drawing a conclusion from one judgment or
decision changes the context and disturbs the cognitive
system, which then (c) affects the next judgment or
decision, producing order effects, so that (d) human
judgments and decisions do not obey the commutative rule
of Boolean logic. If we replace “judgments or decisions”
with “physical measurements” and replace “cognitive
system” with “physical system,” then these are exactly the
same reasons that forced physicists to develop quantum
theory in the first place. Traditionally, quantum theory has
rarely been applied outside of physics, but now a growing
number of researchers are successfully using it to explain
human cognitive behavior.
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Appendix

1. Proof of the QQ equality.

Here we briefly introduce the basic axioms of quantum
theory and then derive the QQ equality. We use the Dirac
bracket notation so that (S|7) represents the inner product
between two vectors. According to quantum theory, events
represented as subspaces of a Hilbert space. Corresponding
to each event A there is a orthogonal projector P,. The state
of a quantum system is represented by a unit length vector S
within the Hilbert space. The probability of event A equals
the squared length of the projection p(A) = ||[PS|]>. If event
A is observed, then the state is updated according to Liider’s
rule SA = PAS/HPASH

Define S as the initial state. Denote the projector for
saying yes to question C as P¢ and denote P; as the

projector for saying yes to question G. We start by
expanding the probability for answering “yes” to question
C:
IPc -S| = |[Pc LS| =||Pc (PG + (I-Pg))S||* =||Pc -Pg -S
+ Pc- (I-Pg)-S|I*
= |Pc ‘P S| + ||Pc I-Pg)S|* + (S|-Pg ‘Pc Pc
“(I-Pg)|S) + (S|(I-Pg)-Pc -Pc P |S)
= |Pc ‘PG S|’ + |[Pc (I-Pg)'SI + (S|Pg “Pc -Pc
(I-Pg)|S) + (S|"Pg "Pc "Pc -(I-Pg)|S)*
= ||P¢ ‘Pg -S|I* + ||Pc ‘(I-Pg)-S|* + 2-Re[(S|Pg -Pc -Pc
(I-Pg)S)]
= ||[Pc PG S|’ + ||Pc ‘I-Pg)S|’ + 2:Re[(S|Pg “Pc
(-PR)S)],
and the latter follows from the idempotent property of
projectors. (The symbol x* used in the above derivation
refers to the complex conjugate of x.) Define the total
probability to say yes to question C when G was asked first
as
TP =|\Pg S|P “[|Pc Scl* H|P- *SP “[|Pc -S-ql
=||Pc -Pg -S| + ||Pc -(I~P)-S]I".

An order effect for question C when G was asked first
expressed as

Cc = TP¢ - ||Pc-S|PF =-2 Re[(S|Pg "Pc -(I-Pg)|S)].

Immediately we see that if P and Pc commute so that
Pg‘PC = Pc‘PG thenpg‘Pc’(I—Pg) :Pc‘Pg’(I—Pg):O
and we predict NO order effect. Thus non-commuting
projectors are a necessary condition for order effects. Now
let us re-examine

Cc= TPc - ||Pc-SIPF = -2 Re[(S|Pg "Pc -(I-Pg)|S)].

= =2-Re[(S|Pg *P(lS) - (S|Pg *Pc “PglS)]

= —2'Re[(S|Pg “PclS) - ||Pc Pg -S|’]

= -2Re[(S|Pg -PciS)] + 2:|Pc P -S|I

= 2:||Pg -S|*|IPc Sqll* = 2-Re[(S|Pg “PdS)] -

In general, the inner product is a complex number which
always can be expressed as (S|P¢ ‘P(S) =
[(S|PgPc|S)|-[cos(¢) + i-sind]. The real part equals Re[(S|P¢
PdlS)] = (S|Pg -Pc|S)|-cos(¢p). By defining the ratio

R = [S|Pg -PcIS) / (|Pc -SI|||Pg -SI)),
then according to the Cauchy-Schwarz inequality, 0 < R < 1.
Finally we can express

Ce = TP —|[Pc S = 2{|Pc -Pg *SIF - 2:R-cos(®)|Pe

S|P -S|
=2(|Pg ‘S||2'||PC 'SG||2 = 2:6/(|Pc S]|"[|Pg Sl
with 8 = R-cos(¢) and -1 = 6 < +1, which is the similarity
index referred to in the main text. Similarly, the order effect
for question G when C was asked first equals

Co = TP6 - |Pg *SIF = 2|Pg -Pc SIF = 2-Re[(SIPc

‘Pg|S)], but Re[(S|P¢ -PglS)] = Re[(S|Pg -P(IS)]
so that

Co = 2||PcS|[*|Pg *Scll* = 2:6°(|Pc “S|I|Pg -S]I-

These two order effects share the same term, 2-0-||P¢ -S||'||Pg
-S||, and therefore together they imply the relation
0= (2|PcPq -S|’ - Cc) = (21|P6Pc -S| - Co)
= (2|PcPg S|’ =||PcPg *S|* = ||[PcP-aSI* + ||Pc -SI) -
(2||P6Pc -S| = ||P6Pc -S| - ||PeP-c'SI* + ||Pg *SI)
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= (|PcPg S| - IPcP-gS|* + |[Pc *SIF) - (|P6Pc -S| -
IPeP-c-S|I* + [|Pg SII°)
=[PP S| - ||IPcP-6:SI* + (|PeSdl* + |[P-c-SclP)||Pc
Sl = [IPePc SIF = [IPP-cSI* + (IPcSell* +
IP--S6ll*)(|Pg -S|* ]
= (|PcPc ‘S| - |PcP-SI + |[Pe:SAPIIPc S +
IP_cSc|’IPc -SIP) - (IPePc “SI? - |PeP-cSIP +
1PcSall(1Pg -S| + [|P-c*Scl*|| Pg -SII*)
= (IPcPg S|P - |IPcP-'S|* + ||PPc “S|* +|P-cPc -SIF)
~ (IP6Pc S|’ - ||PGP-cSI? + |[PcPg S| +|P-cPg
“S|)
= (|P-cPc -SIP
IP6P-c'S|)
= (IP-cPc S + |[PeP-cSIP) - (IP-cPe S +
IPcP-gS||*) =0. Q.E.D.
The last line is the QQ equality expressed as quantum
probabilities.
2. y* tests used in Table 1.

First we present the xz test for order effects. Define nyy as
the frequency of saying “yes” to question C when C was
asked first and saying “no” to question G when G was asked
second, and the other combinations of answers are defined
s1m11ar1y Define n = nyy + nyy + nyy + nyn. Define Mmyy as
the frequency of “yes” to question G when G was asked first
and “no” to question C when C was asked second, and the
other combinations of answers are defined similarly. Define
m = myy + myy + myy T mpyy. The IOg likelihood for the
unconstrained model that allows order effects is defined by

GU = [i’lyy‘]i’l(l’lyy/}’l) + nYN'ln(nYN/n) + I’lNy'll’l(nNy/I’l) +

nyyvIn(nyy/n) + myyin(myy/m) + myy In(myy/m) +

myy In(myy/m) + myy-In(myn/m)]. (1a)
The log likelihood for the constrained model that assumes
no order effects is defined by

Ge = [(nyy + myp)in((nyy + myp)/(ntm)) + (nyy +

myy)-In((nyy + myy)/(n+m)) + (nyy + myy)-In((nyy

+ my)/(ntm)) + (mww + mw)in((ny +

myy)/(n+m))]. (1b)
The i’ statistic is defined by the difference %> = -2+(G¢ —
Gy). The unconstrained model involves (4-1) + (4-1) = 6
free parameters and the constrained model involves 4-1 =3
free parameters, and so the y” statistic has df = 3.

Next we define the y* test for the QQ equality. The log
likelihood for the unconstrained model is defined as

Gu = [ (nyy + any) In((nyy + nyy)/n) + (nyy + nyy)-In((nyy +

— IPcPSIP) - (IPcPs -S| -

I’lNN)/}’l)
= (myy + myy) In((myy + myy)/m) + (myy + myn)-In((myy
+ myy)/m)]. (2a)

The log likelihood for the model constrained by the QQ
equality equals
Ge = [ (nyy + nyy Tmyy + myy) -In((nyy + nyy Tmyy +
myy)/(n +m)) + (nyy+ nyy Tmyy + myy) -In((nyy + nyy
+mYM + mNN)/(n + m)) ] (2b)
The i’ statistic is defined by the difference %> = -2+(G¢ —
Gy). The unconstrained model involves (2-1) + (2-1) = 2

free parameters and the constrained model involves 2-1 = 1
free parameter, and so the Xz statistic has df = 1.
3. y* tests used in Figure 1.

First we describe the y* test for order effects. The y°
statistic for testing an order effect for each of the 26 data
sets was computed using Equations la and 1b defined
above, producing 26 observed y* values. If the null
hypothesis is correct, these should be distributed according
to a y° distribution with df = 6. Ten categories were
constructed by computing the 9 category bounds: .5844
equals the 10" percentile, 1.0052 equals the 20™ percentile,
1.4237 equals the 30™ percentile, 1.8692 equals the 40™
percentile, 2.3660 equals the 50™ percentile, 3.9462 equals
the 60™ percentile, 3.6649 equals the 70™ percentile, 4.6416
equals the 80" percentile, and 6.2514 equals the 90"
percentile. (For example, Pr[x2(6) < 6.2514 | Ho] = .90.)
These category bounds divide the expected frequency
distribution (under the null hypotheses) into two 10 equally
likely categories, with 2.6 expected frequency within each
of the 10 categories using these cutoffs. Then frequency of
the 26 observed y” values were counted for each category.
Denote f; as the observed frequency for category i = 1,10.
The log likelihood for the unconstrained model equals

Gu =73, frin(f; 126). (3a)
The log likelihood for the expected frequencies according to
the null hypothesis equals

Gc =D, f+In(2.6 /26) . (3b)

The y” statistic is defined by the difference % = -2+(G¢ —
Gy). The unconstrained model involves 10-1 = 9 free
parameters and the constrained model has no free
parameters, and so the y” statistic has df=9.

Next we describe the y” test for the QQ equality. The
statistic for testing the QQ equality for each of the 26 data
sets was computed using Equations 2a and 2b defined
above, producing 26 observed x> values. If the null
hypothesis is correct, these should be distributed according
to a y° distribution with df = 1. Ten categories were
constructed by computing the 9 category bounds: .0158
equals the 10" percentile, .0642 equals the 20™ percentile,
.1485 equals the 30™ percentile, .2750 equals the 40™
percentile, .4549 equals the 50™ percentile, .7083 equals the
60™ percentile, 1.0742 equals the 70™ percentile, 1.6424
equals the 80" percentile, and 2.7055 equals the 90"
percentile. (For example, Pr[xz(l) < 2.7055 | Ho] = .90.)
These category bounds divide the expected frequency
distribution (under the null hypotheses) into two 10 equally
likely categories, with 2.6 expected frequency within each
of the 10 categories using these cutoffs. Then frequency of
the 26 observed y* values were counted for each category.
Denote f; as the observed frequency for category i = 1,10.
Then Equations 3a and 3b were used to compute the log
likelihoods of the unconstrained and constrained models.
Once again, the y” statistic is defined by the difference y* =
-2+(G¢ — Gy). The unconstrained model involves 10-1 =9
free parameters and the constrained model has no free
parameters, and so the y” statistic has df=9.
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