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Abstract 
Individuals make decisions under uncertainty every day based 
on incomplete information concerning the potential outcome 
of the choice or chance levels. The choices individuals make 
often deviate from the rational or mathematically objective 
solution. Accordingly, the dynamics of human decision-
making are difficult to capture using conventional, linear 
mathematical models. Here, we present data from a two-
choice task with variable risk between sure loss and risky loss 
to illustrate how a simple nonlinear dynamical system can be 
employed to capture the dynamics of human decision-making 
under uncertainty (i.e., multi-stability, bifurcations). We test 
the feasibility of this model quantitatively and demonstrate 
how the model can account for up to 86% of the observed 
choice behavior. The implications of using dynamical models 
for explaining the nonlinear complexities of human decision-
making are discussed, as well as the degree to which 
nonlinear dynamical systems theory might offer an alternative 
framework for understanding human decision-making 
processes. 

Keywords: Decision-making; Complex Systems; Dynamical 
Systems Modeling; Risky Choice; Multi-stability; Phase 
Transitions. 

Introduction 
Decision-making is part of almost everything humans do. 
Decisions can be commonplace or trivial but can also have 
lifelong consequences. Therefore, it is important to 
understand how individuals make decisions and how 
various factors play a role in decision-making processes. 
One such factor is uncertainty, which occurs in situations 
where there is limited information, ambiguous information, 
or unreliable information. Another factor is risk, which is 
different from uncertainty and can be defined as 
‘probabilized’ uncertainty (Etner, Jeleva, & Tallon, 2010).  

Johnson and Busemeyer (2010) distinguish three major 
streams of development in decision theory: normative 
research, descriptive research, and the computational 
approach. While the normative approach defines what 
would be the optimal decision in a given situation, 
descriptive research describes how humans actually decide. 
For example, this approach has lead to the insight that 
individuals are sensitive to framing. When a decision is 
framed in terms of potential loss, the majority of 
participants avoid taking risk, but when the same decision is 
framed in terms of potential gain, the majority of 

participants do take risk (Tversky & Kahneman, 1974). In 
another study, Kahneman and Tversky (1979; 1983) showed 
that risks with low probabilities are either grossly 
overweighed, or completely neglected, and that there is 
large heterogeneity among individuals. Specifically, 
individuals show more variability in deciding about 
potential loss than potential gain (Tversky & Kahneman, 
1981). These examples suggest that human decision-making 
behavior under uncertainty can well be described using a 
nonlinear, dynamic narrative; individual decision behavior 
is highly context-specific, unstable, and heterogeneous.  

The aim of this article is therefore to investigate the 
feasibility of extending current efforts in decision science 
towards a nonlinear, dynamical approach.  

Decision-Making and Multi-Stability 
Heterogeneity, multi-stability, and context-sensitivity in 
general, are all strong indications that decision-making 
under uncertainty is characterized by nonlinear dynamics. A 
multi-stable system can, for the same input, settle in more 
than one possible internal stable state. A possible 
consequence of multi-stability is hysteresis, which is the 
phenomenon whereby a system’s immediate history 
influences the current state of the system. Sir James Alfred 
Ewing first coined the term hysteresis while observing the 
phenomenon in magnetic materials (Ewing, 1881).  

Figure 1A displays hysteresis in the magnetization and 
demagnetization of a magnet as a result of varying strength 
of the magnetic force. Depending on the direction of change 
of the magnetic field, the change from magnetization in one 
direction to the opposite direction occurs at a different 
moment. The system has a primitive form of memory, and 
remains in an existing stable state longer than expected. The 
opposite of hysteresis, reversed hysteresis, can also occur in 
multi-stable systems. Rather than remaining in the existing 
stable state longer (as with hysteresis), the system changes 
to another stable state sooner. 

Hysteresis and reversed hysteresis are important 
indications of nonlinearity (Kelso, 1995). Hysteresis in 
behavioral dynamics has been found in body-scaled 
transitions like grasping of objects (Richardson, Marsh, & 
Baron, 2007; Lopresti-Goodman, Turvey, & Frank, 2011), 
speech categorization (Tuller, Case, Ding, & Kelso, 1994), 
perception of whether a slanted surface supports upright 
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standing (Fitzpatrick, Carello, Schmidt, & Corey, 1994), 
and problem-solving (Stephen, Boncoddo, Magnuson, & 
Dixon, 2009).  
 

 
 

Figure 1: Hysteresis in magnets (A) and risky choice (B). 
A) A magnet is magnetized by a magnetizing force H, into 

direction B (state I). If the strength of H is then slowly 
decreased, the saturation of the magnet will change until it 
becomes fully magnetized into the opposite direction –B 

(state II). If H is increased again, the change towards 
saturation in the positive direction B happens at a different 
value for the strength of the magnetic force H. B) See text. 

 
In order to test for hysteresis and reversed hysteresis in 

decision-making, we will adopt a standard model of risky 
decision behavior with the implicit assumption that real-
world decisions under uncertainty have the same properties 
as a monetary gamble (Hertwig & Erev, 2009). Figure 2 
displays a typical example of the type of monetary gamble 
researchers use to study risky decision behavior; the choice 
between a sure option A, and a risky option B (Kahneman et 
al., 1981). Choice A and B have the same expected values, 
thus from a rational choice perspective, they are equivalent. 

 
 
 
 

Figure 2: Example of a risky choice.  

This kind of gamble, hereafter called risky choice, can be 
formulated in terms of potential loss (as in the example 
above) or in terms of potential gain. For the remainder of 
this article, we will focus on loss, as potential loss is 
expected to maximize the variability among participants. 
The parameters in a risky choice are the probability to lose 
P, and the values of R and S. The outcome is either a risk-
seeking choice for R or a risk-avoiding choice for S.  

Finding hysteresis or reversed hysteresis in risky choice 
behavior will provide evidence that decision-making under 
uncertainty is indeed characterized by nonlinear dynamics. 

Sequential Risky Choice 
Two key components to finding hysteresis or reversed 
hysteresis in risky choice are to (1) change the context in 
two opposite directions, and (2) do this in a systematic way. 
It is necessary to find an input parameter for which, at 
different values, the system’s output can have opposite, or at 
least, qualitatively different values. In risky choice, the key 
parameter that drives the choice between risk-seeking and 
risk-avoiding behavior is the amount of risk that is present 
in R. There are several ways to vary the amount of risk in R; 
we have opted to manipulate the value of the risky loss (in 
$, a high value of R corresponds with a high risk). Only 
when the value of R is first increased and then decreased or 
vice versa, there will be an opportunity to observe hysteresis 
and/or reversed hysteresis. A sequential risky choice task is 
therefore a sequence of consecutive risky choices between S 
and R1, in which the value of R is either increased or 
decreased in a step-wise fashion. 

In a sequential choice task, hysteresis looks like this: A 
decision-maker is presented with a risky choice where the 
risk in R is minimal (relative to S), and chooses R. Next, the 
decision-maker is presented with a second risky choice, in 
which the risk in R is slightly higher. Next, another risky 
choice occurs that is even riskier, and so on. All the while 
the decision-maker continues choosing R. Then, at some 
switch-point (see definition below), when the risk in R has 
become too high, the decision-maker will switch to 
choosing S and continue to do so until the risk in R is 
maximal (relative to S). Then, the whole process is reversed 
by decreasing the risk in R again, causing the decision-
maker to switch back from choosing S to choosing R at 
another switch-point. If the second switch occurs for a lower 
risk in R than the first, we have found an indication of 
hysteresis. If the second switch occurs for a higher risk in R 
than the first, we have found an indication of reversed 
hysteresis (see also figure 1B). 

Method 
Participants and Design Thirty-six undergraduate students 
from the University of Cincinnati were presented with three 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Note that objectively, in each risky choice, S is the better choice 
as soon as the sure loss of S is lower than the expected value of R, 
while R is the better choice as soon as the expected value of R 
becomes lower than the sure loss of S. 

Choose between: 
A. a sure loss of $750 
B. 75% chance to lose $1000, and 

25% change to lose nothing 

1511



	
  

sets of sequential risky choices between a risky loss R and a 
sure loss S. In the first and third set, the amount of risk in R 
was systematically varied, either in increasing, and then 
decreasing order (ID), or vice versa (DI). The second set 
contained the same choices in randomized order to mediate 
carry-over effects between the first and third sets. Half of 
the students were presented first with the ID set, followed 
by the random set and the DI set. The other half started with 
the DI set. The value of R ranged from $1500 to $525, with 
increments of $25. The probability to lose this amount P = 
75%, and S = $750. The total amount of choices was 238. 
After completion of the sequential risky choice task, the 
students participated in a short money-free version of the 
balloon analogue risk task (BART), (Lejuez et al., 2002).  

Stimulus/Apparatus All stimuli were variations of the 
example in Figure 2, and contained the values for P, R, and 
S. In total, 40 different values of R (ranging from $525 to 
$1500 with increments of $25) were presented either on the 
left side of the screen, with the value of S on the right, or 
vice versa. The stimuli were presented on an iMac, and a 
cordless computer mouse (Apple Inc.2) was used to select 
the choices, both were run using PsychToolbox software 
(Brainard, 1997). The BART stimuli were presented on a 
different computer monitor (DellTM) and responses made 
using a standard computer mouse (LogitechTM) were 
recorded using BART software made available online.  

Procedure Participants provided their written consent and 
received instructions about the sequential risky choice task. 
Participants were seated in front of the computer screen that 
displayed the various choices and were instructed to indicate 
their choice preferences using the mouse. After completion 
of the sequential choice task, participants received 
instruction about the BART. They again sat in front of a 
computer screen on which the stimuli were displayed and 
were instructed to respond using the mouse. 

Results 
Choice outcomes of one-fourth (22%) of the participants 
showed no change at all. This is consistent with an earlier 
experiment with a smaller range of risk in R (from $725-
$1175), in which 27% of the participants showed no change.  
 

 
Figure 3: Model changes between choices for R and S. 

Critical change is defined as the situation where a 
participant switches from S (R) to R (S) for the same amount 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 This is an independent publication and has not been authorized, 
sponsored, or otherwise approved by Apple Inc. 
	
  

of risk in the first and second half of an ID or DI sequence. 
Hysteresis is defined as the situation where a participant 

switches from S (R) to R (S) later in the second half on an 
ID or DI sequence. Reversed hysteresis is defined as the 
situation where a participant switches from S (R) to R (S) 

earlier in the first half on an ID or DI sequence. 
 

The remaining 28 participants switched between risk-
seeking and risk-averse choices at least once per sequence 
(M = 3.8 fluctuations3, SD = 3.4). Using an automated 
search algorithm, two switch-points4 per ID and DI 
sequence were determined for each participant. Based on the 
locations of the switch-points, most participants (48%) 
showed critical change, followed by reversed hysteresis 
(39%), and hysteresis (13%), see Figure 3 for details. The 
average value of the risk in R for switches from R to S was 
$1000 (SD = $215), and from S to R, $941 (SD = $174) 
indicating that overall, participants were risk-averse (p < 
0.0001). The distance between the two switch-points for the 
DI and ID sequences was significantly larger compared to 
the random sequences t(27) = 3.61, p = .001, d = .95.	
  

Switching under time-constraint  
22-27% of participants in a sequential risky choice task do 
not show any change at all. A closer look revealed that all of 
these participants were presented with the DI sequence first, 
and consistently chose R. One explanation could be that for 
about one-fourth of participants, the attractor for S is non-
existent. Another explanation is that the initial conditions 
strengthen the attractor for R relative to S such that the 
changing constraints provide too little perturbation to the 
system. A small follow-up study (N = 16) was therefore 
conducted with the only difference being that participants 
were instructed to decide as quickly as possible while still 
using the available information on the screen. It was 
hypothesized that this speed manipulation would destabilize 
the initial strength of the attractor for R. All 16 participants 
switched at least once between S and R (M = 10.8 
fluctuations, SD = 12.5), and the relation between the speed 
manipulation and the absence of ‘no change’ participants is 
significant, χ(1, N = 52) = 4.20, p = .04. The speed 
manipulation increased variability and caused participants to 
be more sensitive to changing risk constraints. This is 
consistent with observations that time pressure influences 
decision-makers’ strategy selection (see Edland & Svenson, 
1993 for a review). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 A fluctuation is defined as each choice that is different from the 
previous choice.	
  
4 A switch-point is defined as the closest fluctuation to the middle 
choice for which; in case of an ID sequence, the number of R 
choices in between this fluctuation and the first S choice in a 
continuous stretch of S choices spanning the middle, is less than 
the number of S in between. In case of a DI sequence, it is the 
other way around. 
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Varying increments of R 
Increasing the value of R in increments of $25 results in a 
high predictability of the choices in the DI and ID 
sequences. This could have mediated the amount of reversed 
hysteresis in our sample. A follow-up study was therefore 
conducted in which the increments were sampled from an 
N(25,1), N(25,2), N(25,4), N(25,8), and N(25,26) 
distribution respectively. The maximum and minimum 
values of R ($525 and $1500) were maintained. Figure 4 
shows the distribution of types of choice behavior for the 
fixed increments (N = 36), and varying increments (N = 50; 
10 each). 

 
Figure 4: Distribution of types of choice behavior for 

varying increments of the value of R. 
 
There is a main effect of sequence type (ID or DI; p < .001), 
and order (DI or ID first, p < .001) on the difference 
between the two switch-points, but not of the amount of 
variability. However, the distribution of the four types of 
change behavior did differ by the amount of variation in the 
increments of R, χ2(12, N = 171) = 28.09, p < .01, with a 
positive trend for the amount of participants that showed 
hysteresis and reversed hysteresis. 

Nonlinear Dynamical Modeling 
Multi-stability in switching behavior is problematic for most 
linear models but can be accounted for by a nonlinear 
dynamical system (e.g. Cho, Jones, Braver, Holmes, & 
Cohen, 2002; Roxin & Ledberg, 2008). A dynamical system 
is a mathematical concept where the time dependence of a 
state variable (a variable that describes a certain quantity of 
a system that we are interested in, like position or 
concentration) is described using a fixed rule. In a nonlinear 
dynamical system, this fixed rule is nonlinear, and the 
system therefore does not satisfy the additivity and 
homogeneity properties that are necessary for linearity. 

Examples of applications of (nonlinear) dynamical 
modeling to human behavior are vision (for example 
Fürstenau, 2006), speech (Kelso, Saltzman, & Tuller, 1986; 
Tuller et al., 1994), language (for example Spivey, 
Grosjean, & Knoblich, 2005), motor and neural dynamics 
(Haken, Kelso, & Bunz, 1985; Schöner & Kelso, 1988, 
Kelso, et al., 1992), and cognition (Bressler & Kelso, 2001). 
Applications of dynamical models to decision-making under 
uncertainty have focused on either micro-level or macro-

level behavioral observations. For example Brown & 
Holmes (2001) modeled a simple choice task using a 
dynamical model of firing rates of neurons. On a macro-
level, we find examples of dynamical models of multi-agent 
decision-making processes (for a brief overview, see Lu, 
Chen & Yu, 2011).  

A One-Dimensional Model of Multi-Stability and 
Hysteresis in Risky Choice 
To model the observed switching between R and S, we 
propose a nonlinear dynamical system that has previously 
been applied to other cases in which individuals switched 
between two different behaviors, and where nonlinear 
phenomena like hysteresis and reversed hysteresis informed 
the use of a nonlinear dynamical model (e.g., Tuller et al., 
1994). Equation 1 gives the potential function of the one-
dimensional model. 

,	
   	
   (1)	
  

where x is the observed choice, k the control parameter, and 
a noise term ξ is added to each choice. 
 A potential function is the integral of the differential 
equation describing the evolution of the state variable x (in 
our case, the observed choice), which means that a 
minimum or maximum of the potential function corresponds 
to a stable state of the system. Our system’s potential 
function therefore reveals the attractor and repeller states, 
to which the system is attracted to or repelled from (see 
Kelso, 1995 and Strogatz, 2000 for more background on 
dynamical systems). The behavior of our dynamical system 
is driven by a control parameter k.  
 

 
Figure 5: Potential landscape for five different values of k. 
Depending on the direction of change, a phase transition 
occurs between the two possible attractors for a critical 

value of k, ±kc. 
 
Figure 5 shows some examples of the shape of the 

potential function, or attractor landscape, for different 
values of k. For a critical value of k, a bifurcation occurs 
(for both k = kc, and k = -kc), causing a phase transition 
between risk-seeking and risk-avoiding choices or vice 
versa. A phase transition occurs for a different value of k, 
depending on the direction of change, which explains 
hysteresis. By defining the two attractor states as the choice 
for R and S respectively, this model thus explains switches 
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between risk-seeking and risk-avoiding choices, as well as 
multi-stability through hysteresis (although not reversed 
hysteresis; see below for a more detailed discussion of 
reversed hysteresis). 

Parameter Selection and Optimization The potential 
function offers a way to simulate sequential choice data. 
The key to modeling the risky choice phenomena is the 
control parameter k, which has to reflect the changing risk in 
R. We propose k as a simple linear function of the risk in R 
at choice j and a baseline individual value, k0, such that 

	
  
kj = k0 - Rj,   (2)   

By sampling k0 from a uniform distribution spanning all 
possible values of k between two extremes, and using Eq. 
(1) and (2), we simulated an entire range of possible choice 
data. The lower boundary for k0 corresponds to the case 
where only the attractor for S exists, regardless of the value 
of the risk in R, and the upper boundary corresponds with 
only one attractor for S. Using a bootstrapped optimization 
with respect to the difference between the simulated and 
empirical choices on the DI and ID sequences of our main 
experiment (no variability in step-size, no speed 
manipulation), we were able simulate 86% of the observed 
choices. The differences in switch-points for reversed 
hysteresis are relatively small compared to the total range of 
values for R (M = $170.45, SD = $183.08). This explains 
that, although the model does not account for reversed 
hysteresis, it generates a high proportion of correct choices.   

Individual Risk Sensitivity A frequently reported result in 
research on decision-making under uncertainty is that 
people have relatively static personality characteristics that 
determine their risk-taking behavior (e.g. Mishra & 
Lalumière, 2011). Accordingly, we hypothesize that k0, the 
individual baseline value of the control parameter k reflects 
risk sensitivity or propensity, and should therefore closely 
relate to participants’ BART scores. Correlation between the 
participants’ BART scores and the optimal values of k0 
however is very low, r(33) = -.15, p = .36 for the ID 
sequences, and r(33) = -.04, p = .81 for the DI sequences. 

 
Modeling Reversed Hysteresis The current model does not 
account for reversed hysteresis, while up to 42% of 
participants show reversed hysteresis in their choice 
behavior. Lopresti-Goodman, Turvey, & Frank (2012) 
provide a way to extend nonlinear dynamical models that 
includes reversed hysteresis using an auto-regulated control 
parameter. Negative auto-regulation forces the dynamical 
system to remain close to the bifurcation line and may 
reflect habituation to the amount of risk presented in the 
choices; rendering the choice for S or R unstable. This 
would also explain why the amount of hysteresis relative to 
reversed hysteresis increases with more variability in the 
increments of R (Figure 4). Larger variability interferes with 

the habituation and diminishes the effect of negative auto-
regulation. 

Discussion 
There are many models of risky choice (see Glöckner & 
Pachur, 2012 for a review). However, in order to account for 
multi-stability, nonlinearity is a necessary assumption. The 
results presented here show multi-stability in risky choice, 
for which we have provided a basic nonlinear dynamical 
model. The model provides a way to explain decision-
making under uncertainty within the framework of 
complexity theory; a relative newcomer to the social 
sciences that offers a promising new perspective on human 
cognition (Van Orden, Holden, & Turvey, 2003). Although 
the current model does not explain reversed hysteresis, it 
does provide a blueprint for a nonlinear dynamical model 
that can capture the entire range of observed choice 
behavior.  

The aim of modeling was to provide a formal description 
of the observed decision-making behavior. Moreover, our 
hope is that identifying the right kind of nonlinear models 
will eventually lead to insights into the underlying processes 
or mechanisms. One of the strengths of the model is that 
multi-stability is an inherent behavior of the nonlinear 
dynamical system, pre-empting the need for weight 
functions or exceptions. The model also provides a starting 
point for theorizing about the psychological processes 
underlying the behavior. The control parameter is a single 
parameter that captures the switching between risk-seeking 
and risk-averse choices. Unexpectedly, however, there was 
no correlation between participants’ BART scores and the 
baseline value of the control parameter, k0. Upon reflection, 
this result is not as surprising after all. Nonlinear dynamical 
systems are especially useful in capturing change and the 
phenomena that are associated with change, like hysteresis. 
The BART however assumes individual risk preference is a 
temporarily static personality trait. The current results 
therefore indicate that risk preference is a highly complex 
and multi-dimensional construct and that the dynamics of 
subsequent risky choice behavior cannot be captured in a 
single measure of risk sensitivity.  
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