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Abstract

Individuals make decisions under uncertainty every day based
on incomplete information concerning the potential outcome
of the choice or chance levels. The choices individuals make
often deviate from the rational or mathematically objective
solution. Accordingly, the dynamics of human decision-
making are difficult to capture using conventional, linear
mathematical models. Here, we present data from a two-
choice task with variable risk between sure loss and risky loss
to illustrate how a simple nonlinear dynamical system can be
employed to capture the dynamics of human decision-making
under uncertainty (i.e., multi-stability, bifurcations). We test
the feasibility of this model quantitatively and demonstrate
how the model can account for up to 86% of the observed
choice behavior. The implications of using dynamical models
for explaining the nonlinear complexities of human decision-
making are discussed, as well as the degree to which
nonlinear dynamical systems theory might offer an alternative
framework for understanding human decision-making
processes.

Keywords: Decision-making; Complex Systems; Dynamical
Systems Modeling; Risky Choice; Multi-stability; Phase
Transitions.

Introduction

Decision-making is part of almost everything humans do.
Decisions can be commonplace or trivial but can also have
lifelong consequences. Therefore, it is important to
understand how individuals make decisions and how
various factors play a role in decision-making processes.
One such factor is uncertainty, which occurs in situations
where there is limited information, ambiguous information,
or unreliable information. Another factor is risk, which is
different from uncertainty and can be defined as
‘probabilized’ uncertainty (Etner, Jeleva, & Tallon, 2010).
Johnson and Busemeyer (2010) distinguish three major
streams of development in decision theory: normative
research, descriptive research, and the computational
approach. While the normative approach defines what
would be the optimal decision in a given situation,
descriptive research describes how humans actually decide.
For example, this approach has lead to the insight that
individuals are sensitive to framing. When a decision is
framed in terms of potential loss, the majority of
participants avoid taking risk, but when the same decision is
framed in terms of potential gain, the majority of

participants do take risk (Tversky & Kahneman, 1974). In
another study, Kahneman and Tversky (1979; 1983) showed
that risks with low probabilities are either grossly
overweighed, or completely neglected, and that there is
large heterogeneity among individuals. Specifically,
individuals show more variability in deciding about
potential loss than potential gain (Tversky & Kahneman,
1981). These examples suggest that human decision-making
behavior under uncertainty can well be described using a
nonlinear, dynamic narrative; individual decision behavior
is highly context-specific, unstable, and heterogeneous.

The aim of this article is therefore to investigate the
feasibility of extending current efforts in decision science
towards a nonlinear, dynamical approach.

Decision-Making and Multi-Stability

Heterogeneity, multi-stability, and context-sensitivity in
general, are all strong indications that decision-making
under uncertainty is characterized by nonlinear dynamics. A
multi-stable system can, for the same input, settle in more
than one possible internal stable state. A possible
consequence of multi-stability is hysteresis, which is the
phenomenon whereby a system’s immediate history
influences the current state of the system. Sir James Alfred
Ewing first coined the term hysteresis while observing the
phenomenon in magnetic materials (Ewing, 1881).

Figure 1A displays hysteresis in the magnetization and
demagnetization of a magnet as a result of varying strength
of the magnetic force. Depending on the direction of change
of the magnetic field, the change from magnetization in one
direction to the opposite direction occurs at a different
moment. The system has a primitive form of memory, and
remains in an existing stable state longer than expected. The
opposite of hysteresis, reversed hysteresis, can also occur in
multi-stable systems. Rather than remaining in the existing
stable state longer (as with hysteresis), the system changes
to another stable state sooner.

Hysteresis and reversed hysteresis are important
indications of nonlinearity (Kelso, 1995). Hysteresis in
behavioral dynamics has been found in body-scaled
transitions like grasping of objects (Richardson, Marsh, &
Baron, 2007; Lopresti-Goodman, Turvey, & Frank, 2011),
speech categorization (Tuller, Case, Ding, & Kelso, 1994),
perception of whether a slanted surface supports upright

1510



standing (Fitzpatrick, Carello, Schmidt, & Corey, 1994),
and problem-solving (Stephen, Boncoddo, Magnuson, &
Dixon, 2009).
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Figure 1: Hysteresis in magnets (A) and risky choice (B).
A) A magnet is magnetized by a magnetizing force H, into
direction B (state I). If the strength of H is then slowly
decreased, the saturation of the magnet will change until it
becomes fully magnetized into the opposite direction —B
(state II). If H is increased again, the change towards
saturation in the positive direction B happens at a different
value for the strength of the magnetic force H. B) See text.

In order to test for hysteresis and reversed hysteresis in
decision-making, we will adopt a standard model of risky
decision behavior with the implicit assumption that real-
world decisions under uncertainty have the same properties
as a monetary gamble (Hertwig & Erev, 2009). Figure 2
displays a typical example of the type of monetary gamble
researchers use to study risky decision behavior; the choice
between a sure option A, and a risky option B (Kahneman et
al., 1981). Choice A and B have the same expected values,
thus from a rational choice perspective, they are equivalent.

Choose between:
A. asure loss of $750
B. 75% chance to lose $1000, and
25% change to lose nothing

Figure 2: Example of a risky choice.

This kind of gamble, hereafter called risky choice, can be
formulated in terms of potential loss (as in the example
above) or in terms of potential gain. For the remainder of
this article, we will focus on loss, as potential loss is
expected to maximize the variability among participants.
The parameters in a risky choice are the probability to lose
P, and the values of R and S. The outcome is either a risk-
seeking choice for R or a risk-avoiding choice for S.

Finding hysteresis or reversed hysteresis in risky choice
behavior will provide evidence that decision-making under
uncertainty is indeed characterized by nonlinear dynamics.

Sequential Risky Choice

Two key components to finding hysteresis or reversed
hysteresis in risky choice are to (1) change the context in
two opposite directions, and (2) do this in a systematic way.
It is necessary to find an input parameter for which, at
different values, the system’s output can have opposite, or at
least, qualitatively different values. In risky choice, the key
parameter that drives the choice between risk-seeking and
risk-avoiding behavior is the amount of risk that is present
in R. There are several ways to vary the amount of risk in R;
we have opted to manipulate the value of the risky loss (in
$, a high value of R corresponds with a high risk). Only
when the value of R is first increased and then decreased or
vice versa, there will be an opportunity to observe hysteresis
and/or reversed hysteresis. A sequential risky choice task is
therefore a sequence of consecutive risky choices between S
and R', in which the value of R is either increased or
decreased in a step-wise fashion.

In a sequential choice task, hysteresis looks like this: A
decision-maker is presented with a risky choice where the
risk in R is minimal (relative to S), and chooses R. Next, the
decision-maker is presented with a second risky choice, in
which the risk in R is slightly higher. Next, another risky
choice occurs that is even riskier, and so on. All the while
the decision-maker continues choosing R. Then, at some
switch-point (see definition below), when the risk in R has
become too high, the decision-maker will switch to
choosing § and continue to do so until the risk in R is
maximal (relative to S). Then, the whole process is reversed
by decreasing the risk in R again, causing the decision-
maker to switch back from choosing S to choosing R at
another switch-point. If the second switch occurs for a lower
risk in R than the first, we have found an indication of
hysteresis. If the second switch occurs for a higher risk in R
than the first, we have found an indication of reversed
hysteresis (see also figure 1B).

Method

Participants and Design Thirty-six undergraduate students
from the University of Cincinnati were presented with three

1 Note that objectively, in each risky choice, S is the better choice
as soon as the sure loss of S is lower than the expected value of R,
while R is the better choice as soon as the expected value of R
becomes lower than the sure loss of S.
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sets of sequential risky choices between a risky loss R and a
sure loss S. In the first and third set, the amount of risk in R
was systematically varied, either in increasing, and then
decreasing order (ID), or vice versa (DI). The second set
contained the same choices in randomized order to mediate
carry-over effects between the first and third sets. Half of
the students were presented first with the /D set, followed
by the random set and the DI set. The other half started with
the DI set. The value of R ranged from $1500 to $525, with
increments of $25. The probability to lose this amount P =
75%, and S = $750. The total amount of choices was 238.
After completion of the sequential risky choice task, the
students participated in a short money-free version of the
balloon analogue risk task (BART), (Lejuez et al., 2002).

Stimulus/Apparatus All stimuli were variations of the
example in Figure 2, and contained the values for P, R, and
S. In total, 40 different values of R (ranging from $525 to
$1500 with increments of $25) were presented either on the
left side of the screen, with the value of S on the right, or
vice versa. The stimuli were presented on an iMac, and a
cordless computer mouse (Apple Inc.?) was used to select
the choices, both were run using PsychToolbox software
(Brainard, 1997). The BART stimuli were presented on a
different computer monitor (Dell™) and responses made
using a standard computer mouse (Logitech™™) were
recorded using BART software made available online.

Procedure Participants provided their written consent and
received instructions about the sequential risky choice task.
Participants were seated in front of the computer screen that
displayed the various choices and were instructed to indicate
their choice preferences using the mouse. After completion
of the sequential choice task, participants received
instruction about the BART. They again sat in front of a
computer screen on which the stimuli were displayed and
were instructed to respond using the mouse.

Results

Choice outcomes of one-fourth (22%) of the participants
showed no change at all. This is consistent with an earlier
experiment with a smaller range of risk in R (from $725-
$1175), in which 27% of the participants showed no change.
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Figure 3: Model changes between choices for R and S.
Critical change is defined as the situation where a
participant switches from S (R) to R (S) for the same amount

2 This is an independent publication and has not been authorized,
sponsored, or otherwise approved by Apple Inc.

of risk in the first and second half of an ID or DI sequence.
Hysteresis is defined as the situation where a participant
switches from S (R) to R (S) later in the second half on an
ID or DI sequence. Reversed hysteresis is defined as the
situation where a participant switches from S (R) to R (S)
earlier in the first half on an ID or DI sequence.

The remaining 28 participants switched between risk-
seeking and risk-averse choices at least once per sequence
(M = 3.8 fluctuations®, SD = 3.4). Using an automated
search algorithm, two switch-points* per ID and DI
sequence were determined for each participant. Based on the
locations of the switch-points, most participants (48%)
showed critical change, followed by reversed hysteresis
(39%), and hysteresis (13%), see Figure 3 for details. The
average value of the risk in R for switches from R to S was
$1000 (SD = $215), and from S'to R, $941 (SD = $174)
indicating that overall, participants were risk-averse (p <
0.0001). The distance between the two switch-points for the
DI and ID sequences was significantly larger compared to
the random sequences #27) =3.61, p =.001, d = .95.

Switching under time-constraint

22-27% of participants in a sequential risky choice task do
not show any change at all. A closer look revealed that all of
these participants were presented with the DI sequence first,
and consistently chose R. One explanation could be that for
about one-fourth of participants, the attractor for S is non-
existent. Another explanation is that the initial conditions
strengthen the attractor for R relative to S such that the
changing constraints provide too little perturbation to the
system. A small follow-up study (N = 16) was therefore
conducted with the only difference being that participants
were instructed to decide as quickly as possible while still
using the available information on the screen. It was
hypothesized that this speed manipulation would destabilize
the initial strength of the attractor for R. All 16 participants
switched at least once between S and R (M = 10.8
fluctuations, SD = 12.5), and the relation between the speed
manipulation and the absence of ‘no change’ participants is
significant, (1, N =52) = 4.20, p = .04. The speed
manipulation increased variability and caused participants to
be more sensitive to changing risk constraints. This is
consistent with observations that time pressure influences
decision-makers’ strategy selection (see Edland & Svenson,
1993 for a review).

3 A fluctuation is defined as each choice that is different from the
previous choice.

4 A switch-point is defined as the closest fluctuation to the middle
choice for which; in case of an ID sequence, the number of R
choices in between this fluctuation and the first S choice in a
continuous stretch of S choices spanning the middle, is less than
the number of S in between. In case of a DI sequence, it is the
other way around.
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Varying increments of R

Increasing the value of R in increments of $25 results in a
high predictability of the choices in the DI and ID
sequences. This could have mediated the amount of reversed
hysteresis in our sample. A follow-up study was therefore
conducted in which the increments were sampled from an
N(25,1), N(25,2), N(25,4), N(25,8), and N(25,26)
distribution respectively. The maximum and minimum
values of R ($525 and $1500) were maintained. Figure 4
shows the distribution of types of choice behavior for the
fixed increments (N = 36), and varying increments (N = 50;
10 each).
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Figure 4: Distribution of types of choice behavior for
varying increments of the value of R.

There is a main effect of sequence type (/D or DI; p <.001),
and order (DI or ID first, p <.001) on the difference
between the two switch-points, but not of the amount of
variability. However, the distribution of the four types of
change behavior did differ by the amount of variation in the
increments of R, )(2(12, N=171)=28.09, p <.01, with a
positive trend for the amount of participants that showed
hysteresis and reversed hysteresis.

Nonlinear Dynamical Modeling

Multi-stability in switching behavior is problematic for most
linear models but can be accounted for by a nonlinear
dynamical system (e.g. Cho, Jones, Braver, Holmes, &
Cohen, 2002; Roxin & Ledberg, 2008). A dynamical system
is a mathematical concept where the time dependence of a
state variable (a variable that describes a certain quantity of
a system that we are interested in, like position or
concentration) is described using a fixed rule. In a nonlinear
dynamical system, this fixed rule is nonlinear, and the
system therefore does not satisfy the additivity and
homogeneity properties that are necessary for linearity.
Examples of applications of (nonlinear) dynamical
modeling to human behavior are vision (for example
Fiirstenau, 2006), speech (Kelso, Saltzman, & Tuller, 1986;
Tuller et al., 1994), language (for example Spivey,
Grosjean, & Knoblich, 2005), motor and neural dynamics
(Haken, Kelso, & Bunz, 1985; Schoner & Kelso, 1988,
Kelso, et al., 1992), and cognition (Bressler & Kelso, 2001).
Applications of dynamical models to decision-making under
uncertainty have focused on either micro-level or macro-

level behavioral observations. For example Brown &
Holmes (2001) modeled a simple choice task using a
dynamical model of firing rates of neurons. On a macro-
level, we find examples of dynamical models of multi-agent
decision-making processes (for a brief overview, see Lu,
Chen & Yu, 2011).

A One-Dimensional Model of Multi-Stability and
Hysteresis in Risky Choice

To model the observed switching between R and S, we
propose a nonlinear dynamical system that has previously
been applied to other cases in which individuals switched
between two different behaviors, and where nonlinear
phenomena like hysteresis and reversed hysteresis informed
the use of a nonlinear dynamical model (e.g., Tuller et al.,
1994). Equation 1 gives the potential function of the one-

dimensional model.

2 4
X

X
mhe-2 2t g, 1
V(x) = kx > 4+§ (1)

where x is the observed choice, k the control parameter, and
a noise term ¢ is added to each choice.

A potential function is the integral of the differential
equation describing the evolution of the state variable x (in
our case, the observed choice), which means that a
minimum or maximum of the potential function corresponds
to a stable state of the system. Our system’s potential
function therefore reveals the attractor and repeller states,
to which the system is attracted to or repelled from (see
Kelso, 1995 and Strogatz, 2000 for more background on
dynamical systems). The behavior of our dynamical system
is driven by a control parameter .
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Figure 5: Potential landscape for five different values of k.
Depending on the direction of change, a phase transition
occurs between the two possible attractors for a critical
value of k, k..

Figure 5 shows some examples of the shape of the
potential function, or attractor landscape, for different
values of £. For a critical value of &, a bifurcation occurs
(for both k = k., and k = -k.), causing a phase transition
between risk-seeking and risk-avoiding choices or vice
versa. A phase transition occurs for a different value of %,
depending on the direction of change, which explains
hysteresis. By defining the two attractor states as the choice
for R and S respectively, this model thus explains switches
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between risk-seeking and risk-avoiding choices, as well as
multi-stability through hysteresis (although not reversed
hysteresis; see below for a more detailed discussion of
reversed hysteresis).

Parameter Selection and Optimization The potential
function offers a way to simulate sequential choice data.
The key to modeling the risky choice phenomena is the
control parameter k, which has to reflect the changing risk in
R. We propose k as a simple linear function of the risk in R
at choice j and a baseline individual value, &, such that

ki =ko- R, 2

By sampling k, from a uniform distribution spanning all
possible values of k between two extremes, and using Eq.
(1) and (2), we simulated an entire range of possible choice
data. The lower boundary for k, corresponds to the case
where only the attractor for S exists, regardless of the value
of the risk in R, and the upper boundary corresponds with
only one attractor for S. Using a bootstrapped optimization
with respect to the difference between the simulated and
empirical choices on the DI and ID sequences of our main
experiment (no variability in step-size, no speed
manipulation), we were able simulate 86% of the observed
choices. The differences in switch-points for reversed
hysteresis are relatively small compared to the total range of
values for R (M = $170.45, SD = $183.08). This explains
that, although the model does not account for reversed
hysteresis, it generates a high proportion of correct choices.

Individual Risk Sensitivity A frequently reported result in
research on decision-making under uncertainty is that
people have relatively static personality characteristics that
determine their risk-taking behavior (e.g. Mishra &
Lalumiére, 2011). Accordingly, we hypothesize that &, the
individual baseline value ofthe control parameter & reflects
risk sensitivity or propensity, and should therefore closely
relate to participants’ BART scores. Correlation between the
participants’ BART scores and the optimal values of &
however is very low, r(33) =-.15, p = .36 for the ID
sequences, and 7(33) = -.04, p = .81 for the DI sequences.

Modeling Reversed Hysteresis The current model does not
account for reversed hysteresis, while up to 42% of
participants show reversed hysteresis in their choice
behavior. Lopresti-Goodman, Turvey, & Frank (2012)
provide a way to extend nonlinear dynamical models that
includes reversed hysteresis using an auto-regulated control
parameter. Negative auto-regulation forces the dynamical
system to remain close to the bifurcation line and may
reflect habituation to the amount of risk presented in the
choices; rendering the choice for S or R unstable. This
would also explain why the amount of hysteresis relative to
reversed hysteresis increases with more variability in the
increments of R (Figure 4). Larger variability interferes with

the habituation and diminishes the effect of negative auto-
regulation.

Discussion

There are many models of risky choice (see Glockner &
Pachur, 2012 for a review). However, in order to account for
multi-stability, nonlinearity is a necessary assumption. The
results presented here show multi-stability in risky choice,
for which we have provided a basic nonlinear dynamical
model. The model provides a way to explain decision-
making under uncertainty within the framework of
complexity theory; a relative newcomer to the social
sciences that offers a promising new perspective on human
cognition (Van Orden, Holden, & Turvey, 2003). Although
the current model does not explain reversed hysteresis, it
does provide a blueprint for a nonlinear dynamical model
that can capture the entire range of observed choice
behavior.

The aim of modeling was to provide a formal description
of the observed decision-making behavior. Moreover, our
hope is that identifying the right kind of nonlinear models
will eventually lead to insights into the underlying processes
or mechanisms. One of the strengths of the model is that
multi-stability is an inherent behavior of the nonlinear
dynamical system, pre-empting the need for weight
functions or exceptions. The model also provides a starting
point for theorizing about the psychological processes
underlying the behavior. The control parameter is a single
parameter that captures the switching between risk-seeking
and risk-averse choices. Unexpectedly, however, there was
no correlation between participants’ BART scores and the
baseline value of the control parameter, ky. Upon reflection,
this result is not as surprising after all. Nonlinear dynamical
systems are especially useful in capturing change and the
phenomena that are associated with change, like hysteresis.
The BART however assumes individual risk preference is a
temporarily static personality trait. The current results
therefore indicate that risk preference is a highly complex
and multi-dimensional construct and that the dynamics of
subsequent risky choice behavior cannot be captured in a
single measure of risk sensitivity.
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