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Abstract

We study structural properties of a turn-based game called the
Marble Drop Game, which is an experimental paradigm de-
signed to investigate higher-order social reasoning. We show
that the cognitive complexity of game trials, measured with
respect to reaction time, can be predicted by looking at the
structural properties of the game instances. In order to do this,
we define complexity measures of finite dynamic two-player
games based on the number of alternations between the game
players and on the pay-off structure. Our predictions of re-
action times and reasoning strategies, based on the theoreti-
cal analysis of complexity of Marble Drop game instances, are
compared to subjects’ actual reaction times. This research il-
lustrates how formal methods of logic and computer science
can be used to identify the inherent complexity of cognitive
tasks. Such analyses can be located between Marr’s computa-
tional and algorithmic levels.
Keywords: cognitive difficulty; strategic games; higher-order
social reasoning; theory of mind

Introduction
In recent years, questions have been raised about the applica-
bility of logic and computer science to model cognitive phe-
nomena (see, e.g., Frixione, 2001; Stenning and Van Lambal-
gen, 2008; Van Rooij, 2008). One of the trends has been to
apply formal methods to study the complexity of cognitive
tasks in various domains, for instance: syllogistic reasoning
(Geurts, 2003), problem solving (Gierasimczuk et al., 2012),
and natural language semantics (Szymanik and Zajenkowski,
2010). It has been argued that with respect to its explanatory
power, such analysis can be located between Marr’s (1983)
computational and algorithmic levels.

More recently, there has also been a trend to focus on sim-
ilar questions regarding social cognition, more specifically,
theory of mind. Especially, higher-order reasoning of the
form ‘I believe that Ann knows that Peter thinks . . . ’ became
an attractive topic for logical analysis (Verbrugge, 2009).
Here, the logical investigations often go hand in hand with
game theory (see, e.g., Osborne and Rubinstein, 1994). In
this context, one of the common topics among researchers in
logic and game theory has been backward induction (BI), the
process of reasoning backwards, from the end of the game,
to determine a sequence of optimal actions (Van Benthem,
2002). Backward induction can be understood as an inductive
algorithm defined on a game tree. The BI algorithm tells us
which sequence of actions will be chosen by agents that want
to maximize their own payoffs, assuming common knowl-

edge of rationality. In game-theoretical terms, backward in-
duction is a common method for determining sub-game per-
fect equilibria in the case of finite extensive-form games.1

Games have been extensively used to design experimen-
tal paradigms aiming at studying social cognition (Camerer,
2003), recently with a particular focus on higher-order so-
cial cognition: the matrix game (Hedden and Zhang, 2002),
the race game (Gneezy et al., 2010; Hawes et al., 2012), the
road game (Flobbe et al., 2008; Raijmakers et al., 2013), and
the Marble Drop Game (henceforth, MDG) (Meijering et al.,
2010, 2011, 2012). All the mentioned paradigms are actually
game-theoretically equivalent. They are all finite extensive-
form games that can be solved by applying BI. As an example
in this paper we will consider MDG (see Fig. 1).

Many studies have indicated that application of higher-
order social reasoning among adults is far from optimal (see,
e.g., Hedden and Zhang, 2002; Verbrugge and Mol, 2008).
However, Meijering et al. (2010, 2011) report on a near ceil-
ing performance of subjects when their reasoning processes
are facilitated by, for example, a step-wise training. Still, an
eye-tracking study of the subjects solving the game suggests
that backward induction is not necessarily the only strategy
used (Meijering et al., 2012).

We still do not know exactly what reasoning strategies2

the subjects are applying when playing this kind of dynamic
extensive form games. One way to use formal methods
to study this question has been proposed by (Ghosh et al.,
2010; Ghosh and Meijering, 2011): to formulate all reasoning
strategies in a logical language, and compare ACT-R models
based on each reasoning strategy with a subject’s actual per-
formance in a sequence of games, based on reaction times,
accuracy and eye-tracking data. This corresponds to a study
between the computational and algorithmic levels of Marr’s
(1983) hierarchy.

1Backward induction is a generalization of the minimax algo-
rithm for extensive form games; the subgame-perfect equilibrium is
a refinement of the Nash equilibrium, introduced to exclude equilib-
ria with implausible threats (Osborne and Rubinstein, 1994).

2The term ‘strategy’ is used here more broadly than in game the-
ory, where it is just a partial function from the set of histories (se-
quences of events) at each stage of the game to the set of actions of
the player when it is supposed to make a move. We are interested
in human reasoning strategies that can be used to solve the cognitive
problems posed by the game.
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Figure 1: Examples of a zero-, first-, and second-order Mar-
ble Drop game. The blue marbles, on the left-hand side in
the bins, are the participant’s payoffs and the orange marbles,
on the right-hand side, are the computer’s payoffs. The mar-
bles can be ranked from the lightest to the darkest. For each
player, the goal is to get the white marble to drop into the bin
with the darkest possible marble of their color. The partici-
pant controls the blue trapdoors (i.e., blue diagonal lines) and
the computer controls the orange ones (the second set of trap-
doors from the left). The participants are told that the com-
puter aims at maximizing its pay-off. The dashed lines rep-
resent the trapdoors that both players should remove to attain
the darkest possible marble of their color. See http://www.
ai.rug.nl/˜meijering/marble_drop.html for an inter-
active demo. Backward induction reasoning proceeds from
the last decision, which in 1c is Player 1’s decision between
the blue marbles in payoff-pairs C and D. Player 1 would de-
cide to remove the left trapdoor because C contains the darker
blue marble. Backward induction would then proceed with
the second-to-last decision, which is Player 2’s decision be-
tween the orange marbles in payoff-pairs B and C. Player 2
would decide to remove the left orange trapdoor, because B
contains the darker orange marble. Backward induction rea-
soning stops at the third-to-last decision, which is Player 1’s
decision between the blue marbles in payoff-pairs A and B.
Player 1 would remove the right blue trapdoor, because B
contains the darker blue marble.

Here, we aim to tackle the problem from a somewhat more
generic, complexity-theoretic viewpoint: we propose to study
the problem on the computational level. Specifically, we will
identify inherent, structural properties of the game that make
certain MDG trials harder than others.

Alternation type
Every instance of a finite extensive form game can be pre-
sented as a decision tree. The second-order trials of MDG
have the abstract tree form presented in Fig. 2.

How to approximate the complexity of a single instance of
MDG? In the worst-case scenario, the backward induction al-
gorithm, based on breadth-first search from the leaves of the
tree upwards, will have to travel through all the nodes of the
decision tree. Thus, it will find the rational solution (Nash
Equilibrium) in time and space proportional to the number
of nodes plus the number of edges in the tree, O(|V |+ |E|).
However, the size of the tree does not seem to be a psycho-
logically plausible complexity measure. To see this, consider
two trees of equal size, but in the first one all the nodes are

s,1

(t1, t2) t,2

(s1, s2) u,1

(p1, p2) (q1, q2)

l r

l r

l r

Figure 2: Nodes s and u are controlled by Player 1. t is con-
trolled by Player 2. If a player controls a node then in that
node he can choose whether to go left, l, or right, r. Every
leaf is labeled with the pay-offs for Players 1 and 2.

controlled by Player 1 while in the second tree, the players
alternate. Obviously, the problem posed by the second tree
is much more complex. This suggests that one of the key as-
pects of the problem is the structure of the move alternation in
the game tree. Let us then categorize game trees with respect
to such alternations. In the following, we restrict the analysis
to two-player games, although it would be possible to extend
the ideas to finite dynamic games for more than two players.

Definition 1 Let us assume that the players {1,2} strictly al-
ternate in the game; Let player i ∈ {1,2}. Then:

• In a Λi
1 tree, all the nodes are controlled by Player i.

• A Λi
k+1 tree, a tree of k-alternations for some k ≥ 0, starts

with a Player i node.3

For instance, the tree in Fig. 2 is Λ1
3, a 1-game tree of 2 al-

ternations, because Player 1 has the first move at the root,
followed by an alternation of Player 1 to Player 2 and another
alternation of Player 2 to Player 1.

Pay-off structure and cognitive difficulty
From the psychological perspective, it seems really crucial to
take pay-offs into account when comparing the difficulty of
particular MDG tasks. For instance, the two trees from Fig. 3
are Λ1

3, because they both start with Player 1 and both have
two alternations, from Player 1 to Player 2 and back again.
However, clearly, the first game, represented by T1, is much
easier for Player 1 than the second game, represented by T2.
In the first game it is enough for Player 1 to realize that 999 is
the highest possible pay-off, and then he can instantly move
left and finish the game.

To explain the eye-tracking data of the subjects solving
the Marble Drop game, Meijering et al. (2012) suggest that
subjects may be using forward reasoning with backtracking
(henceforth FRB), based on statistical analysis of eye gaze se-
quences. For instance, in the game from Fig. 1c, Player 1 will
find out that B contains the darkest blue marble. He has to ask
himself whether that marble is attainable. In other words, he

3From the computational complexity theory perspective, this cor-
responds to a hierarchy of computational problems of increasing
complexity (see, e.g., Arora and Barak, 2009).
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Figure 3: Two Λ1
3 trees.

has to reason about whether Player 2 would remove the left
orange trapdoor. Therefore, Player 1 has to look at the orange
marbles in bins B, C and D to find out that bin D contains
Player 2’s darkest orange marble. The reasoning continues
with Player 1 asking himself whether Player 2 thinks that her
orange marble in bin D is attainable. In other words, Player
1 has to reason about whether she thinks that he would re-
move the right blue trapdoor of the rightmost set of trapdoors.
Player 1 knows that he would not remove that trapdoor, but
that he would remove the left one instead. He also knows that
she is aware of this, as both players are aware of each other’s
goals. Therefore, Player 1 knows that Player 2 knows that her
darkest orange marble in D is unattainable. Therefore, Player
1 has to go back to the second decision point (i.e., the orange
trapdoors). There, Player 2 would compare the orange mar-
bles in B and C and decide to remove the left orange trapdoor,
because the orange marble in B is the darkest orange marble
that she can still attain. To conclude, Player 1 knows that his
darkest blue marble in B is attainable, and will thus remove
the right blue trapdoor of the leftmost set of trapdoors.

As it is relatively hard to conclude from the eye-tracking
data whether subjects apply exactly the above described for-
ward reasoning with backtracking, we propose an orthogo-
nal idea. We aim to identify the properties of the games that
make certain trials harder than others and see whether such an
explanation is congruent with forward reasoning plus back-
tracking. In order to do that, we put forward the following
definitions. The idea here is that subjects may be looking for
the highest possible pay-off and then try to reach it.

Definition 2 A game T is generic, if for each player, distinct
end nodes have different pay-offs.

Note, for instance, that the game in Figure 1c is generic:
the four bins contain marbles of four different hues of blue

and four different hues of orange.

Definition 3 Suppose i ∈ {1,2}. If T is a generic game tree
with the root node controlled by Player i and n is the highest
possible pay-off for Player i, then T− is the minimal subtree
of T containing the root node and the node with pay-off n for
Player i.

To illustrate this definition, Figure 4 shows the restricted
T− trees for the two trees shown in Figure 3.

Hypothesis 1 Let us take two MDG trials T1 and T2. T1 is
easier for participants than T2 if and only if T−1 is lower in
the tree alternation hierarchy than T−2 .

Hypothesis 1 takes into account pay-off structures. Ac-
cording to it, the first tree from Fig. 3, T1, should be easier for
participants than the right tree, T2, as T−1 is a Λ1

1 tree while
T−2 is still Λ1

3, see Fig. 4. Moreover, it is possible that some
subjects may try to apply the procedure iteratively: check if
the maximum pay-off is reachable, if not then check for the
second-best pay-off, and so on.

T−1 s,1

999, 1

l

T−2

s,1

5, 5 t,2

12, 14 u,1

5, 7 w, 1

16, 8

l r

l r

l r

l

Figure 4: The maximum pay-off restricted trees correspond-
ing to the trees in Fig. 3.

As an additional question, we ask whether the following
predictions agree with the proposal of Meijering and col-
leagues (Meijering et al., 2012) that the subjects in the game
are applying forward reasoning, with backtracking when nec-
essary (FRB). First of all, why would subjects ever apply
FRB?

Hypothesis 2 For an average random game with 3 decision
points structured as the Λ1

3 game of Figure 2, the forward rea-
soning plus backtracking algorithm needs fewer computation
steps to yield a correct solution than backward induction.

Furthermore, if subjects used forward reasoning, then we
could observe the following by running FRB algorithm on the
game trees:

Hypothesis 3 Let us take two MDG trials T1 and T2. The for-
ward induction with backtracking algorithm yields a correct
solution for T1 faster than for T2 if and only if T−1 is lower in
the tree alternation hierarchy than T−2 .

Experimental results
To experimentally corroborate our hypotheses, we analyzed
performance and reaction time data from (Meijering et al.,
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2012). Twenty-three first-year psychology students (14 fe-
male) with a mean age of 20.8 years (ranging from 18 to 24
years) participated in the experiment and were asked to solve
Marble Drop trials, in the sense that they had to make a de-
cision ‘left’ or ‘right’ at the first decision point. All experi-
mental game trials had payoff structures that required Player
1 to reason about the decision at each of the three decision
points, structured as the Λ1

3 game of Figure 2. Therefore,
the experiment was constructed in a way to be diagnostic for
second-order theory of mind (see Meijering et al., 2012, for
more information on the experimental design).

We divided experimental trials into two sets: Accessible
ones, in which the highest possible pay-off for Player 1 is
obtainable for him and Inaccessible ones, where his highest
possible pay-off is not obtainable. For example, the game
of Figure 1c is accessible, because Player 1 can reach the
marble of the darkest hue of blue, which is located in bin
B, by opening the right trapdoor; after all, Player 2 will also
choose to stay there. Note that in general, if T1 represents an
accessible game and T2 an inaccessible one, then T−1 is lower
in the alternation hierarchy than T−2 .

Therefore, according to Hypothesis 1, our prediction was
that the shortest reasoning times will be recorded in the con-
dition “Accessible”, where the highest pay-off was obtainable
for Player 1.

Furthermore, by simulating forward reasoning with back-
tracking on experimental trials and computing the number of
reasoning steps, we investigated hypotheses 2 and 3. Again,
our prediction was that the number of steps should be smaller
in “accessible” cases, where the highest-possible pay-off for
Player 1 was obtainable.

Hypothesis 1: pay-offs and alternation type
To investigate the first hypothesis, we compared reaction
times (RTs) in games in which the highest payoff was accessi-
ble against RTs in games in which the highest payoff was not
accessible. The RTs were log-transformed to approximate the
normal distribution.

A paired-samples t-test indicated a significant (within-
subjects) difference, t(12) = 4.07, p ¡ .01. The RTs decrease
if the maximum payoff is accessible, which can be seen in
Figure 5.

Hypothesis 2: simulating the algorithms
When looking at all possible payoff-structures in Marble
Drop games with two alternations (or three decision points),
we implemented the forward reasoning plus backtracking al-
gorithm as a set of heuristics based on several cases that can
occur in the Marble Drop game; we used the same algorithm
that we derived in (Meijering et al., 2012) from the partici-
pants’ eye-tracking data.4

When using the algorithm on all 576 possible pay-off struc-
tures, we see that forward reasoning with backtracking in

4Thus, we did not use a generic implementation of forward rea-
soning with backtracking that would work for any possible game
tree.
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Figure 5: Players’ reaction times with respect to accessibility,
namely the attainability of the highest payoff for Player 1.

general requires fewer steps than backward induction, e.g.,
in 288 cases only 1 step is enough. More specifically, for-
ward reasoning with backtracking requires on average 3 steps,
whereas backward induction would always require 6 steps, ir-
respective of payoff structure. Table 1 provides a cross-table
of payoff structures and number of steps. This simulation
supports our Hypothesis 2.

Table 1: Cross-table of payoff structures and the necessary
number of steps when using forward reasoning with back-
tracking.

# of steps 1 2 4 5 6 8
# of payoff structures 288 72 48 56 16 96

These simulation results imply that, on average, it pays off
to use a forward reasoning strategy. In fact, Meijering et al.
(2012) found a strong prevalence of forward reasoning with
backtracking, even though participants were presented with
a subset of hard-to-solve games in which backward induc-
tion would actually be more efficient on average. However,
participants did not know that they were presented with this
particular subset of very difficult games.

Hypothesis 3: FRB and structural complexity
The implementation of the forward reasoning plus backtrack-
ing (FRB) algorithm was applied to the subset of actually pre-
sented experimental games to determine the number of rea-
soning steps required for each game. In the following analy-
ses, number of steps was included as a predictor of the reac-
tion times. We label the factor simply as ‘forward reasoning
with backtracking’.

The log-RTs were analysed by means of linear mixed-
effects (LME) models (Baayen et al., 2008) to account for
random effects of participants and unequal numbers of obser-
vations across all experimental conditions. Traditional (re-
peated measures) ANOVAs could not be performed as they

1429



require equal numbers of observations.
Fitting LMEs on the log-transformed reaction times, we

see that forward reasoning plus backtracking (FRB) is a good
predictor. The model with FRB cannot be rejected in favor of
a simpler model without FRB as a predictor, χ2(1) = 8.4, p =
0.004. We discuss the best model below.

Again, the reaction times significantly decrease if the max-
imum Player 1 payoff is accessible (Table 2a). In case of
games in which the maximum payoff is not accessible, the re-
action times do not significantly increase with each additional
reasoning step (Table 2b). Those games require in between 6
and 8 reasoning steps, which is too small a difference to find
a significant effect on the RTs. In contrast, the RTs do signif-
icantly increase with each additional reasoning step in games
in which the maximum payoff is accessible (Table 2c).

Table 2: Output of full-factorial linear mixed-effects model
with factors Accessibility (A), Steps of forward reasoning
with backtracking (FRB).

Parameter Estimate St. Error t-value p-value
a) Accessible -0.689147 0.271256 -2.54 .000
b) FRB 0.008767 0.034930 0.25 .418
c) A:FRB 0.084336 0.037277 2.26 .000

Discussion
We have investigated the structural properties of the Mar-
ble Drop Game, an experimental paradigm designed to study
higher-order social reasoning. Using theoretical approaches
from logic and complexity theory, we identified inherent
properties of the game trials responsible for the cognitive
difficulty of the task. Meijering and colleagues’ (2012) re-
action time data can be explained by looking at the alter-
nation type and pay-off distribution of the particular game
items. It turned out that the game items are harder if the max-
imum possible pay-off for Player 1 is not accessible for him.
This observation is consistent with the assumption that par-
ticipants were mostly applying forward reasoning with back-
tracking to solve the games. By simulating forward reasoning
with backtracking on the experimental items, we have shown
that the reaction times and the number of necessary compar-
isons significantly decrease if the maximum Player 1 payoff
is accessible. As MDG is game-theoretically equivalent to
many other experimental paradigms making use of turn-based
games (see, e.g., Hedden and Zhang, 2002; Gneezy et al.,
2010; Hawes et al., 2012; Flobbe et al., 2008; Raijmakers
et al., 2013), we would expect that our results generalize to
those cases.

One could wonder why the subjects did not use backward
induction in the first place, as it is the method that always
delivers the optimal pay-off (Osborne and Rubinstein, 1994).
One possible answer is that they avoided backward induction
in order to simplify the underlying reasoning. Recall, that

while backward induction reasoning always takes 6 steps in
the Marble Drop game with 3 decision points, forward rea-
soning and backtracking takes on average only 3 steps, cor-
responding with the phenomenon that T− is usually lower in
the tree alternation hierarchy than T itself. Moreover, iter-
ating the forward reasoning strategy by backtracking in case
the highest pay-off is not obtainable will finally lead to the
optimal solution. Therefore, some subjects may choose to
use that strategy to avoid higher-order reasoning, even though
keeping the intermediate results in mind during backtracking
is expected to tax working memory more than applying back-
ward induction.

Subjects may as well use other heuristics that do not
guarantee reaching the prescribed backward induction result,
namely a Nash equilibrium of the game. For instance, as
suggested by Hedden and Zhang (2002), subjects may as-
sume that their opponents are playing according to some fixed
patterns. Instead of assuming that the opponent is rational
and correctly predicts Player 1’s choice at the last decision
point, Player 1 may take his opponent to be risk-averse or
risk-taking. Such heuristics, essentially based on considering
sub-trees of the initial game-tree, will also lead to simplified
reasoning.

Of course, assuming that the opponent is of some specific
type changes the game drastically and can lead to a very bad
outcome, in case of wrong judgement of the other player’s
type. Still, people notoriously apply similar heuristics in
strategic situations, for example, when joining a poker ta-
ble, many players try to evaluate whether the opponents play
‘loose’ or ‘tight’.5 An important question is what are the
good alternative strategies. They should be not only easy to
compute for people but also relatively safe to apply. It seems
that the forward reasoning plus backtracking strategy in MDG
might be a cognitively attractive strategy for people asked to
solve turn-based games. First of all, it does not ask for the
second-order social reasoning that is known to be very hard
even for many adults (Verbrugge, 2009), and moreover, on
average it demands fewer comparisons. One may even think
that competent players know a collection of various strategies
and their strategic abilities could be partially equated with the
skill of choosing the right one, i.e., a strategy that may be
safely applied in a given context to simplify the underlying
reasoning.

Outlook
Inspired by the logical study of backward induction and the
cognitive science experiments with the Marble Drop Game,
we investigated structural properties of turn-taking dynamic
games and we provided a more refined analysis of the com-
plexity of particular game trials, which takes into account al-
ternation type of the game and pay-off distribution. We com-

5A similar phenomenon is well-recognized in natural language
semantics. People often shift the meaning of sentence ϕ from JϕK to
a more restricted meaning JψK⊆ JϕK. And again, one of the factors
triggering such meaning-shifts might be related to the computational
complexity of ϕ (see, e.g., Szymanik, 2010).
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pared our predictions to actual reaction time data from (Mei-
jering et al., 2012).

Of course, there are many further topics to be resolved.
For instance, it would be interesting to extend our analysis
to account for imperfect information games. Also it would
be fruitful to explore connections with various related logical
formalisms and to investigate further epistemic phenomena.
In parallel, we would like to confront Hypotheses 1 and 3
with the available eye-tracking data from (Meijering et al.,
2012), as well as with eye-tracking data to be gathered from
a wider class of turn-based two-player games. Moreover, we
plan to investigate other reasonable reasoning strategies that
subjects may successfully adapt in game-plays.
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