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Abstract

How are concepts represented in the human mind? Vector
space representations based on the instantaneous firing rates
of neurons have been used with great success. However, there
is growing evidence, both empirical and computational, that
relevant information is encoded in spatiotemporal patterns of
spikes called polychronous neuronal groups (PNGs). In this
paper, we consider the philosophical implications of PNG rep-
resentations with regard to their temporal extension, ground-
ing, compositionality, and similarity. We suggest that the tem-
porally extended nature of PNGs implies that conceptual-level
dynamics may only be coherent at coarse time scales. We
introduce the notion of PNG trigger sets as a way to ground
the meaning of PNG representations, and we discuss potential
approachs to compositionality. Finally, we identify the open
problem of how to define an appropriate similarity metric for
PNG-based mental representations.

Keywords: Philosophy of Cognitive Science; Neuroscience;
Representation; Dynamical Systems.

Introduction

How are concepts represented in the human mind? One
highly productive approach to this question has involved
the application of a continuous dynamical systems perspec-
tive to the problem (Spivey, 2008). From this perspective,
the currently active concepts of a cognitive system (or sub-
system) are jointly encoded as a point in a high dimen-
sional vector space (Churchland, 1989). Nearby points in
this space, according to some distance metric, are seen as
representing similar conceptual states, allowing regions and
manifolds within this space to capture more general con-
cepts or categories (Girdenfors, 2000). The evolution of
mental states over time becomes a trajectory in this vector
space (Yoshimi, 2012), driven by mechanistic cognitive pro-
cesses (Churchland, 1996).

This vector space approach to conceptual representation
has many strengths. It supports accounts of the biological ba-
sis of cognition by viewing the dimensions of the vector space
as the activity of neural units, such as their firing rates, offer-
ing a framework for mapping from the physical state space of
the brain to the conceptual state space of the mind (Spivey,
2008). The approach provides a straightforward way to dis-
cuss the cognitive state of a system at any instant in time,
as well as how those states change over time. Issues sur-
rounding the grounding of representations are well addressed
from the perspective of conceptual role semantics (Greenberg
& Harman, 2006), with the “meaning” of a representation
being a function of the inputs that activate it and the other
representations that it produces through causal relationships,

eventually making causal contact with the world through sen-
sory and motor processes. When using the vector space ap-
proach, these cognitive processes are well described in neu-
rocomputational terms, with nearby points in a vector space
tending to produce similar results when presented to mod-
els of downstream neural circuits. While the vector space
approach has been criticized as lacking support for compo-
sitional and structured conceptual representations (Fodor &
Pylyshyn, 1988), and there continues to be extensive work
on addressing this critique (Gayler & Levy, 2011), highly
promising approaches to compositionality have been pro-
posed, making use of vector space operations of superposi-
tion, convolution, and sparse coding (Smolensky, 1990; Plate,
2003; OReilly, Bhattacharyya, Howard, & Ketz, 2011). In
general, the vector space approach to conceptual representa-
tion has been very productive.

Past challenges to the vector space approach have come
from above: from more abstract and symbolic characteriza-
tions of cognitive content and cognitive processing. More
recently, a challenge has arisen from below: from in-
sights into the neural coding of information (Rieke, Warland,
Steveninck, & Bialek, 1999). There is increasing empirical
evidence that, in at least some neural systems, relevant infor-
mation is encoded in the spatiotemporal pattern of discrete ac-
tion potentials, or spikes, produced by neurons in a given nu-
cleus (Rolston, Wagenaar, & Potter, 2007; Madhavan, Chao,
& Potter, 2007; Pasquale et al., 2008). While information, in
some cases, may be carried by synchronous or coherent firing
of neurons (Fries et al., 2005), computational considerations
have suggested that content may frequently be encoded in
complex asynchronous patterns of spikes (Izhikevich, 2006).
These complex spike patterns have been called polychronous
neuronal groups (PNGs). The PNG approach to represen-
tation differs substantially from the vector space approach.
A PNG is a temporally extended pattern of discrete spiking
events over a collection of neurons, and it is not clear how
such a pattern could be mapped to a point in a continuous
vector space so as to preserve relevant aspects of similar-
ity between representations. In the vector space approach,
temporally extended trajectories capture dynamic changes in
cognitive content, while the PNG account encodes individ-
ual conceptual states in such trajectories. A PNG need not
be oscillatory, so it does not make sense to extract features
like frequency or phase to map a PNG into a vector space.
In some important ways, the PNG approach is fundamentally
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different than the vector space approach.

It may be tempting to view the vector space account as
supervening on the PNG account, with PNGs implementing
vector space states at some lower level of analysis. In this
brief article, we argue that such a view either is untenable,
with no mapping from the complexities of PNG representa-
tions to points in a vector space being possible, or, at least, is
in dire need of an explanation of how such a reduction might
be accomplished. Specifically, we raise four problematic is-
sues that arise when shifting from a vector space approach
to a PNG approach: (1) Temporal Extension — If conceptual
representations involve temporally extended PNGs, to what
degree can a conceptual state be said to be active at a particu-
lar instant or actively maintained over an interval? How does
the use of the PNG framework change the characterization of
the evolution of conceptual states over time? (2) Grounding
— If conceptual role semantics is to be used to understand
the “meaning” of a PNG representation, what are the biolog-
ically realistic causal mechanisms that link PNGs in an infer-
ential cascade? (3) Compositionality — Does the PNG ap-
proach fare better or worse than the vector space approach in
accommodating compositional or structured representations?
(4) Similarity — Is there a distance measure for PNG repre-
sentations that could be used to capture conceptual similarity
while reflecting the way in which downstream neural circuits
would naturally generalize across disparate PNGs?

Each of these four issues is elaborated in the following sec-
tions, and preliminary insights into how these issues could be
addressed are provided. The goal is to highlight how the PNG
approach challenges the prevailing vector space account of
mental representation, while offering some clues concerning
how this challenge might be met.

We begin by offering a review of PNG representations, pro-
viding a foundation for exploring each of the four issues that
we find problematic. We then conclude with a brief discus-
sion of open questions in this domain.

Polychronous Neuronal Groups

Polychronous Neuronal Groups (PNGs) have been pro-
posed as a possible unit of representation in the human
brain (Izhikevich, 2006). A PNG is a reproducible, time-
locked, spatiotemporal spike-timing pattern over a collection
of neurons. They are reproducible in the sense that the se-
quence of spike times tends to replay when the input condi-
tions experienced by the neural network are repeated. They
are time-locked in the sense that, once the PNG begins, the
times between the spikes within the spiking pattern are the
same whenever the PNG is triggered. They are spatiotempo-
ral in the sense that they are defined in terms of a specific set
of neurons that participate in the pattern (spatial) as well as
the specific times at which spikes appear in the pattern (tem-
poral). PNGs spontaneously emerge in spiking neural net-
works that incorporate variance in the amount of time it takes
for an action potential to reach its receiving neurons (conduc-
tance delays), and they are reinforced by mechanisms of spike

timing dependent plasticity (STDP) (Izhikevich, 2006).

To understand the information-bearing properties of PNGs,
it is important to understand how they are generated and prop-
agated. An individual neuron remains at its resting potential
until it receives, or “observes”, a sufficient number of spikes
in a short enough period of time, at which point this coinci-
dent input causes the neuron to generate an action potential of
its own. This action potential is then, in turn, observed by the
neurons to which this neuron projects. However, since it takes
time for action potentials to propagate down axonal connec-
tions, there is a delay between when a spike is generated and
when it is received. For example, in the cat brain, this de-
lay can be as short as 0.1 ms, or as long as 44 ms (Swadlow,
1992). Since a cortical neuron may project to anywhere be-
tween 1,000 and 10,000 other neurons, a single action poten-
tial will be received at many different times. Thus, spikes
that are synchronized on generation will not necessarily be
synchronized on their receipt.

Typically, a single input spike is insufficient to drive the re-
ceiving neuron to fire an action potential, and the membrane
potential of such a neuron is constantly decaying toward its
resting potential. Within just a few milliseconds after receiv-
ing a single spike, the membrane potential of a neuron will
return to its equilibrium state, removing the electrical effects
of the spike (Cessac, Paugam-Moisy, Viéville, et al., 2010).
This highlights the need for synchrony in the arrival of spikes
to initiate firing, but it is important to remember that spikes
that are synchronized at the time of receipt will not neces-
sarily be synchronized at the time of their initiation, due to
variance in conductance delays.

Figure 1: A small neural network with time delays.

Consider the network portrayed in Figure 1. If neurons a,
b, and c spike at the same time, Time 0, those spikes will be
received by neuron x at Times 1, 5, and 9, respectively, and
those same spikes will be received by neuron y at Times 8§,
5, and 1, respectively. In this case, neither x nor y receive
the coincident spikes needed to fire. The difference in arrival
times are caused by differences in axonal propagation times.
If, instead, neurons a, b, and c spike at Times 8, 4, and O,
respectively, neuron x will receive all three of these spikes
at Time 9, potentially allowing the cell to fire. In contrast,
neuron y would receive the three spikes at Times 16, 9, and
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1, respectively, providing it with no coincident spikes to drive
an action potential. Alternatively, if neurons a, b, and c fire
in the reverse order, neuron y will may spike, while neuron x
will remain silent. Thus, the effects of spikes from neurons a,
b, and c on the firing of neurons x and y is critically dependent
on the timing of the spikes.

In larger, more connected, networks, like those found in
mammalian brains, a particular stimulus will cause a chain
reaction of spikes over time. This group of neurons firing
with precise timing is what forms a corresponding PNG. Im-
portantly, PNG patterns can be strengthened with repetition,
with the strengthening well explained by spike timing de-
pendent plasticity (STDP) (Izhikevich, 2006). Synapses that
exhibit STDP are strengthened whenever the post-synaptic
neuron fires just after it receives evidence of a pre-synaptic
spike. Conversely, whenever the post-synaptic neuron fires
just before it receives evidence of a pre-synaptic spike, then
the synapse is weakened (Dan, Poo, et al., 2004). Thus, as
a PNG unfolds, STDP strengthens the synapses participating
in the PNG’s generation and weakens the synapses that were
active but did not facilitate the firing of neurons participating
in the PNG. Thus, every time a particular PNG unfolds, and
hence becomes strengthened via the mechanism of STDP, it
becomes easier for that PNG to be reproduced.

To restate, a PNG is a reproducible, time-locked, spa-
tiotemporal spike-timing pattern. A PNG is reproducible in
the sense that, when the neurons participating in a PNG are
stimulated in a similar way, the PNG will unfold in a sim-
ilar way. Furthermore, each reproduction causes a PNG to
become more stable through STDP, making the PNG increas-
ingly robust to timing noise (i.e., some input spikes may be
omitted or added without substantially effecting the genera-
tion of the PNG). A PNG is time-locked due to the fact that
the conductance delays between the participating neurons are
fixed by the anatomy of the network. A PNG is spatiotempo-
ral in the sense that it necessarily occurs at many times (poly-
chronous) and involves many neurons. Once stabilized via
STDP, subtle variations in spike timing due to noise do not
lead to unpredictablely different PNGs, but generate a mem-
ber of a family of related PNGs (Izhikevich, 2006). Also,
it is important to note that many PNGs may be simultane-
ously active in a common neural network without interact-
ing, due to the low probability that two arbitrary PNGs will
overlap substantially in their precise spike times. In addition
to these properties, PNGs also minimize redundancy through
the weakening of synapses via STDP, and they are more en-
ergy efficient than vector space representations that depend
on neural firing rate (Levy & Baxter, 1996). It is also interest-
ing to note that the “small world” connectivity structure of the
mammalian brain gives rise to stable PNGs much more read-
ily than networks of neurons that are connected uniformly at
random (Sporns & Zwi, 2004; Vertes & Duke, 2010).

Since their introduction, PNGs have been utilized exten-
sively in computational neuroscience models of cognitive in-
formation processing. The intricate dynamics of PNGs have

been used in combination with models of NMDA recep-
tors and neurotransmitter reuptake to produce a promising
account of working memory function (Szatméry & Izhike-
vich, 2011). PNGs have been incorporated into a formal ac-
count of the dopamine system in order to produce a candidate
model of neural reinforcement learning that addresses the
problem of temporally distal reward (Izhikevich, 2007). In
addition to their use in computational neuroscience models,
empirical evidence for PNGs has been reported, with repro-
ducible, time-locked, spatiotemporal patterns of spikes being
observed in cortical slices (Rolston et al., 2007). It is clear
that PNGs show great promise as a form of representation in
the brain.

As this review of PNGs shows, the information carried by
a PNG in a neural network is critically dependent on the tim-
ing of individual action potentials. This contrasts with vec-
tor space accounts of mental representation which map vector
space dimensions onto the instantaneous firing rates of neu-
rons. The PNG approach highlights the way in which individ-
ual spike times can carry information, with spiking rates lack-
ing sufficient spatiotemporal detail to discriminate between
different representational states. It is this shift that gives rise
to a number of potential problems with viewing PNGs as the
foundation of mental representation.

Temporally Extended Representations
The Challenge

In vector space representation schemes that make contact
with biology, each dimension corresponds to the instanta-
neous activity of a neural element, such as the instantaneous
firing rate of a neuron. This provides us with a natural way
to capture the mental state of the agent at any given point in
time. The active maintenance of a conceptual state involves a
relative lack of change in these firing rates, and the evolution
of mental states over time are captured in trajectories through
the vector space.

In contrast, the PNG approach inherently involves tempo-
rally extended representations. A PNG is a spatiotemporal
pattern of spikes. If mental representations are to be associ-
ated with PNGs, to what degree can any concept be seen as
active at any given instant? Can a representation be actively
maintained over time if the physical substrate of the repre-
sentation is changing over time? How does the use of the
PNG framework change the characterization of the evolution
of conceptual states over time?

Addressing the Challenge

While some philosophical work may be needed to fully ap-
preciate the nature of temporally extended mental representa-
tions, we do not see this challenge as insurmountable.

The activation level of a particular PNG at an arbitrary
point in time, in the midst of a sequence of spikes, does not
have a clear definition. We can identify, however, the degree
to which recently produced spikes match portions of a PNG,
as well as the propensity for the neural network to continue
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with the production of further spikes in the PNG. Thus, the
notion of the activation of a concept is only coherent at time
scales that match the time scale of the PNG. For example, if
the PNG m refers to a 30 ms long spike sequence, it may be
asked if, over the last 30 ms, © appeared. For that same T, it
may also be asked at what times over the last 60 ms T was
present. In this way, activation of a mental state represented
by a PNG only makes sense at relatively coarse time scales in
comparison to the time scales used for common vector space
representations. The PNG approach does not admit to a co-
herent sense of a truly instantaneous mental state.

The mental state encoded by a PNG may be actively main-
tained for a period of time longer than the duration of the
spike sequence that makes up the PNG. For example, PNG
models of working memory have involved the repeated ac-
tivation of a PNG, with the spike pattern being sequentially
reinitiated, allowing it to persist for arbitrarily long periods,
as needed (Szatmary & Izhikevich, 2011). Once again, this
notion of active maintenance is limited to a time scale cor-
responding to the temporal length of the PNG, but the PNG
approach does not rule out the possibility of persisting in a
mental state for a longer period of time.

Grounding Of Representations
The Challenge

The symbol grounding problem highlights the need for repre-
sentational schemes to provide some account of the meaning
of mental representations (Harnad, 1990). Understanding in
an ungrounded representational system is analogous to the
content of a dictionary, defining words in an ultimately circu-
lar fashion, in terms of other words. It has been argued that
this problem can be overcome by grounding internal repre-
sentations in reflections of the world, mediated by iconic rep-
resentations associated with direct sensations (Harnad, 1990).
Similarly, the meaning of an internal representation can be
seen as arising from the role it plays in a cognitive inferential
process, as described by the theory of conceptual role seman-
tics, with causal and inferential chains eventually connecting
to the world through sensation and action (Greenberg & Har-
man, 2006).

In the vector space approach, representations may be
grounded in the causal processes in which they participate,
both in terms of inputs that give rise to a representation (even-
tually leading back to iconic representations) and the effects
of that representation on downstream neural circuits. These
causal relationships can be characterized in terms of func-
tional mappings between vector spaces. For example, if the
transduction of sensory information from the world directly
results in a pattern of neural firing rates, this pattern corre-
sponds to a point in a sensory vector space, and neural circuits
can be seen as mapping this point to corresponding points in
the vector spaces for other neural populations, encoding the
corresponding conceptual content. In this way, the mappings
implemented by neurocomputational mechanisms ground in-
ternal representations.

The activation of a PNG and the downstream effects of
the initiation of a PNG are mechanistically and computation-
ally quite different than standard neurocomputational mech-
anisms that can be easily cast as functions between vector
spaces. Given this difference in the causal structure of PNGs,
how can PNG representations be grounded?

Addressing the Challenge

We assert that the PNG approach to mental representation re-
quires only a slightly different understanding of the nature of
the relevant causal relationships. Rather than being character-
ized as functional mappings between vector spaces, we posit
that the causal relationships between PNGs are best described
in terms of frigger sets. Let us first consider the definition of
a o-triggered polychronous neuronal group.

Definition A o-triggered polychronous group refers to the
set of neurons that can be activated by a chain reaction
whenever trigger neurons Ny (1 < k < o) fire according to
the timing pattern (1 < k < ), where G is the size of the
stimulus required to trigger the PNG (Martinez & Paugam-
Moisy, 2009).

Here, we recognize that a given PNG can have more than one
stimulus trigger. This distinction motivates the definition of a
trigger set.

Definition For a given PNG m, its trigger set, Ty, is the set
of spike-time patterns that trigger the existence of . Each
spike-time pattern in the trigger set of T will give rise to T
when presented in the absence of interfering spikes.

Note that each element of a trigger set may be a PNG or
a portion of a PNG. Thus, the presence of a PNG spike-time
pattern may trigger, or help trigger, other PNGs. The set of
PNGs that have the potential of being triggered by a given
PNG can form the core of a formal characterization of the
causally grounded meaning, uy, of that PNG.

Definition If a PNG, m, is seen as a set of spikes (with each
spike indexed by the identity of the spiking neuron and the
time of the spike), and P is the set of all possible PNGs in
the neural network, then the meaning of m, called ug,, is
defined as the set of PNGs whose trigger set, T, contains
an element with a nonempty intersection with 7, or

pmy = {m:mE P, 3 € T, TN # 0}

By this definition, ty, includes any PNG for which 7y con-
tributes some spikes that may contribute to the triggering of
the PNG. Thus, pig,, includes PNGs that may only be triggered
by Ty in the context of other spike-time patterns. In this way,
the meaning of a PNG is context sensitive. While constrained
by the network’s topology, the size of uy, may be very large.

These definitions describe the causal relationships between
PNGs, providing the basis for a conceptual role semantics ap-
proach to symbol grounding in the PNG framework. PNGs
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triggered by sensory neurons can be considered iconic repre-
sentations, as can PNGs that trigger motor responses. PNGs
triggered by other neurons in a network form internal repre-
sentations that are ultimately grounded in these iconic repre-
sentations through the causal connections of their trigger sets.

Compositionality Of Representations
The Challenge

A representation that exhibits compositionality, simply put, is
one where “the meaning of a compound expression is a func-
tion of the meanings of its parts” (Janssen, 1996). In the vec-
tor space approach, compositional representations have his-
torically been difficult to capture (Fodor & Pylyshyn, 1988),
but progress has been made (Van Gelder, 1990; Gayler &
Levy, 2011). The most common solutions involve either rep-
resentational components being maintained in subspaces of
a parent vector space, or components being superimposed
or convolved to form compound representations like tensor
product codes, holographic reduced representations, or sparse
codes (Smolensky, 1990; Plate, 2003; OReilly et al., 2011).

Do PNG representations suffer from the same problems of
compositionality as vector space representations? Are current
approaches to compositionality in the vector space framework
also appropriate for PNG representations? How might com-
positionality be captured in PNG representations?

Addressing the Challenge

The PNG approach offers two ways to capture compositional
representations that are impossible, or at least of limited util-
ity, in the vector space approach. These two methods include
sequential concatenation of PNG component representations
and the superposition of PNG components.

A PNG representation might be seen as being composed
of subsequences of spikes, giving rise to representations at
multiple time scales. In essence, a PNG may be seen as con-
taining many smaller PNGs within it, or, inversely, it may be
a part of a sequence of other PNGs. Consider the meaning of
a particular PNG, uy,. If a PNG T € ug, has an element of
its trigger set, T, contained completely within Ty, then o
will reliably trigger , in the absense of interfering spikes.
Note that g, # ur, , so these two PNGs do not have the same
meaning. These two PNGs may be combined by simple con-
catenation, producing a new PNG, 7, = 1y UT;. Importantly,
the meaning of this compound representation, ur,, is a simple
function of the meanings of its parts: un, = g, U g, . (Note
that this is the case even if my does not reliably trigger 7;.)

An alternative approach to compositionality involves di-
rectly superimposing PNGs over the same time interval.
Since spikes may be sparse over time, the probability of
superposition producing interference between PNGs is rela-
tively small. In this way, the composition of PNG represen-
tations may simply involve the simultaneous activation of the
component PNGs.

Similarity Of Representations
The Challenge

Distances in a vector space have been fruitfully used to cap-
ture dissimilarity between representations, providing a use-
ful mechanism for generalization. Common distance metrics,
like inner-product distance (related to angular distance), are
tightly related to the kinds of functional mappings between
vector spaces that are are easily implemented by neural cir-
cuits. How might similarity between representations be cap-
tured in the PNG approach?

Addressing the Challenge

We see this as an important open question. There are
many existing metrics for evaluating the similarity of spike
trains (Victor & Purpura, 1996; Naud, Gerhard, Mensi, &
Gerstner, 2011). Developing a good similarity metric has
proven difficult, however, as spike sequences are inherently
non-Euclidian (Aronov & Victor, 2004). The metrics that
have been presented focus on comparing spike trains gen-
erated by a single neuron, recorded over many trials. Cur-
rent approaches make the assumption that the significance of
a spike can be treated as independent from other spikes pro-
duced in the same neural network. Because of these and other
issues, existing similarity metrics for comparing groups of
spike trains do not predict well whether two PNGs will have
a similar effect on downstream neurons.

It is our suspicion that similarity metrics based on trigger
sets may overcome some of the obstacles described here. De-
termining a meaningful similarity metric for PNG represen-
tations is a focus of our future work.

Conclusions and Future Work

Ongoing work in computational neuroscience is uncovering
the powerful capabilities of polychronous neuronal groups,
and empirical studies are starting to find evidence for this kind
of encoding in biological neural circuits. If PNGs emerge
as a dominant means of representation in the brain, the vec-
tor space account of conceptual states will need to be recon-
sidered. While many of the strengths of the vector space
account appear to transfer, with some modifications, to the
PNG framework, there remain challenges for viewing com-
plex spike patterns as conceptual representations. Perhaps the
most substantial challenge faced by the PNG approach to con-
ceptual representation involves the nature of representational
similarity in this framework. This is the primary focus of our
ongoing research program.

Much philosophical work has been done in order to clarify
how the vector space account of mental representation pro-
vides a bridge between brain processes and cognitive pro-
cesses. If further neuroscientific investigations suggest that
polychronous neuronal groups carry conceptual content in at
least some brain systems, similar work will need to be pur-
sued for this representational framework. By highlighting
several potentially problematic issues with PNG representa-
tions, and sketching promising solutions for some of these
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issues, we hope to have helped launch this philosophical ef-
fort.
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