Automatic and Instructed Attention in Learned Predictiveness

Lauren T. Shone (Isho0771@uni.sydney.edu.au)
Evan J. Livesey (evan.livesey@sydney.edu.au)

School of Psychology, Brennan McCallum Building,
University of Sydney, NSW 2006 AUS

Abstract

In novel situations, learning is biased towards information
that has a degree of prior predictive utility. In human learning,
this is termed the learned predictiveness effect and has proved
critical in theorising about the role of attention in learning.
Two experiments are reported in which the relative
contribution of controlled and automatic processes to learned
predictiveness are investigated. Experiment 1 showed that
while learned predictiveness is susceptible to instructional
manipulation, this effect is partial. Experiment 2 manipulated
predictive utility and instruction orthogonally in order to test
the potential involvement of automatic processes. It was
found that even when cues were explicitly instructed as
causal, learning was biased in favour of previously predictive
over previously non-predictive cues. Interestingly, this was
reversed for cues instructed as irrelevant. This suggests that
learned predictiveness benefits attentional control, whereby
information is both easier to attend and ignore.

Keywords: human learning, attention, controlled processing,
automatic processing

Introduction

An important question facing theories of associative
learning is the nature of the relationship between learning
and attention. Accordingly, many associative theories (e.g.,
Kruschke, 2001; Mackintosh, 1975; Pearce & Hall, 1980)
accept that stimulus selection is influenced by attentional
processes. Such theories share the basic assumption that the
attention devoted to a stimulus is flexible, and governed by
its past utility in predicting events. Importantly, this will
subsequently influence the rate at which a stimulus enters
into future associations.

Evidence in favour of learned attention originates from
experiments in which past predictive utility biases learning
in a novel situation. A robust example, first reported by Le
Pelley and McLaren (2003; see also Lochmann & Wills,
2003), is the learned predictiveness effect. The basic
experimental design used to demonstrate the effect is shown
in Table 1. Participants are initially exposed to a scenario in
which they are required to learn a causal relationship
between cues and outcomes. Each trial consists of the
presentation of a compound of two cues, leading to one of
two outcomes. Critically, each compound consists of one
perfectly predictive cue (represented by A — D), and one
non-predictive cue (W — Z). For example, A is consistently
paired with the outcome O1, and therefore has perfect
predictive utility. Alternatively, W has no predictive utility
because it is paired equally often with both outcomes O1
and O2.

Once these relationships have been learned, a novel
scenario is introduced. The same cues, in novel

combinations, are then employed in order to predict
different outcomes. Importantly, although the cues are again
presented in compound, this time neither component has
superior predictive utility. That is, both A and W are perfect
predictors as they share the same objective relationship with
outcomes O3 and O4 respectively. What differs between the
components of the new compounds is their status as a
predictive or non-predictive cue in the initial stage of
learning. Subsequent tests reveal that more is learned about
the relationship between previously predictive cues and the
new outcomes compared to previously non-predictive cues.

Table 1. 4 typical learned predictiveness design.

Phase 1 Phase 2 Test
AW -0l AY - 03 AD
AX-0l1 BZ - 04 XY
BW - 02 CW -04 BC
BX -02 DX - 03 wZzZ
CY -01
CZ-0l1
DY -02
DY -02

Note. Letters indicate individual cues. O1 — O4
refer to four outcomes.

Traditionally, this bias, consistently replicated across
various scenarios (see Le Pelley, 2010, for a recent review),
has been interpreted to suggest that attention is modulated
by the difference in predictive validity during initial stages
of learning. According to this logic, attention to A — D will
be high following phase 1 and will therefore have an
advantage when entering into new associations during the
second phase. This effect has proved critical in theorising
about the reciprocal nature of the relationship between
human learning and attention.

The learned predictiveness effect is consistent with
models of associative learning that assume attention changes
according to mechanisms of associative competition (e.g.,
Mackintosh, 1975; Le Pelley, 2004; Pearce & Mackintosh,
2010). For example, Mackintosh (1975) proposed that
changes in the association between a cue and an outcome
are governed by both attention paid to the cue and the
discrepancy between the occurrence of the outcome and the
extent to which it is already predicted on the basis of that
cue, that is, the prediction error for an individual cue.
Critically, attention to the cue changes according to a
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comparison between its prediction error and the prediction
error for other cues available at the same time. The cues
with smaller individual prediction errors (i.e. those with
higher predictive utility) will command more attention as
learning proceeds. Higher attention, in turn, drives faster
learning.

Despite its replicability, the exact nature of the learned
predictiveness effect has only recently been questioned.
Indeed, the concept of attention is associated with a variety
of cognitive mechanisms (see Pashler, 1998; Wright &
Ward, 2008, for a review), raising the question of which
processes critically characterise the effect. For example, in
demonstrations of learned predictiveness there is often a
high degree of conceptual similarity between scenarios. One
possibility, therefore, is that the effect is governed by a
simple heuristic arising from inferential reasoning. That is,
it is possible that participants make the explicit assumption
that the predictive utility of cues A — D will transfer across
similar contexts (Mitchell, Griffiths, Seetoo, and Lovibond,
2012).

According to this explanation, learned predictiveness
should be susceptible to manipulations of inferred beliefs.
Indeed, Mitchell, et al., (2012) have provided evidence in
support of this view. In their Experiment 2, inferences were
directly manipulated across phases by way of instruction. At
the onset of the second phase, participants in the continuity
condition were explicitly instructed that the same cues
would be relevant. Alternatively, those in the change
condition were instructed the opposite, that previously
predictive cues were now irrelevant. Critically, this
condition revealed a complete reversal of the effect. That is,
more was learned about the relationship between previously
irrelevant cues and the novel outcomes. That learned
predictiveness is sensitive to variations in explicit reasoning
suggests a role for controlled, volitional attentional
processes in explaining the effect.

However, there is evidence to suggest that the presence of
the inference alone is not sufficient to produce the learned
predictiveness effect. For example, Le Pelley et al. (2010a)
investigated the expression of learned predictiveness
adopting a procedure in which the critical relationships were
embedded in text form. Interestingly, they failed to observe
the effect; the attentional bias was only observed when the
relevant information was presented in trial and error form
across multiple trials. This is contrary to what would be
expected if explicit causal attribution was the sole
mechanism responsible for this bias. Similarly, related
paradigms have found opposing influences of training and
instruction on learned attentional responses (Le Pelley,
Mitchell, & Johnson, 2013). Taken together these findings
raise the possibility that learned predictiveness reflects the
operation of a combination of inferential and non-inferential
processes.

As noted previously, learned predictiveness has taken an
important role in theorising about learned attention. A
common feature of such theories is the assumption that
attentional changes are automatic in response to the

formation of associations between events (e.g., Kruschke,
2001; Le Pelley, 2004; Mackintosh, 1975; Pearce &
Mackintosh, 2010). According to this view, because
associations between predictive cues and outcomes increase
rapidly during phase 1 of a learned predictiveness
experiment, these cues are automatically attended. Thus,
previously predictive cues will capture attention at the start
of phase 2, such that associations between these cues and
novel outcomes are facilitated. Importantly, this process
does not rely on a deliberate attempt by the individual to
control attention in a biased fashion according to the nature
of the phase 1 relationships.

While the results of Mitchell et al. (2012) appear to
oppose this explanation, there is reason to suggest that their
experimental design did not provide the conditions under
which the presence of automatic processes could be
adequately detected. For example, their demonstration relies
on a definitive manipulation: Non-predictive cues were
explicitly emphasised as important. If it is assumed that
controlled attention is capable of modulating the expression
of automatic processes, given the appropriate conditions,
then it is possible that the manipulation was too strong,
overriding the influence of automatic attention. Thus,
although this manipulation demonstrates that learned
predictiveness is susceptible to voluntary control via
instruction, it does not test whether automatic processes also
contribute to the effect under uninstructed conditions.

Further, the scenario employed, in which fictitious seeds
grow different trees, potentially favours a more categorical
inferential process whereby the outcome is most likely
attributable to only one of the cues and not the other. This
aspect of the design may have facilitated a complete reversal
based on conceptual aspects of the scenario in addition to
the manipulation of interest.

Therefore, the relative contribution of controlled and
automatic processes to the learned predictiveness effect
remains to be fully specified. The aim of the present
experiments was to investigate this relationship.

Experiment 1

Experiment 1 made use of the same instructional
manipulation employed by Mitchell et al. (2012), albeit with
a different cover scenario, in order to replicate their original
result. The allergist scenario, employed in numerous
demonstrations of learned predictiveness (e.g., Le Pelley &
McLaren, 2003) was used in which participants were asked
to play the role of a doctor who must discover the allergies
of a fictitious patient. The cues consisted of different foods,
which predict the occurrence of various allergic reactions,
serving as outcomes. At the start of phase 2, a new patient
was introduced who consumed the same foods, but suffered
novel reactions. As before, participants were required to
discover which foods were leading to which reactions. The
structure of the training phases is shown in Table 1 and
reflects the standard learned predictiveness design. At the
start of phase 2, one group of participants (the “same”
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condition) were told that it was likely that both patients
were allergic to the same foods, whereas those in the
“change” condition were instructed that their two patients
likely suffered from allergies to different foods.

In line with the findings of Mitchell et al. (2012), we
anticipated that the bias in learning observed in learned
predictiveness would proceed according to the instructions
issued at the start of phase 2 training.

Method

Participants Forty-eight University of Sydney students (27
female, 21 male; age 18 — 24) participated in the
experiment.

Apparatus and Stimuli All experiments were conducted on
Apple Mac Mini computers attached to a 17-in. monitor,
and programmed in PsychToolbox for Matlab (Brainard,
1997; Pelli, 1997). Foods were randomly allocated for each
participant to serve as cues A — Z in the experimental
design, and consisted of: Coffee, Fish, Lemon, Cheese,
Eggs, Garlic, Bread, and Peanuts. Similarly, four allergic
reactions were randomly allocated to serve as the four
outcomes, and were: Headache, Nausea, Rash, and Fever.

Procedure After being randomly allocated to either the
same or change conditions, participants were instructed that
their task was to learn which foods were causing which
allergic reactions in a fictitious patient. They were told that
on every trial, two foods that the patient had eaten would be
presented. On being shown the foods, participants were
required to predict which of two allergic reactions would
occur.

Phase 1 consisted of the eight trial types shown in Table
1. Each of these was presented once in each of 16 blocks of
trials. The order of trials was randomised across blocks.
Each trial was followed by feedback stating whether their
prediction was correct, as well as providing the actual
allergic reaction experienced.

At the start of phase 2, participants were told that they
now had a new patient and, as before, would be required to
learn which foods were causing which allergic reactions.
Those in the same condition were told that their new patient
was allergic to the same foods as their previous patient,
whereas those in the change condition were instructed that
their new patient was allergic to different foods.

Phase 2 consisted of 16 blocks, each of which contained
one of the four trial types shown in Table 1. As before, trial
order was randomised within blocks and feedback was
provided after each trial.

A test phase was administered immediately following
phase 2. All cues were presented individually and in a
randomised order throughout this phase. On each test trial, a
cue would appear and participants were asked to indicate
whether the cue had been paired with outcome 3 or outcome
4. This was done by making a rating on a linear analogue
scale, labelled “Definitely goes with [outcome 3]” on the

left anchor, and “Definitely goes with [outcome 4] on the
right anchor.

Finally, a manipulation check was included to ensure that
participants had remembered the instructions at the start of
phase 2. Participants were presented with both sets of
instructions and required to report which of those applied to
their patient. There were no exclusions on the basis of this
check.

Results

Phase 1 For each block, accuracy was averaged across the
eight compound trials to gauge acquisition. Accuracy
increased consistently across training. A mixed-measures
analysis of variance (ANOVA) with block (1-16) and
condition (same vs. change) as factors revealed a significant
main effect of block, F(15, 690) = 40.1, p < .001, but no
significant effect of condition, F' < 1, and no block x group
interaction, F' < 1, suggesting that the two groups learned at
an equivalent rate in phase 1.

Phase 2 A mixed-measures ANOVA examining phase 2
acquisition showed a significant effect of block, F(15, 690)
=44.13, p =< .001, as well as a significant block x group
interaction, F(15, 690) = 2.1, p < .05. The effect of
condition did not reach significance, F(1, 46) = 3.95, p =
.053.
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Figure 1. Learning scores for the same and change
conditions for previously predictive and previously non-
predictive cues

Test data A learning score for each cue was calculated by
combining accuracy for memory of the cue-outcome
pairings in the test phase with the magnitude of the rating.
This yielded a score out of 100 for each cue, with higher
scores indicating better retention. Scores could range
between 100 and -100. Scores were averaged according to
whether they were predictive (A — D) or non-predictive (W
— Z) in phase 1. These are shown for the same and change
conditions in Figure 1.
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Scores were subjected to a mixed-measures ANOVA with
group (same vs. change) and cues (predictive vs. non-
predictive) as factors. Averaged over cue, there was no
significant difference between the same and change
conditions, F' < 1. Similarly, there was no effect of cue, F <
1. However, as suggested by Figure 1, this resulted from a
significant cue x group interaction, F(1, 46) = 8.79, p <.05.

This was further investigated with a simple effects
analysis, which revealed that learning scores for predictive
cues was higher than non-predictive cues in the same
condition, F(1, 23) = 11.51, p <.05. The difference between
predictive and non-predictive cues did not differ
significantly in the change condition, F < 1.

Discussion

Our data provide a partial replication of Mitchell et al.
(2012). While the same condition showed a standard learned
predictiveness effect, this was abolished rather than reversed
in the change condition. That is, there was no difference
between previously predictive and previously non-predictive
cues when participants were told that non-predictive cues
were informative for the second phase.

Overall, a clear effect of instruction was observed making
use of a scenario in which it is less likely that causal
attribution is biased towards categorical reasoning. This
suggests that the result of Mitchell et al. (2012) is not
entirely a consequence of the conceptual structure of their
scenario, further validating the influence of voluntary
control on learned predictiveness.

However, it is important to note that our reversal was
incomplete in the critical condition. On the basis of the
current design, it is unclear why this should be the case. It is
possible that the results from the change condition reflect
competition between opposing inferential and automatic
processes. While automatic processes would bias learning in
favour of previously relevant cues, explicit inference
favours irrelevant cues.

Alternatively, there may be added difficulty in the change
condition. If more is learnt about the predictive cues in
phase 1, this means that they may be required in order to
confirm the new object of attention, that is, the previously
irrelevant cue. That is, if the explicit identity of the
previously irrelevant cues is uncertain due to the fact that
little learning has proceeded to these cues, then previously
relevant cues may be actively used to guide responding.
This is an additional process that is not necessary in the
same condition.

Given that the reversal design does not allow the
contribution of automatic processes to be assessed,
Experiment 2 wused an orthogonal manipulation of
predictiveness in phase 1 and instruction to further test the
relative contribution of voluntary and automatic processes.

Experiment 2

Experiment 1 confirmed that learned predictiveness is
susceptible to the manipulation of inferred beliefs. In
Experiment 2, we aimed to further test the involvement of
automatic processes. This was done by orthogonally
manipulating the predictive status of cues in the first phase
and the instructional manipulation. The design of
Experiment 2 is shown in Table 2. The first phase of
training was identical to that seen in Experiment 1. At the
end of the initial training phase, all participants were told
explicitly which foods the new patient was allergic to.
However, two of those cues were previously predictive,
while two were previously non-predictive. That is, they
were told that the new patient was allergic to cues A and C,
and X and Z.

This means that there were two cues (A and C) that were
predictive in phase 1, and known to cause allergies in the
new patient, and two previously predictive cues (B and D)
known not to be allergens. Similarly, of the previously non-
predictive cues, two (Z and X) were now known to cause
allergies, and the remaining two (Y and W) known to be
safe. The design therefore creates the condition in which an
unambiguous instructional manipulation is present without
removing the opportunity to observe an automatic influence
of phase 1 training, if indeed it is present.

Table 2. Design of Experiment 2.

Phase 1 Phase 2 Test
AW -0l AY-03 A
AX -0l BZ - 04 B
BW -02 CW-05 C
BX -02 DX-06 D
CY -0l w
Cz-0l1 X
DY - 02 Y
DY - 02 Z

Note. Letters indicate individual cues.
Underlined letters indicate cues
instructed as informative for phase 2.
01 — O6 refer to six outcomes.

If, as suggested by the findings in Experiment 1,
controlled processes are in operation, then a clear influence
of instruction should be observed whereby more will be
learned about cues A, C, X, and Z in the second phase.
However, if automatic attention favouring predictive cues is
also present, then a difference should also be observed
between instructed cues according to whether they were
relevant (A and C) or irrelevant (X and Z) in the first phase.
Given the advantage conferred by predictive utility, this
predicts that more should be learned about A and C
compared to X and Z.
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Method

Participants Participants comprised twenty-four University
of Sydney students (20 female, 4 male; age 18 — 23).

Apparatus and Stimuli Experimental stimuli remained the
same as that employed in Experiment 1, with the exception
that two additional allergic reactions were introduced to
account for added outcomes in the design. These were
Coughing and Sweating.

Procedure Phase 1 training and instructions remained
identical to that used in Experiment 1. Following phase 1,
participants were told that they were now observing the
allergies of a new patient, but that they would be provided
with a set of foods that the patient was allergic to. They
were shown the names of four foods, corresponding to cues
A, C, X, and Z and were informed that they would need to
learn which of these corresponded to the various reactions
that the patient was experiencing.

Given that foods were named explicitly, a shorter phase 2
with fewer trials per cue was employed. Participants
completed four blocks, each block consisting of one of the
four trial types shown in Table 2. On each trial, participants
were now required to predict which of four allergic
reactions would occur.

During test, each cue was displayed individually in
random order. The four outcomes were displayed on screen
and participants were asked to indicate which of these the
cue had been paired with. This was followed by the
appearance of a rating scale, asking how confident they
were in their response. The left anchor was labelled “Not at
all confident”, and the right anchor labelled “Very
confident”.

Finally, the manipulation check required participants to
report the instructed allergens of the second patient. Five
participants were excluded, having failed to report this
content, leaving 19 participants in the analysis.

Results

Phase 1 Acquisition across blocks increased steadily for
phase 1. A repeated-measures ANOVA showed a significant
main effect of block on accuracy, F(15, 270) = 13.01, p <
.01.

Phase 2 Overall, accuracy increased during phase 2,
resulting in a significant main effect of block on accuracy,
F(3, 54) = 12.95, p < .01. However, acquisition varied
according to whether a compound contained an instructed
component that was previously predictive or an instructed
component that was previously non-predictive, such that
accuracy was significantly higher for the former (AY/CW
higher than BZ/DX), F(1, 18) = 7.25, p < .05. The
interaction was not significant, F < 1.

Test data Accuracy scores, shown in Figure 2, were
subjected to a repeated-measures ANOVA  with

predictiveness  (predictive  vs. non-predictive) and
instruction (instructed vs. ignored) as factors. This revealed
a significant main effect of instruction, F(1, 18) = 18.28, p <
.01, as well as a significant instruction X predictiveness
interaction, F(1, 18) = 10.6, p < .01. The effect of
predictiveness failed to reach significance, F < 1.

A simple effects analysis investigating the interaction
showed that for instructed cues, accuracy was significantly
higher for previously predictive cues, F(1, 18) = 5.7, p <
.05. Interestingly, this was reversed for the remaining cues,
such that accuracy was significantly higher for previously
non-predictive cues, F(1, 18) =6.4, p < .05.

17 B Predictive
0.8 7 ONon-predictive
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Figure 2. Accuracy scores for previously predictive and
previously non-predictive cues at test in Experiment 2 for
the instructed and ignored conditions.

Discussion

Consistent with the findings in Experiment 1, there was
clearly an effect of instructional manipulation. However, the
learned predictiveness effect was still evident amongst cues
known to be allergenic. That is, more was learned about the
previously predictive cues compared to previously non-
predictive cues, despite the explicit knowledge that both sets
of cues were allergens. This is consistent with the
involvement of automatic processes transferred from initial
learning.

However, it is interesting to note that the opposite pattern
emerged for cues that were not instructed as allergens, and
would presumably be ignored by participants. Thus it
appears that previously predictive cues were easier to ignore
when known to be irrelevant. This may reflect a general
benefit of prior predictive utility whereby attention is more
easily directed either towards or away from stimuli in novel
situations.

Alternatively, the difference in acquisition during phase 2
between compounds that contained instructed components
that were previously predictive (AY and CW) and non-
predictive (BZ and DX) raises the possibility that some sort
of automatic interference from phase 1 means that less is
learned in general about phase 2 compounds in which
participants have to attend to the previously non-predictive
cue and ignore the previously predictive cue. If these
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compounds were indeed more difficult to learn, despite
explicit instruction, this would result in the observed lower
accuracy for instructed, yet previously irrelevant cues at
test.

General Discussion

The experiments reported above suggest that a purely
inferential account of learned predictiveness is insufficient
to fully characterise the effect. However, it is clear that
proposing an additive influence of inferential reasoning and
automaticity is similarly inadequate as the results reported
here suggest an interaction between the two.

For example, in phase 2 of Experiment 2, participants
were given information that directly informed them which
cues the patient was and was not allergic to. Even though
participants could have ignored the non-causal cues
completely, some learning of the cue-outcome relationships
was evident. The result of interest regarding these non-
causal cues was that previously predictive stimuli were
learned about more poorly than previously nonpredictive
stimuli. If the effects of the prior predictive history of the
cues simply added or subtracted from selective attention in
an automatic fashion then one would expect the opposite
result for this incidental learning. That is, the predictive cues
should be learned about more readily than the nonpredictive.
This result suggests an interaction between control of
attention and the effects of prior predictive history, which is
not explained by either an inferential account nor the
conventional associative account of learned predictiveness.

Accordingly, there are a growing number of studies that
show that the learned predictiveness effect does not operate
via the competitive associative algorithms of attentional
change described by Mackintosh (1975; Le Pelley, 2004;
Pearce & Mackintosh, 2010). For instance, Le Pelley et al.,
(2010b) found that competition between cues in compound
was not necessary for learned predictiveness to occur, and
Livesey et al. (2011) found no evidence that direct
comparison between predictive and nonpredictive cues
affected the magnitude of learned predictiveness at all. The
current study demonstrates another way in which the
automatic allocation of attention appears to behave
differently from model predictions. Although there appears
to be a relatively automatic influence of the previous history
of the cues, that influence only matches the predictions of
associative learning theories for cues that are deliberately
attended and not those that are deliberately ignored.

Clearly an important step in implementing attentional
processes within models of human learning will require
further investigations into the mechanisms responsible for
biases in learning related to past predictive utility. Such
biases remain to be fully specified with regards to how
information is attended and ignored.
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