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Abstract

Fitting multi-parameter models to the behavior of individual
participants is a popular approach in cognitive science to
measuring individual differences. This approach assumes that
the model parameters capture psychologically meaningful and
stable characteristics of a person. If so, the estimated
parameters should show, to some extent, stability across time.
Recently, it has been proposed that hierarchical procedures
might provide more reliable parameter estimates than non-
hierarchical procedures. Here, we examine the benefits of
hierarchical parameter estimation for assessing parameter
stability using Bayesian techniques. Using the transfer-of-
attention-exchange model (TAX; Birnbaum & Chavez, 1997),
a highly successful account of risky decision making, we
compare parameter stability based on hierarchically versus
non-hierarchically estimated parameters. Surprisingly, we
find that parameter stability for TAX is not improved by
using a hierarchical Bayesian as compared to a non-
hierarchical Bayesian approach. Further analyses suggest that
this is because the shrinkage induced by hierarchical
estimation overcorrects for extreme yet reliable parameter
values. We suggest that the benefits of hierarchical techniques
may be limited to particular conditions, such as sparse data on
the individual level or very homogenous samples.

Keywords: cognitive modeling; parameter consistency; risky
choice; hierarchical Bayesian modeling; transfer-of-attention-
exchange model

Introduction

In cognitive science, a highly popular approach to
describing and understanding behavior is to develop models
with adjustable parameters that can be fitted to data. As
parameters of cognitive models are usually supposed to
represent meaningful aspects of cognitive processing, they
are often used to study, measure, and describe individual
differences between people. For illustration, consider
cumulative prospect theory (CPT; Tversky & Kahneman,
1992), one of the most prominent models of decision
making under risk. According to CPT, responses to a risky
alternative (which lead to different outcomes with particular
probabilities) are a function of several factors including a
person’s sensitivity to probability information and her
relative overweighting of losses as compared to gains (“loss
aversion”). In the model, both probability sensitivity and
loss aversion can be quantified by adjustable parameters,
and several studies have employed CPT to investigate how

differences in age (Harbaugh, Krause, & Vesterlund, 2002),
gender (e.g., Fehr-Duda, Gennaro, & Schubert, 2006), or
personality (Pachur, Hanoch, & Gummerum, 2010) affect
risky decision making. Cognitive modeling thus allows
individual differences in behavior to be decomposed into
underlying cognitive components.

Using individually fitted model parameters to measure
individual differences relies on the assumption of parameter
stability—that is, that the parameter values estimated for a
person remain relatively invariant across time (Yechiam &
Busemeyer, 2008). This applies in particular when modeling
risky decision making, where it is often assumed that
people’s choices and their cognitive underpinnings reflect
stable preferences (Yechiam & Ert, 2011). In principle,
however, it is possible that differences in parameter
estimates between people simply reflect unsystematic
variability (i.e., noise) rather than stable characteristics. In
that case, fitting parameters of cognitive models would not
be very useful because the results obtained would not
generalize beyond a given task or situation.

Glockner and Pachur (2012) found some evidence for
temporal stability of the parameters of CPT: parameters
fitted to individual participants’ choices at each of two
separate  experimental sessions were (moderately)
correlated. But does this finding also extend to other models
of risky decision making? And—more importantly—do
conclusions regarding a model’s parameter stability depend
on how the parameters are estimated? Whereas parameters
are traditionally estimated independently for each single
participant, it has recently been proposed that more reliable
estimates might be achieved by using hierarchical Bayesian
procedures, which exploit group-level distributions to
inform individual-level estimation (e.g., Gelman & Hill,
2007; Lee & Webb, 2005).

Our goal is to examine whether conclusions regarding the
parameter stability of a cognitive model are affected by the
statistical method used to obtain the estimates. In particular,
we compare hierarchical Bayesian techniques against non-
hierarchical Bayesian procedures in a decision-making
context. We investigate this issue for the transfer-of-
attention-exchange model (TAX; Birnbaum & Chavez,
1997), which has been claimed to provide a better account
of decision making under risk than CPT (Birnbaum, 2008).
For example, Birnbaum (2008) showed that TAX can
correctly account for several violations of CPT, such as
violations of gain—loss separability, coalescing, and

1277



stochastic = dominance, while being able to also
accommodate apparent loss aversion and risk aversion.

Hierarchical Bayesian Parameter Estimation

The application of hierarchical Bayesian techniques is
becoming an increasingly popular tool to estimate cognitive
models, including models of judgment and decision making
(Lee & Wagenmakers, 2013; Nilsson, Rieskamp, &
Wagenmakers, 2011; Scheibehenne, Rieskamp, &
Wagenmakers, 2013). Hierarchical Bayesian techniques are
attractive because the approach naturally lends itself to the
hierarchical data structure inherent in many psychological
experiments, where a single individual provides many
observations and researchers aim to draw conclusions on the
aggregate group level. The alternative, “independence”
approach, by contrast, is to first estimate the parameters of
each individual participant separately and then aggregate
these measures in a second step (Gelman & Hill, 2007).
While feasible, this approach ignores possible similarities
between individuals and does not take into account that
some participants might allow more precise and reliable
estimates than others. Bayesian hierarchical techniques
account for these differences and thus promise to yield more
consistent and accurate estimates (Rouder & Lu, 2005).

The Bayesian approach achieves this because the imposed
hierarchical structure simultaneously informs the individual
level, such that potentially unreliable individual estimates
can borrow strength from the other estimates (Gelman,
Carlin, Stern, & Rubin, 2004). Furthermore, parameter
estimates that are deemed unlikely given the distribution of
the remaining parameter values (i.e., because they are
located at the extremes of the distribution) are pulled closer
towards the group mean and implicitly receive less weight.
This property is referred to as “shrinkage.” For these
reasons, it has been argued that hierarchical methods often
provide a more thorough evaluation of models in cognitive
science (Shiffrin, Lee, Kim, & Wagenmakers, 2008).

Though increasingly popular, Bayesian hierarchical
implementations have been developed for only relatively
few cognitive models of decision making under risk (but see
Nilsson et al., 2011; Wetzels, Vandekerckhove, Tuerlinckx,
& Wagenmakers, 2010). Below we develop, to our
knowledge for the first time, a hierarchical model for
estimating individual participants’ TAX parameters.

Transfer-of-Attention-Exchange Model

TAX is a model of how people evaluate risky alternatives
that can lead to certain outcomes X, each of which occurring
with probability p. For instance, consider whether you
would prefer to play a lottery with a 90% chance of winning
$100 (otherwise nothing) or a lottery with a 10% chance of
winning $1000 (otherwise nothing). According to TAX, the
valuation of a lottery is a weighted average of the utilities of
the outcomes; the weight that each outcome receives
depends on its rank among all possible outcomes (the n
outcomes being ordered such that X; <X, <X; ... X,) and its
probability. To account for the typically found risk aversion

(risk seeking) in gains (losses), is the model assumes that
attention (i.e., weight) is “transferred” from better (worse) to
worse (better) outcomes. Specifically, the valuation, V, of a
lottery A is calculated as

n

5 i-1 5 n
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where & is a free parameter governing the attention shift
from higher to lower outcomes (or vice versa); with 0 <& <
1 attention is shifted from higher (lower) to lower (higher)
outcomes in gains (losses), with 0 > 6 > -1 the opposite
would occur. The function u(X) is the utility function, u(x) =
xP, transforming objective outcomes into subjective utilities.
The free parameter B indicates the curvature of the value
function and reflects the decision maker’s sensitivity to
outcome information (with lower values of B indicating
lower sensitivity). t(p) is the probability weighting function,
transforming objective into subjective probabilities, and
equals t(p) = p. v is a free parameter reflecting the decision
maker’s sensitivity to probability information (with lower
values of y indicating lower sensitivity). To derive the
predicted probability that lottery A is preferred over lottery
B, we used an exponential version of Luce’s choice axiom:
efV (A)

p(A, B):W’ (2)

where 0 is a choice sensitivity parameter, indicating how
sensitively a decision maker reacts to differences in the
valuation of lotteries A and B. To summarize, TAX as
implemented here has four free parameters: attention shift
(9), outcome sensitivity (B), probability sensitivity (y), and
choice sensitivity (0).

Data We applied TAX to model the data reported in
Glockner and Pachur (2012). In this study, 63 participants
(25 male, mean age 24.7 years) indicated their preference
between two-outcome monetary lotteries at two
experimental sessions that were one week apart. At each
session, the participants were presented (on a computer)
with 138 lottery problems that contained pure gain, pure
loss, and mixed lotteries, all drawn from sets of lottery
problems used in previously published studies; 38 of the
problems were shown at both sessions (see Glockner &
Pachur for details). The outcomes of the lotteries ranged
from —€1000 to €1200. At the completion of each session,
one of the chosen lotteries was picked randomly, played out,
and the participant received an additional payment
proportional to the outcome.

Parameter Estimation

To estimate the free parameters of TAX, we implemented
two Bayesian versions of the model—a hierarchical version
and an independent (i.e., non-hierarchical) version.
Bayesian modeling requires a detailed specification of the
likelihood function and the prior probability distributions of
all model parameters. For the independent version, we

1278



specified the likelihood function based on Equations (1) and
(2). The priors for the free parameters were set to uniform
probability distributions that span a “reasonable” range that
excluded theoretically implausible values and allowed for
ample space to include parameter values found in previous
research (Michael Birnbaum, personal communication). In
particular, the priors ranged from —2 to 2 for the d parameter
and from 0 to 5 for the B, y, and 6 parameters.

In the hierarchical version, we utilized the same functions
as in the independent version but partially pooled the
individual parameters using normally distributed group-
level distributions. Uninformative priors were assigned to
the respective means and standard deviation of these group-
level distributions. The group-level means were assumed to
be normally distributed with mean 0 and variance 1. The
prior on the group-level standard deviation was uniformly
distributed ranging from 0 to 10. To ensure proper
parameter scaling, the group-level parameters were linked
onto the individual level through a probit transformation
(Rouder & Lu, 2005). As this transformation yields a
parameter range from 0 to 1 on the individual level, an
additional, linear linkage function was interposed that
stretched the parameter range to match the scale used in the
independent model implementation outlined above (i.e., a
range from —2 to 2 for the § parameter, and a range from 0
to 5 for the B, v, and 6 parameters).

For both the individual and the hierarchical model we
estimated the joint posterior parameter distributions using
Monte Carlo Markov Chain methods implemented in JAGS,
a sampler that utilizes a version of the BUGS programming
language (Lunn, Spiegelhalter, Thomas, & Best, 2009;
Plummer, 2011) that was called from the R statistics
software (version 2.14.0; R Core Team, 2012). A total of
10,000 representative samples were drawn from the
posterior distributions after a “burn-in” period of 1,000
samples. The sampling procedure was efficient as indicated
by a low autocorrelation of the samples, the Gelman—Rubin
statistic, and visual inspection of the chains.

Quantifying Parameter Stability

To the extent that the parameters of a cognitive model
capture stable characteristics of an individual, the
parameters should be invariant across time—at least for
relatively short time intervals and under comparable
measurement conditions (Bland & Altman, 1986). One way
to quantify parameter stability (or reliability) is to correlate
individual parameter estimates between two points in time
(i.e., test and re-test). Higher correlations indicate higher
parameter stability.

As outlined above, one rationale for using hierarchical
Bayesian techniques for parameter estimation is to obtain
more reliable estimates. Thus, one might expect a higher
test-retest correlation when parameters are estimated
hierarchically than when they are estimated for each
participant independently. To test this prediction, we
calculated correlations between the parameter values
estimated for each participant at the two measurement

points (t1 and t2), separately for the individual model and
the hierarchical model.

Correlations were calculated based on the mean posterior
parameter estimates for each measurement point, using
Bayesian techniques implemented in BUGS. A Bayesian
approach to calculating correlations allows correlation
coefficients to be compared based on their posterior
distributions. This avoids many problems inherent in
traditional frequentist statistical procedures that rely on null-
hypothesis significance testing (Kruschke, 2011).

Results

Table 1 reports the best-fitting TAX parameter values on the
group level, obtained from the hierarchical model. As
indicated by the & parameter being larger than 0, participants
displayed risk aversion in gains and risk seeking in losses,
and some reduced sensitivity to outcomes (f being smaller
than 1) and probabilities (y being smaller than 1). Overall,
the parameter values obtained are within the range of values
obtained or used in previous applications of TAX (e.g.,
Birnbaum, 2008).

Table 1: Best-fitting group-level TAX parameters and
their 95% highest density intervals (HDlys).

TAX parameters
o B Y 0

tl

M .33 .65 .64 14
HDIys [.25,40] [.62,68] [.57,.71] [.11,.16]
2

M 35 .63 .61 .16
HDIys  [.27,43] [.60,.65] [.51,.72] [.13,.20]

Figure 1 shows Pearson’s product-moment correlations
(across participants) between tl and t2 for each of the four
TAX parameters. As can be seen, the mean correlation
coefficient for the § and the y parameters is slightly higher
when they are estimated hierarchically than when they are
estimated independently. However, this difference is not
credible, as the 95% highest posterior density interval
(HDIys) includes zero. For the B parameter, the correlation is
slightly — higher =~ when parameters are estimated
independently, and for the 6 parameter the test-retest
correlation is clearly lower for the hierarchical than for the
independent estimates. A similar picture emerges based on
Spearman’s rank correlations (not shown).

Why Does Hierarchical Estimation Fail to Improve
Parameter Stability?

The results indicate that applying a hierarchical TAX model
does not yield higher parameter stability on the individual
level. At first sight, this seems surprising given the
supposed advantages of hierarchical techniques that
“borrow strength” from distributional information on the
group level to improve estimations on the individual level.
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Figure 1: Stability of each TAX parameter as indicated by

the mean product-moment correlation across participants

between tl and t2. Circles indicate independent estimates,
triangles indicate hierarchical estimates. Error bars = HDIos.

To explore the reasons for this result, it is instructive to
take a closer look at the distribution of the parameter
estimates obtained. For illustration, Figure 2 displays the
posterior means for the independently estimated B parameter
values at tl and t2 (upper and lower row, respectively) as
well as the hierarchically informed estimates at t1 (middle
row) for a subset of 20 representative participants; for each
person the estimates are connected by a line. As could be
expected, given the partial pooling enforced through the
introduction of the higher level group distribution in the
hierarchical model, the hierarchical estimates show a lower
dispersion than the individually estimated parameters (the
same holds for the hierarchical estimates at t2, which are not
shown). This shrinkage is particularly pronounced for
extreme parameter estimates, that is, those that are far away
from the group-level mean. The reason is that these
estimates appear rather unlikely with respect to the group-
level distribution and are thus implicitly treated as outliers
in the hierarchical model.

Unwarranted Shrinkage Importantly, however, Figure 2
further shows that the shrinkage of the hierarchical method
is not necessarily warranted: for the independently estimated
parameter values there is rather good correspondence
between tl and t2 even for participants with rather extreme
parameter values. That is, individuals who have a high B
value at t1 also tend to have a high B value at t2; the same
applies for small  values. Thus, our analysis shows that in
the context on hand extreme estimates often reflect
meaningful and reliable characteristics of individuals. The
partial pooling enforced by the hierarchical modeling
somewhat distorts the individual parameter estimates by
pulling them too much towards the group-level mean.

0.0 0.2 04 06 08 10 1.2
L I I I I I I

t1 individual

t1 hierarchical

t2 individual

00 02 04 06 038 10 12

Figure 2: Mean posterior estimates of the  parameter of
TAX separately for each individual at t1 and t2 (upper and
lower row) and the hierarchically estimated parameters at t1
(middle row) for a representative subset of 20 participants.

Diminished test-retest correlation The unwarranted
shrinkage imposed by hierarchical modeling does not
inevitably lead to lower test-retest correlations. After all, it
could be that the compressed hierarchical estimates are
nevertheless more reliable and thus stable over time than the
(more dispersed) parameter values estimated on the
individual level. As we will outline next, however, that does
not seem to be the case.

Figure 3 displays a scatterplot for the 6 parameter
separately for the independent and the hierarchical
estimates. The 0 parameter provides an instructive example
because here the difference between the correlations for the
individual and the hierarchical estimates is particularly large
(Figure 1). Figure 3 shows that the high correlation for the
independent estimates is partly due to some individuals
having high values on the 6 parameter at both measurement
points. As mentioned above, although these values are much
higher than for most individuals in the group, they
nevertheless seem to be reliable in the sense that they are
equally high at both measurement points. In contrast, the
range of the hierarchically estimated parameters is much
narrower (note that the axis scales in the figure were
adjusted to best display the data). Furthermore, the
hierarchical model seems to affect the individual parameter
estimates to different degrees. This occurs because the
influence of the group-level depends, among other aspects,
on the variance and the mean of the individual estimates. As
indicated by the shape of the scatterplot in the lower panel
of Figure 3, this effect pulls the parameter estimates towards
the mean and thus leads to a lower (linear) relationship
between the two measurement points. In that sense, the
hierarchical method also induces shrinkage on the
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correlation coefficients. In situations where the correlation
of the individually estimated parameters is reduced due to
unreliable  outliers, however, applying hierarchical
techniques will shrink these outliers and may then yield
higher parameter stability.

Individual o g .

Hierarchical
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Figure 3: Scatter plot of the mean posterior estimates for the
0 parameter at t1 and t2. Each point represents one
participant. The upper panel shows the parameter values
obtained by individual estimation; the lower panel shows
the parameter values obtained by hierarchical estimation.
Note that the value ranges on the axes are much smaller in
the lower panel.

Discussion

The psychological content and generalizability of a
cognitive model hinges on the extent to which its parameters
reflect stable characteristics of an individual. Conclusions
regarding a model’s parameter stability may be affected by
the statistical procedures used to estimate these parameters.
Specifically, researchers must decide whether to employ
hierarchical techniques or to estimate each person
individually.

Our analyses show that the free parameters of the TAX
model are rather consistent across time, indicating that the
model captures stable aspects of decision makers’ risk
attitude and their outcome and probability sensitivity. This
finding parallels previous results obtained for CPT based on
the same data using maximum likelihood estimates
(Gléckner & Pachur, 2012). Most importantly—and rather
unexpectedly—our analysis provided no evidence that
hierarchical Bayesian techniques yield more stable
parameter estimates than the alternative approach of
estimating each participant independently from the others.

Why did the shrinkage of the hierarchical procedure
yielding distorted estimates? In principle, one possibility is
that the distribution of the individual parameter values is bi-
modal, which would render group-level means futile. As
indicated by visual inspection, however, the parameter
distributions for our data were mostly unimodal in shape, so
this cannot explain why the hierarchical procedure distorted
the estimates.

Another possibility could be the prior distribution used for
shrinkage. To achieve an optimal balance between complete
pooling and complete independence, the degree of shrinkage
in the hierarchical model is represented by a free parameter
(representing the variance of the group-level distributions)
estimated from the data. In principle, the choice of prior on
the variance could impose an unwarranted amount of
shrinkage (i.e., a low variance), for instance, if much weight
is put on low variances, or if the prior does not allow for
large variances in the first place. For the current data,
however, the posterior estimates for the group-level
standard deviations were far away from the upper
boundaries of the uniform prior distributions on the group-
level. The choice of prior on the variance of the group-level
distributions is thus an unlikely reason for the undue amount
of shrinkage.

Generalizability Although our demonstration focused on
one particular cognitive model, we suspect that the
conclusions will hold for other models as well—particularly
in the domain of judgment and decision making; here,
people often rely on different strategies (e.g., Pachur &
Olsson, 2012; Scheibehenne et al., 2013) and parameter
heterogeneity thus reflects genuine differences between
people. In such a case, the parameter estimates will not
regress towards the mean if more data or more precise
measures are collected.

Advantages of Hierarchical Approaches The case on
hand may be different from situations in which hierarchical
Bayesian techniques have been shown to outperform
independent parameter estimates. In a classic example,
Efron and Morris, (1975) predicted the success rate of
professional baseball players for an entire season based on
their success rate early in the season. This prediction was
greatly improved through the application of hierarchical
techniques. Presumably, this improvement occurred because
the differences in the success rates of professional baseball
players are rather small (they are all pretty good players)
and random noise will equal out throughout the season.
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Under this condition, there will be regression towards the
mean, which benefits hierarchical Bayesian techniques.

Another situation in which hierarchical Bayesian
estimates presumably provide more accurate results than
independent estimates is when only very little data is
available for each individual, yielding high uncertainty on
the individual level. Here, the unreliability on the individual
level might be reduced through partial pooling.

Finally, hierarchical modeling techniques might be
beneficial for comparisons on the group level (Gelman &
Hill, 2007), where the goal is not to improve the reliability
on the individual level but to derive robust estimates for the
group as a whole. As a consequence, the implicit weighting
imposed through hierarchical estimation methods might also
be advantageous for making out-of-sample predictions for
new group members.

Summary

Our results indicate that hierarchical Bayesian techniques
do not necessarily improve the reliability of individual
parameter estimates. Therefore, researchers aiming to
predict individual behavior may be better advised to rely on
individual estimates instead. As discussed above,
hierarchical models might have specific strengths in
situations in which very little information is available on the
individual level, when the group is very homogenous, or
when the goal is to describe and compare groups as a whole.
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