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Abstract

I argue that linear correlations between log word frequency,and
lexical measures, cannot be taken as evidence for a “Princi-
ple of Minimum Effort”. The Principle of Maximum Entropy
indicates that such relations are in fact the ones most proba-
ble to be found. For such claims, one needs to compare the
correlations with adequate baselines reflecting what would be
expected in a purely random system. I then introduce a way
of computing such baselines, and use it to show that the cor-
relations found in a corpus are actually weaker than what one
would expect to find by chance. Therefore, if an argument
were to be made based on them, it would paradoxically be that
language is worse for communication than what one would ex-
pect to find in a random system. More appropriately however,
what these results reflect is that such correlations are not the
best places to look for linguistic optimality.

Keywords: Corpus Study; Lexical Ambiguity; Principle of
Maximum Entropy; Zipf’s Law of Abbreviation

Introduction

Arguments about language being optimal for communication
have a long tradition within the cognitive sciences, dating at
least as far back as Zipf (1935). Zipf observed that, across
many texts, there is an inverse correlation between a word’s
frequency of occurrence and its length in characters, which is
now referred to as Zipf’s Law of Abbreviation (ZLA). This
observation led him to his “Principle of Least Effort” (Zipf,
1949): Humans prefer shorter words to refer to frequent con-
cepts, so that the overall length of utterances will be mini-
mized, and so will the effort required to produce them. In this
form, from the speaker’s (or writer’s) point of view, the opti-
mality of human language would be measured by the amount
of effort required by a speaker to produce an utterance. Zipf
also realized that, from the comprehender’s perspective, opti-
mality would not be so much concerned with the length of an
utterance as it would with the ease with which it can be unam-
biguously decoded. Jointly considering both the perspective
of the speaker and that of the comprehender, the structure of
language would be subject to a trade-off between utterance
length and degree of ambiguity. Zipf was somewhat vague
with respect to how such trade-off could be measured, but his
general idea is considered valid ever since.

As compelling as Zipf’s arguments seem, very early on,
researchers in Information Theory and Psychology noticed
that they may not be as informative as Zipf thought. Both
Mandelbrot (1953) and Miller (1957) realized that the neg-
ative correlation between a word’s frequency of occurrence
and its length in characters (i.e., ZLA) would also arise in
randomly generated texts that lack any linguistic structure or
communicative value whatsoever; what Mandelbrot dubbed
a “typing monkeys” process, and Miller —somewhat less

graphically— called an “intermittent silence” process. The
validity and importance of Zipf’s original observations on
the distribution of word frequencies and word lengths is be-
yond doubt, as is evidenced for instance in a whole family of
power-law distributions and phenomena across many unre-
lated fields of science being currently named in Zipf’s honor
(e.g., Zipf’s Laws, Zipfian distributions, Zipf-Mandelbrot dis-
tribution). However, Zipf’s interpretation that such properties
reflect the optimization of human language structure is dis-
confirmed by the fact that those very same properties are also
found in systems that are not the result of any optimization
process. The properties are therefore not informative about
the optimality of the process that generated them. This high-
lights a problem that is exhibitted by many claims on lan-
guage properties that reflect some form of optimization: The
lack of a non-optimal baseline against which to test whether
such inferences are perhaps non sequiturs.

Let us consider a non-linguistic example. Suppose I put
forward a theory on the processes governing the outcome ob-
tained when throwing two particular dice. The dice them-
selves would be beyond my possible observations (e.g., in-
side a black box), but I would have access to the sum of their
outcome. My theory could state that the dice are loaded so
that they strongly favor a non-extreme (or optimal) outcome
of three or four dots. In order to test my theory, I would col-
lect data from many dice throws (with access only to their
summed values). After obtaining a few thousand throws, if I
found that the average value of the sum is seven (with some
preset degree of precision), which is fully consistent with my
theory. As it happens, however, seven would also be the most
likely value of the sum, even if the dice were not loaded.
Therefore, I could not take the evidence from the average
value as support for my theory, as it would also be consis-
tent with the a priori more likely theory that the dice are not
loaded. As we will see below, one can objectively say that the
unloaded theory is more probable a priori using mere proba-
bilistic arguments (the Principle of Maximum Entropy).

In the example above, the prediction used to test the hy-
pothesized property holds trivially for the most probable out-
come. One can of course design situations in which the seven
sum property does not hold (e.g., by loading the sixes on
dice). Still, even if it is possible to artificially design such
a scenario, it is still the case that the most probable outcome,
whether or not any optimization is at work, is that the prop-
erty will hold (i.e., the dice will sum up to seven). However,
even if the property were less evident than the one used in
this example, testing it also on a few non-optimal baselines
would enable us to see that such property does not signal the
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presence of optimization.

This discussion is motivated by the recent publication of
several papers making claims on the optimality of human lan-
guage which suffer from the same lack of baseline problem.
In what follows, I begin by summarizing four of these re-
cent arguments for language optimality. I then introduce the
Principle of Maximum Entropy, and use it to show analyti-
cally that the findings presented as evidence for communica-
tive optimality turn out to be trivial predictions that will also
be observed in the most probable non-optimized baselines. In
the data section, I analyze a corpus of English to assess the
strength of the effects used to argue for optimality. The re-
sults show that these effects are in fact significantly weaker
than what one would expect to find by mere chance. In other
words, if one took such correlations as evidence for optimiza-
tion, one would have to conclude that human languages are
actually less optimized than one would expect by chance. I
conclude with a discussion of how Information-Theory can
be used to make predictions on the optimality of human lan-
guages that do indeed survive the non-optimal baselines tests.

Some Information Theoretical Arguments for
Communicative Efficiency

In a recent study, Piantadosi, Tily, and Gibson (2012) extend
ZLA to the domain of lexical ambiguity. Following Zipf,
they argue that short words require less effort to be produced
than longer words would. Therefore, by a similar principle of
economy, it would be beneficial to encode as many meanings
as possible using the shorter words, and then use the redun-
dancy present in the context to disambiguate them. They sup-
port this claim by showing that, in corpora of three languages,
there is indeed a negative correlation between word ambigu-
ity and word length when other factors (e.g., frequency) are
considered.

A second prediction of Piantadosi et al. (2012) considers
the fact that more frequent words have a more accessible lex-
ical representation, as is evidenced by the fact that they elicit
shorter reaction times and lower error rates in a broad range
of lexical processing experiments (e.g., Oldfield & Wingfield,
1965). That a word is easy to access makes it a desirable
candidate to carry many meanings (or be associated to many
uninflected word lemmas) in a system that is optimized to
make the production and comprehension of words as effort-
less as possible. Therefore, they predict a positive correlation
between a word’s frequency and the number of distinct mean-
ings (or lemmas) associated with it. Their analyses of several
corpora indeed find this correlation.

As convincing as these arguments might seem, I will ar-
gue below that the findings are but trivial consequences of
ZLA, and do not provide support the communicative hypoth-
esis that is put forward. I will further discuss, ZLA is itself
a trivial property of most symbolic sequences, irrespective of
whether they are optimized.

Piantadosi et al. (2012) also argue that, if one computes the
probability of a word according to a triphone (i.e., phoneme

trigram) model, those words with the highest probability cor-
respond to those that provide a more prototypical example of
the phonotactics of a language. Those words that conform
better to the phonotactic constraints of the language will be
easier to pronounce and recognize. Following the “least ef-
fort” argument, they predict that words with high phonotactic
predictability should be associated with more meanings (or
word lemmas) than words with lower phonotactic probabil-

ity.

The Principle of Maximum Entropy

Before making any claims that a particular distribution of lin-
guistic probabilities (of words, words lengths, degrees of am-
biguity, etc.) constitutes evidence for language being “op-
timized for human communication”, one should check what
kind of such distributions one would expect to observe by
mere chance, irrespective of the presence any hypothetical
optimization process. The relevant properties of the distribu-
tion (e.g., ambiguous words being more frequent, etc.) should
be found to be significantly more (or less) marked in actual
linguistic data than one would expect them to be.

This raises the problem of how to determine, among the
infinite possible discrete probability distributions that words
could have, which ones are the most probable a priori. The
Principle of Maximum Entropy (PME; Jaynes, 1957a, 1957b)
states that, among all probability distributions satisfying a set
of constraints, the most probable one will be the one that
has the highest entropy. The entropy (Shannon, 1948) of a
probability distribution defined over a discrete set of words
W = {wi,wa,ws,...} is given by

HW)=— Y P(W=w)logP(W =w),
weWw

where P(W = w) denotes the probability of encountering
word w in a corpus of text (i.e., its relative frequency of oc-
currence). In what follows, I will use the abbreviated notation
p; = P(W = w;). The most probable assignment of values for
the p; is the one leading to the highest value of H(W), with
the obvious constraint that the values of the p; must all sum
to one, so that they form an actual probability distribution.!
If no additional constraints were present (i.e., any assign-
ment of probabilities could be considered), then, for a finite
set N probabilities, the maximum entropy would be the uni-
form distribution with p; = 1/N. Of course, when one con-
siders the probabilities of words, not all probability distribu-
tions are valid assignments. Rather, these distributions need
to satisfy some basic constraints. These specific constraints
can be requirements such as the existence of a mean word
length or an average degree of ambiguity. Constraints of this
type can be expressed as values of the means of some given
functions. For instance, one such function can be the length
of a word (measured in either characters, phonemes, or sylla-
bles), which maps words into natural numbers (¢ : W — N),

IThe general validity of the PME is demonstrated using simple
combinatorics (cf., Jaynes, 2003).
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and another function can the degree to which words are am-
biguous, which maps words into the non-negative real num-
bers (4 : W — R™). The constraints would then be expressed
as the existance of a mean word length ((¢/(w)),, = L) and a
mean degree of ambiguity ((4(w)),, = A).

The most probable distribution that satisfies the constraints
would then be the solution to the maximization problem:

argmax — Y p;logp;,

wieW
subject to
Yiew P =1
Ew)hw = Lwewpit(wi) =L (1
(AW)w = LwewpiA(wi) =A

Notice that I have added one constraint to indicate that the re-
sulting probability distribution must be normalized. The solu-
tion to such a problem is found analitically using the method
of Laplace multipliers. It must have the form of a Boltzmann
canonical distribution,?

p; = e>»o+7»14(w,-)+7~2ﬂ(wt-)7 (2)
where the parameters Ag, Aj, and A, are Laplace multipliers
whose value is uniquely determined by the individual values
of the word lengths ¢(w;), ambiguities 4 (w;) as well as their
average values L and A.

Implications of the PME

Taking logs on both sides of Eq. 2 reveals that a priori —
assuming the existence of a mean word length (L) and an
average degree of ambiguity (A)— the most probable relation
between our variables of interest is

logp; = Ao + A1 l(w;) + A A(w;). ?3)

This equation already makes important predictions. We
should expect that —everything else being equal— the log prob-
ability of a word (i.e., its log frequency) should be linearly
related to both its length and to its degree of ambiguity. No
assumptions about language being optimized for communi-
cation are necessary to make this prediction, it just happens
to be to most probable type of relation. The signs and val-
ues of the Laplace multipliers A; and A, will determine the
strength and direction of the correlations. They therefore pro-
vide baselines for any effects whose presence is argued to
reflect a form of efficiency or optimality. Without any need
for efficiency, we should expect to find correlations with the
strengths given by A; and A;.

A negative value of A; would indicate that ZLA is in fact
the most likely relation that one should expect to find be-
tween word frequency and word length. Therefore, in or-
der to claim that ZLA provides evidence for communica-
tive efficiency, one should observe that the relation between

2The general form of the solution is due to L. E. Boltzmann. For
a sketch ot the derivation, see, e.g., Moscoso del Prado (2011).

log word frequency and word length is more negative than
A1. This finding complements the previous arguments of
Mandelbrot (1953), Miller (1957), or Ferrer i Cancho and
Moscoso del Prado (2011) that random processes also exhibit
ZLA. It provides a baseline to assess whether the ZLLA ob-
served in a real corpus is stronger than what one would have
expected by mere chance.

Similarly, A, indexes the relation between log word fre-
quency and degree of ambiguity. Piantadosi et al. (2012)’s
finding of a positive correlation between a word’s ambiguity
and its frequency of occurrence (i.e., frequent words are more
ambiguous) can only be interpreted as evidence for optimality
if the regression coefficient found for the degree of ambiguity
is more positive than A;.

A simple rewrite of Eq. 3 results in

~ Mo —logp; + A €(w;)
- o

This indicates that, when word frequency is kept constant or
controlled for, one should also expect to find a linear rela-
tionship between a word’s length and its degree of ambiguity
(with a regression coefficient —A;/A;), as was documented
by Piantadosi et al. (2012). As before, in order to accept Pi-
antadosi and colleagues’ interpretation that their finding is in-
dicative of some form of communicative efficiency, one needs
to ensure that such relation is less marked than —A; /A;.

Although, for reasons of space I do not detail it here, it
is easy to show that a word’s frequency of occurrence in a
corpus is expected to be directly proportional to that word’s
phonotactic probability as computed from an n-phone (e.g.,
diphone, triphone, ...) model whose parameters were com-
puted on that same corpus. If we denote a word’s triphone-
based probability as T;, we can therefore say that kp; ~ 7; for
some value 0 < k < 1 constant across all words. If we substi-
tute on Eq. 3, we obtain

A(w;) - “)

log T; — logk =~ Ao + A £(w;) + A A(w;). 5)

Dividing both sides of Eq. 5 by £(w;) with a simple rearrange-
ment results in

logT; _ ot logk+Xo + A2 A4(w;)
twy) ! 0(w;)

Therefore, when the degree of ambiguity is controlled for,
a word’s log triphone (or diphone, ...) probability normal-
ized by its length, is expected to be non-linearly related to
word length itself (i.e., linearly related to the reciprocal of
word length). One would therefore expect to find the non-
linearities that Piantadosi et al. (2012) found. Hence, such
non-linear relation —by itself— cannot be interpreted to be the
product of an optimization process, contrary to what was ar-
gued by Piantadosi and his colleagues.

In summary, I have shown that the linear relationships be-
tween log word frequency, word length, and word ambigu-
ity —by themselves— do not warrant an interpretation that lan-
guage is optimized for communicative efficient. In the fol-
lowing section, I will estimate the values of the parameters

(6)
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Ao, A1, and A, from corpus data, and T will assess whether
or not they provide evidence for (or against) any sort of opti-
mization.

Corpus Study

In order to test whether the values of the Laplace multipli-
ers (A1, Ap) provide support for the hypothesis that language
is optimized for communicative efficiency, I selected the
29,025 most frequent English content words (adjectives, ad-
verbs, nouns, and verbs) present in WordNet (Miller, 1995).3
The selection was done using their surface word spoken
frequency according the CELEX lexical database (Baayen,
Piepenbrock, & Gulikers, 1995), from where the correspond-
ing word length in phonemes was obtained.* For each word I
counted its number of distinct senses (i.e., ‘synsets’) listed in
WordNet (Miller, 1995). The log of the number of senses was
taken as the measure of a word’s ambiguity (4 (w;) = logN;,
where N; is the number of distinct senses of w;).

I normalized the word frequency counts into relative fre-
quencies adding up to one, and estimated the mean word
length as the weighted average

L={{(w))y =Y pitlw),

w;eW

with p; being the corpus based relative frequency of w;. Sim-
ilarly, the average degree of ambiguity was estimated as

A=(Aw))y = Y, pAW) =) p;logh;.

w;eW w;eW

Using these estimates of L and A, and the individual values of
£(w;) and A(w;), the values of the multipliers Ag,A;, and A,
were estimated by nonlinear maximization (using a Newton-
type algorithm) of

HW)=—-k—ML—AA

subject to the constraints of Eq. 1. In order to keep the results
comparable to those of Piantadosi and colleagues, additional
parameters were added to separate the different grammatical
categories.

The values of the Laplace multipliers were estimated to be
M = —10.37, Ay = —.14, and A, = 1.07. As I discussed in
the previous section, that A; < 0 indicates that ZLA (a neg-
ative correlation between word length and word frequency)
is the most likely relationship between these two variables,

3The same effects reported here were also replicated for other
corpora of English and French. These additional analyses are not
reported here for brevity reasons.

“4Piantadosi et al. (2012) report effects on length in syllables. T
use phoneme-based lengths instead as these are more sensitive, but
I also replicated the same effects using syllable-based lengths. Con-
versely, Piantadosi and colleagues also report that their effects also
held when measuring length in phonemes.

>The log number of senses provides a better approximation to
the psychologically relevant magnitude than does the raw count (cf.,
Moscoso del Prado, 2007). Note however that doing the calculation
on raw counts of word senses did not result on different results.

whether or not any optimization is at work. Similarly, A, >0
implies that we should expect a priori a positive correlation
(all other factors equal) between a word’s frequency and its
degree of ambiguity. As suspected —by itself— the positive
relation between frequency and ambiguity does not warrant
the interpretation of optimization, it is rather what one should
expect, contrary to Piantadosi et al. (2012).

log(Ti)/1(w;)

15 -1.0 -05 00 05
log(Ti)/1(w;)

15 -1.0 -05 00 05

5 10 15 0 1 2 3 4
Lw Aw
» »
~ ~
(=R o4
z z
= oo = oo
c c
g g
< <
© Al v vy vy © -, L L L1
T T T
5 10 15 0 1 2 3 4
Lw Aw
Figure 1: Non-linear effects of word length (left pan-

els) and degree of ambiguity (right panels) on the length-
normalized log triphone probability (top panels) and the
length-normalized log a priori frequency (bottom panels).

To see the actual values of these correlations in the corpus
itself, I performed a linear regression predicting a word’s log
probability from its length and its degree of ambiguity (once
more, | also included additional parameters to separate the
grammatical categories). As Piantadosi et al. (2012), I found
significant effects of both word length and degree of ambigu-
ity (both with p < .0001). Interestingly, the estimated coef-
ficient for word length (B = —.05 4 .003) constitutes a much
weaker effect than the one we would have expected by chance
(A = —.14). This means that the supposed optimization from
ZLA is actually weaker than what one should have expected,
not supporting any optimization. In a similar vein, the coeffi-
cient estimated for the effect of ambiguity (f = .84 4.01) is
also a weaker effect than the chance level (A, = 1.07). Again,
it seems that the negative relation between frequency and am-
biguity that was claimed by Piantadosi and his colleagues to
reflect optimization, is actually significantly weaker than the
expected chance level. This illustrates the importance of hav-
ing meaningful baselines before interpreting lexical statistics.

As discussed in the previous section the ratio —A; /A, = .13

1035



indexes the strength of the correlation between word length
and word ambiguity (after controlling for word frequency)
that we should expect by chance. Indeed, we should there-
fore expect by chance a positive correlation between a word’s
length and its degree of ambiguity, irrespective of any opti-
mization process. The strength of this relationship in the data
is given by the ratio between the corresponding regression co-
efficients B[length]/B[ambiguity] = .05, which is once more
weaker than what we would have expected by chance.

In order to assess the non-linear effects of a word’s phono-
tactic probability, I trained a triphone model using the Brown
corpus of English (Kucera & Francis, 1967) after transcribing
all the words into the phonemic forms using the CMU Pro-
nouncing Dictionary.® T used this triphone model to estimate
the phonotactic probability of each word (7;). For each the
length-normalized log trigram probabilities (log 7; /¢(w;)) and
the length-normalized log a priori probabilities estimated us-
ing the A (logp;/¢(w;)), I fitted a generalized additive model
with a linear predictor for log word frequency (estimated for
the corpus or a priori) and penalized spline smoothers terms
for word length and degree of ambiguity. Fig. 1 plots the es-
timated curves. As predicted, the shape and strength of the
non-linear relations is basically the shame for the actual tri-
phone probabilities (top-panels), as it is for the word prob-
abilities that would be predicted a priori (bottom panels).
Once more, the shape of the relation does not warrant the
interpretation of optimization.

The values of the Laplace multipliers can be used with
Eq. 3 to compute what should be the a priori distribution
of words, considering only their length and degrees of am-
biguity. The log relative frequencies predicted by the method
exhibit a remarkably strong correlation with the relative log
frequencies actually observed (r = .45, 1[29004] = 86.41,p <
.0001). This suggest that the frequency distribution of words
is not that different from the distribution one would expect to
find by chance. In other words, it does not appear to reflect
much specific optimization.

It could be argued that, by using the actual values of word
length and word ambiguity as estimated from the corpus, I
am covertly exploiting the possible correlations that are al-
ready present in their distributions, even before considering
word frequency. To control for this possible confound, I used
a Jackknife technique. New values of word lengths and am-
biguity were randomly assigned to each word by randomly
sampling (with replacement) from the original distributions.
In this way, one obtains distributions of word length and am-
biguity which are fully uncorrelated, but retain their origi-
nal distributional shapes. I repeated this process two hundred
times, re-estimating the values of the Laplace multipliers in
each case. Fig. 2 compares the original A estimates (blue
dots), the distribution of A values obtained in the resampling
(box and whiskers plots), and the B parameters of the regres-
sions on the actual corpus (red crosses). As it can be seen,
even after fully decoupling word length and ambiguity, the

Shttp://wuw.speech.cs.cmu.edu/cgi-bin/cmudict

expected effects are much stronger than those observed in the
corpus. In short, the effects that allegedly reflect optimization
of language for communicative efficiency are actually much
weaker than we should have expected them to be.

Conclusion

These results do not question either ZLA or Piantadosi et
al. (2012)’s effects, rather the effects themselves are indeed
replicated here. What is questioned is the interpretation of
such effects as evidence for optimization. I have shown that —
by themselves— the linear relationships between log word fre-
quency, word length, and degree of ambiguity, do not warrant
the interpretation that language is optimized for communica-
tive efficiency. The shape and direction of the effects reported
in Piantadosi et al. (2012), as well as ZLA, are precisely what
one would expect to obtain by chance (i.e., by a random as-
signment of probabilities). Furthermore, if anything, I find
that the effects present in a corpus are actually weaker than
what one would obtain by chance. Following the classical
“Principle of Least Effort” interpretation is therefore not war-
ranted by this type of correlations.

These findings complement previous studies showing that
mere random typing processes (e.g., Mandelbrot, 1953;
Miller, 1957; Ferrer i Cancho & Moscoso del Prado, 2011)
also exhibit ZLA. More generally, the most likely observa-
tion is that a word’s log probability of occurrence is linearly
related with any property of the word for which a mean value
exists. Therefore, in order to claim that observations of this
kind are indicative of any type of process (optimization or
otherwise) giving rise to the word frequency measures are not
warranted, unless the effects are explicitly found to be signifi-
cantly the stronger than the effects one should find by chance.
In other words, such effects are meaningless unless compared
to random baselines.

Notice that the same conclusions would be reached if, in-
stead of unigram word frequencies, I had considered the a
priori distribution of word bigrams or trigrams. It would
merely be a question of applying the PME to the whole ma-
trix of n-grams and we would expect to obtain the same type
of linear relations between log n-gram frequencies and lexi-
cal measures. Thus, similar arguments as those expressed in
Piantadosi, Tily, and Gibson (2011), would suffer from ex-
actly the same problems I discussed above.

By this I do not intend to claim that language is not op-
timized for human communication. Rather the opposite, I
am strongly convinced that this is indeed the case. How-
ever, pure correlational values between lexical measures (or
for that matter n-gram measures) are not sufficient evidence
to support such claims. Of course, there is a certain common-
sensical aspect to the claim that human language is optimal
for communication: It would be difficult to find a cogni-
tive scientist who disagrees with such a statement. However,
claims on optimization of human language should rely on
specific mechanisms by which the optimization takes place,
together with explicit mathematical (e.g., variational) de-
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Figure 2: Estimated relations between log word frequency, word length, and degree of ambiguity. The red crosses indicate
the magnitude of the effects observed in the corpora. The blue dots plot the magnitude that we should expect to observe a
priori. The box and whisker plots plot the distribution of the a priori predictions once word length and ambiguity have been
decoupled using Jackknife. The leftmost and middle panels respectively plot the effects of word length and ambiguity of log
word frequency. The rightmost panel plots the direct relation between word length and word ambiguity. Notice the different

vertical scales between the panels.

scriptions of how such an optimization proceeds, as exem-
plified by some recent studies (e.g., Ferrer i Cancho & Solé,
2003; Ferrer i Cancho & Diaz-Guilera, 2007).
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