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Abstract

Technology has become integrated into many facets of our
lives. Due to the rapid onset of this integration, many current
K-12 teachers do not have the skills required to supply the
sudden demand for technical training. This deficit, in turn,
has created a demand for professional development programs
that allow working teachers to learn computer science so that
they might become qualified to teach this increasingly
important field. Subgoal labeled worked examples have been
found to improve the performance of learners in highly
procedural domains. The present study tested subgoal labeled
worked examples in an online learning program for teachers.
Teachers who received the subgoal labels solved novel
problems more accurately than teachers who received the
same worked examples without the subgoal labels. These
findings have implications for the use of subgoal labels in
professional development, other types of lifelong learning,
and online learning.

Keywords: subgoal learning; worked examples; computer
programming, K-12 teacher training.

Introduction

As technology becomes ubiquitous, being technically
trained is frequently necessary for individuals to be effective
in their professional and personal lives. Technology has
advanced at such a rapid pace, however, that many of our
educators are not qualified to train students in technical
fields. Thus, it is important to train teachers, who have full
schedules and possibly no technical training, to become
qualified to teach technical subjects. Fortunately, because
technical subjects tend to be highly procedural, methods
used for teaching other highly procedural subjects like
mathematics can be used in technical education.

One of the methods that has been effective for teaching
procedural domains (e.g., statistics and physics) is to
manipulate the format of worked examples that students
receive (e.g., Catrambone, 1996). Catrambone (1998) found
that worked examples that included subgoal labels were
effective for helping students learn to solve problems in a
new domain. This intervention has also been found to be
effective for teaching computer programming (Margulieux,
Guzdial, & Catrambone, 2012). Most of these subgoal
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studies, however, have been conducted with undergraduate
students in face-to-face learning environments. These are
not the conditions that would be ideal for K-12 teacher
professional development. The present study explores the
effectiveness of the subgoal intervention for K-12 teachers
interested in learning computer science in an online learning
environment (i.e., with no face-to-face interaction).

Worked examples are an important instructional tool for
learners in highly procedural domains like math or computer
programming. Worked examples help learners because they
provide specific information about how to apply domain
principles to problem solving (Bassok, 1990). Furthermore,
worked examples provide a step-by-step solution to a
problem from which students can learn before they are able
to solve problems independently (Atkinson, Derry, Renkl, &
Wortham, 2000). When learners are presented with all of the
steps of an example solution at once, however, they often
have difficulty determining what information is important
for solving problems in that domain (i.e., structural
information) and what information represents details
relevant for solving only that problem (Catrambone, 1994).

Using subgoal labels to group steps of worked examples
into meaningful units can help learners recognize structural
information in the examples. Subgoals are functional
components of complex problem solutions; each subgoal is
a necessary part of the solution. How a subgoal is achieved
might vary between and within problems, but the subgoals
needed to complete a problem do not. Subgoals are specific
to a domain, but not to a problem; a multitude of problems
in a domain might have the same subgoal structure, so by
learning the subgoals in a domain, students can learn to
solve problems in that domain (Catrambone, 1994).

Learners who study materials that label the subgoals of a
worked example are more likely to solve novel problems
than learners who study the same examples without the
subgoal labels (Catrambone, 1998). There are several
possible theoretical explanations for this phenomenon.
Subgoal labels can help learners chunk problem-solving
steps which might reduce the cognitive load required to
learn them (Catrambone, 1994). Furthermore, subgoal labels
might help learners create mental models in a domain by



providing them with a framework (i.e., the set of subgoals)
that they can use to organize information in a way that can
guide transfer to future problems (Atkinson et al., 2000,
Catrambone, 1996). Moreover, apprising learners of the
structure of worked examples can help them recognize
similarities among examples and promote self-explanation
(Catrambone, 1998; Renkl & Atkinson, 2002).

Expanding upon previous work (e.g., Catrambone, 1998),
Margulieux et al. (2012) applied subgoal labeled worked
examples to a previously untested domain, computer
programming. They found that subgoal labels improved
participants’ performance on novel computer programming
construction tasks (i.e., creating applications (apps) for
Android devices). The present study expands upon this
work by testing the intervention in a new environment and
with a new population.

Present Study

The present study manipulated the materials that K-12
teachers received to help them teach themselves how to
program. Participants received either subgoal labeled
worked examples or conventional worked examples (i.e.,
list of the steps of the solution with no labels). The
conventional worked examples were adapted from material
in the projects sections of the ICE Distance Education Portal
(http://ice.cc.gatech.edu/dl/?g=node/641). The subgoals of
the examples were determined using the TAPS procedure
developed by Catrambone, Gane, Adams, Bujak, Kline, and
Eiriksdottir (2013) and consultation with subject-matter
experts (see Figure 1). The only difference between the
materials that participants in the two conditions received
was the added subgoal labels (see Figure 2).

Subgoal Labels

Create components

Set properties

Handle events from My Blocks
Set outputs from My Blocks
Define variable from Built-In
Set conditions from Built-In
Emulate app

Nogah~wdPE

Figure 1. Subgoals Used In Instructional Material

The programming language that was used for the study is
Android App Inventor, which is used to develop apps for
Android devices. App Inventor is a drag-and-drop
programming language; users are given pieces of code that
they can drag from a menu and piece together in a
programming area to make programs. Drag-and-drop
programming languages can be useful for teaching novices
because, instead of writing code, users select sections of
code and piece them together like puzzle pieces. This type
of code creation is easily understood by novices
(Hundhausen, Farley, & Brown, 2009).

Subgoal labeled Materials
Handle Events from My Blocks

1. Click on "My Blocks" to see the blocks for components
you created.

2. Click on "clap"

3. Drag out a when clap.Touched block

Set Output from My Blocks

4. Click on “clapSound” and
5. Drag out call clapSound.Play
6. Connect it after when clap.Touched

Conventional Materials

Click on "My Blocks" to see the blocks for components
you created.

Click on "clap"

Drag out a when clap.Touched block

Click on “clapSound”

Drag out call clapSound.Play

Connect it after when clap.Touched
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Figure 2. Sample Materials from Two Groups

Over four sessions participants learned to make apps
using App Inventor. In each session, participants received
instruction for how to make one app and assessments asking
them to modify or make new parts of an app (see Table 1).

Table 1: Sections of experimental sessions

Session 1% section 2" section 3" section
1 Introduction Instruction Assessment
2,3,4 Assessment Instruction Assessment
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In the first session, participants learned to make an app
that played sounds when the user interacted with objects on
the screen. In the second session, participants learned to
make an app that selected and displayed text when a button
was pressed. In the third session, participants learned to
make an app that counted the number of times the user
pressed a button in a time frame. In the fourth session,
participants learned to make an app similar to the game
Pong.

Instructional materials for each app included both a video
demonstrating how to make an app and a text guide
detailing how to make an app. Palmiter and Elkerton (1993)
found that videos demonstrating how to complete tasks
using a direct-manipulation interface can quickly and
naturally teach users how to use the interface. They also
concluded that only watching videos can lead to superficial
processing while reading text instructions leads to deeper
processing. Given that video demonstrations are a useful aid
for learning to complete tasks using an unfamiliar interface
and that text instructions lead to better transfer and retention
for these tasks (Palmiter & Elkerton, 1993), both types of
instruction were used in the present study. Subgoal labels
were presented in the videos as callouts to present the
information succinctly without overshadowing any verbal
instructions (see Figure 3, arrow added).
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Figure 3. Sample of Subgoal Callout in Video

To assess participants’ ability to solve problems using
App Inventor, participants were asked to write the steps that
they would take to program new features of an app. These
assessment tasks were developed based on material that
participants were exposed to during the sessions, but some
assessment tasks required participants to use aspects of App
Inventor that they had not used before to measure their
ability to transfer their knowledge. Hints were given for
tasks that required participants to use these unfamiliar
features. The hints guided participants to the correct features
but did not tell them how to use that feature (see Figure 4).

“1.5 Write the steps you would take to make the screen
change colors depending on the orientation of the phone;
specifically, the screen turns blue when the pitch is
greater than 2 (hint: you’ll need to make an orientation
sensor and use blocks from “Screen 1” in My Blocks).”

“3.3 Write the steps you would take to create a list of
colors and make the ball to change to a random color
whenever it collided with something.”

Figure 4. Sample of Assessment Tasks

Two types of assessments were given. One type was
given at the end of each session and intended to measure
participants’ ability to solve novel problems, so it included
near and far transfer tasks. The other type was given at the
beginning of each session starting with the second session
and intended to measure participants’ retention of problem
solving procedures, so it included only near transfer tasks.

Near transfer tasks required participants to follow an
identical procedure that they had used in the instructional
session but substituted blocks or components of the same
type. For example, one task asked participants to program
the clap sound to play when the phone was tilted up. To
complete this task, participants could follow the same steps
that they used in the instructional session to program the
drum sound to play when the phone was tilted to the right,
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but they had to replace the drum sound with the clap sound
and the x-axis acceleration sensor with the y-axis
acceleration sensor.

Far transfer tasks required participants to follow the same
general scheme that they had used in the instructional
session but substituted blocks or components of a different
type. For example, one task asked participants to program
an ImageSprite to move 5 pixels to the right when touched.
The steps to do this task were different than the steps in the
instructional session because the type of block was different,
but the subgoals that needed to be completed were the same.

Participants were not permitted to use the video or text
guides during the assessment period, but participants were
encouraged to use the App Inventor interface to help them
complete the assessment tasks. Participants were also
allowed to access the apps that they had made during the
session to serve as memory cues for the complex procedures
they had learned in the session. Participants were instructed
to not review instructional material between sessions, so
their retention of problem solving procedures could be
measured consistently.

Method

Participants

Participants were 18 K-12 teachers recruited through
mailing lists for teachers interested in computer science
education. Teachers with prior experience with Android
App Inventor could not participate in the experiment, but
they were not restricted by any other prior experience. The
teachers had backgrounds that varied on a number of factors
such as education, years as a teacher, years teaching
computer science, level of computer science taught, and
professional development completed. There were no
correlations between participant performance and prior
experience, so this issue will not be discussed further.

Procedure

The experiment was conducted online with no face-to-face
interaction. Instructions and media for the apps were
emailed to participants, and the sessions were hosted on
surveymonkey.com. Each SurveyMonkey survey gave
participants instructions for completing the instructional
session and assessment tasks (first session survey:
http://www.surveymonkey.com/s'/RVCWTBX, use “test” as
participant number). Through the survey, participants were
asked to record how long they spent on each instructional
session and each assessment task. Participants were also
asked how difficult they thought each instructional session
and assessment task was on a Likert-type scale from “I1-
Very Difficult” to “7-Very Easy.”

The experiment comprised four sessions which were
given one week apart. The timestamp on the surveys were
checked to ensure participants completed the sessions at
least six days apart. The sessions were similar to those in
Margulieux et al. (2012) but adapted for online use. The
major difference between the Margulieux et al. (2012) and



present administration of sessions is that the moderator
instructions were given through text instead of speech. Each
session taught participants how to make an app using a
video and text guide. The video guide showed participants
how to create the app, and the text guide gave step-by-step
instructions for creating the app. After participants made the
app for that session, they worked on the assessment tasks.
Starting with the second session, participants also completed
the retention assessment at the beginning of the session
before they started making the app (see Table 1).

Completion rates for the sessions decreased during the
study with a high level of participation for the demographic
survey and low level for the last two sessions. Though the
participants volunteered to be in the study, they did not
receive any compensation for their time except instruction
about App Inventor. Additionally, the assessment tasks were
designed to be difficult in order to avoid a restriction of
range problem caused by all participants performing well.
Many participants commented that they were frustrated with
the tasks. The teachers might have lost motivation to
complete the sessions without more compensation. Few
teachers experienced unforeseeable conflicts that ended
their participation. There was not a recognizable pattern that
distinguished participants who completed the study from
those who did not. Data from only the first two sessions
were analyzed due to low completion rates of the last two
sessions.

These attrition rates are similar to those seen in other
online learning environments such as Massive Open Online
Courses (MOOC:Ss). In an analysis of nearly 500,000 courses
taken by over 40,000 students, Xu and Jaggars (2013) found
that many of the factors that predict success in face-to-face
learning environments also predict success in online
learning environments (e.g., women were more successful,
and students with higher GPAs were more successful). This
finding suggests that attrition in online courses is similar to
attrition in face-to-face courses but on a larger scale.
However, the number of students that online courses can
reach is much larger, so the number of students who
complete an online course is generally greater than the
number of students who complete an equivalent face-to-face
course (Whiteman, 2013).

Results and Discussion

Each solution of the assessment tasks was deconstructed
into the components necessary to complete the solution; that
is, the subgoals of the solution. As discussed earlier, the
subgoals are inherent in the solutions, but the tasks did not
provide any information about which subgoals were
necessary to complete the solution. Because the solutions
for the assessment tasks are complex, scoring the pieces of
each solution instead of scoring the entire solution as correct
or incorrect allowed for more sensitivity in the
measurement.

Problem-solving performance is represented by two
scores: a “correct” score and an ‘“attempted” score.
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Participants were given a point for each subgoal that they
completed correctly and each subgoal that they attempted.
Attempting a subgoal was operationally defined as listing at
least one of the steps required to complete the subgoal,
listing an incorrect step that would achieve a similar
function, or describing the purpose of the subgoal in some
way. Participant responses were scored by multiple raters,
and interrater reliability was high with a one-way random
model intraclass correlation coefficient of agreement
(ICC(A)) of .87. There were 32 subgoals across the
assessment task solutions, so participants could get a
maximum score of 32 for both the attempted and correct
problem-solving measurements.

Correct Subgoals

Participants in the subgoal group (n = 9) completed 81%
more subgoals correctly (M = 26.6, SD = 5.08) than the
conventional group (n =9, M =14.7, SD = 6.63), F (1, 16) =
18.23, MSE = 34.89, p = .001, ©® = .53, f = 1.01. These
results mean that 53% of the variance for correct subgoals
was accounted for by group. Furthermore, this is a very
large effect size considering the amount of instruction that
participants received (i.e., two, 30-45 minute instructional
sessions). These findings suggest that the subgoal labeled
worked examples, compared to conventional worked
examples, can help people learn more efficiently to solve
programming problems.

The difference between groups in this experiment is about
twice as large as the difference between groups in
Margulieux et al. (2012), f = 1.01 vs. f = .53, respectively,
even though the present study was conducted in a less
controlled environment and its participants had more varied
backgrounds. Participants in the present study also had as
much time as they wanted to work on the assessments
instead of being limited like in Margulieux et al. (2012).

One explanation for this larger effect could be that
participants in this study were teachers who volunteered
because they wanted to learn the material to further their
career while participants in the Margulieux et al. (2012)
studies were undergraduates who were less likely to be
motivated to learn the material. Therefore, this difference
could mean that the subgoal intervention is more effective
for learners who are motivated to learn the material for the
long-term than it is for lab participants who might only try
to learn the material for the duration of the experiment.

Another possible explanation is that the participants in
Margulieux et al. (2012) were students whose skills for
learning new material were sharper than those of teachers
who might have been out of school for decades. The
difference between groups for the undergraduate sample
might be smaller than for teachers because the students had
better strategies for studying conventional worked examples
than the teachers. Therefore, undergraduates who received
the conventional worked examples would have performed
better than teachers who received the conventional worked
examples, thereby creating a smaller difference between
groups in Margulieux et al. (2012) than the present study.



For both near and far transfer tasks, the subgoal group
completed more subgoals successfully (Near: M = 10.6, SD
= 1.94; Far: M = 7.1, SD = 2.26) than the conventional
group (Near: M = 5.2, SD = 3.70; Far: M = 3.3, SD = 2.35),
Near: F (1, 16) = 14.65, MSE = 8.74, p = .001, »® = .48, f =
.90, Far: F (1, 16) = 12.11, MSE = 5.31, p=.003, o’ = .43, f
= .82. These results suggest that subgoal labels help
performance on both near and far transfer tasks. Given the
nature of the near and far transfer tasks, these findings could
mean that the subgoal labels helped participants learn the
material better (near transfer) and apply the material to
novel problems (far transfer).

On the first end-of-session assessment tasks, participants
in the subgoal group completed 223% more subgoals
correctly (M = 9.7, SD = 1.41) than the conventional group
(M = 3.0, SD = 3.02), F (1, 16) = 27.04, MSE = 5.56, p <
001, w? = .63, f = 1.23. These results mean that 63% of the
variance for correct subgoals was accounted for by group.
On the second end-of-session assessment tasks, participants
in the subgoal group completed 70% more subgoals
correctly (M = 8.0, SD = 2.83) than the conventional group
(M = 4.7, SD = 357), F (1, 16) = 4.82, MSE = 10.38, p =
043, ®? = .23, f = .50. These results mean that 23% of the
variance for correct subgoals was accounted for by group.

The two series of assessments suggest the subgoal group
was better at solving novel problems than the conventional
group. Because the effect size of the second assessment was
smaller than that of the first assessment (f = .50 vs. f = 1.23,
respectively), the difference between groups might decrease
with repeated exposure to the same type of material. This
decrease would be expected because as learners gain more
knowledge, they are better able to identify important
information and need less external guidance. This finding
suggests that the subgoal labels are fulfilling the purpose for
which they are intended: to highlight the information on
which learners should focus so they can learn more
effectively. Over time, both groups might achieve the same
problem solving ability, but the learners who receive
subgoal labels would reach a higher level faster than those
who do not. This finding does not mean that subgoals are
not valuable later, but it suggests that they are most
effective when learners are first introduced to new material.

On the start-of-session assessment tasks (i.e., to measure
retention of problem solving procedures), participants in the
subgoal group completed 48% more subgoals correctly (M =
9.0, SD = 1.70) than the conventional group (M = 6.1, SD =
3.22), F (1, 16) = 6.17, MSE = 6.41, p = .024, ®* = .27, f =
.57. These results mean that 27% of the variance for correct
subgoals was accounted for by group. All of the tasks in this
series were near transfer tasks, so to complete the tasks
participants had to use procedures that they had learned in
the previous session. This result suggests that the subgoal
intervention promotes retention of the procedures.

Attempted Subgoals

Participants in the subgoal group attempted 25% more
subgoals (M = 28.6, SD = 3.50) than the conventional group

(M =228, SD =7.19), F (1, 16) = 4.70, MSE = 31.70, p =
046, o® = .23, f = .51. By attempting a subgoal, participants
could be demonstrating that they know the solution needs a
particular component. Therefore, this finding could mean
that subgoal participants recognized more of the necessary
components of the solutions than the conventional
participants regardless of whether they were able to
correctly complete the task.

Time on Task and Difficulty

There were no statistically reliable differences between the
groups on the time and difficulty measures (viz., time spent
on instructional periods, difficulty rating of instructional
periods, time spent on assessment periods, and difficulty
rating of assessment periods; see Table 2). These results
suggest that participants in the subgoal group performed
better than the conventional group without taking longer to
complete the instructions or tasks and without finding the
instructions or tasks more difficult.

Table 2: Difference between groups for time and difficulty
measures; time in minutes, difficulty on 7-pt. scale (1-Very
Difficult and 7-Very Easy)

M M

Category subgoal  conv 3D F P
Time on
Instruction 73 Ore 318 ST
Difficulty of 4.9 45 1.0 23 .64
Instruction
Time on 766 567 331 144 25
Assessments
Difficulty of 4.3 3.8 1.1 66 .43
Assessments
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This conclusion is supported by linear regression models.
Group (B = .58, p = .005) and time (B = .41 p = .031) are
both significant predictors of correct subgoal score
suggesting that they account for different parts of the
variance. When predicting attempted subgoal scores, group
is no longer a significant predictor, and time (f = .54 p =
.032) becomes the sole predictor. This model accounts for
participants who spent relatively little time on the
assessment tasks and did not write solutions (i.e., who did
not attempt to solve the task). Furthermore, group (B = .62,
p = .002) and difficulty rating (B = .42 p = .024) are both
significant predictors of correct subgoal score suggesting
that they also account for different parts of the variance in
scores. When predicting attempted subgoal scores, however,
group is no longer a significant predictor, and difficulty
rating (B = .63 p = .009) becomes the sole predictor. This
model accounts for participants who did not attempt to solve
the problems and rated the difficulty of the tasks as high.
Due to a high correlation between time on task and
difficulty rating (r = .60, p = .015), these two predictors
were analyzed in different models to avoid multicollinearity.



Conclusion

Subgoal labeled worked examples have been effective for
teaching students to solve problems in procedural domains
such as statistics (Catrambone, 1998) and computer
programming (Margulieux et al., 2012). Most of these
studies have taken place in a laboratory with
undergraduates. The present study extends prior work with
results that suggest subgoal labeled worked examples are
effective for K-12 teachers learning App Inventor in an
online learning environment. These findings demonstrate
that subgoal labels can be effective in a learning
environment outside of the laboratory with a different
population of learners.

It is encouraging that the subgoal intervention improved
online learners’ performance. The purpose of labeling
subgoals in worked examples is to succinctly give the
learner extra information to help them recognize the
structure of the example. This type of extra information is
what an instructor, who is an expert in the subject matter,
might ideally provide to students in face-to-face instruction.
Unfortunately, instructors are not always aware that they
should provide this extra information, and even if they are
aware, they do not necessarily know how to impart the
information. In an online learning environment in which
students rarely interact with an instructor, such as the one in
this experiment, this extra information needs to be built into
the instructions. Extra information could increase learning
time. However, the present study demonstrates that, in the
absence of an instructor, subgoal labeled worked examples
provide enough extra information to help students learn
more effectively without increasing the amount of time
students take to learn.

The results of the experiments also imply that the subgoal
intervention can be effective for populations other that
undergraduates. The sample in the present experiment was
heterogeneous in terms of age, education, and experience, so
the amount of variance in the participants’ performance
scores that was accounted for by experimental group (over
50% in some cases) was surprisingly large. This finding can
justify the wuse of resources to implement subgoal
interventions in professional development, classrooms, and
other instructional environments, including those online.

The present study demonstrates that subgoal labeled
worked examples can be an effective intervention for
teaching highly procedural domains outside of the
laboratory. Additional experiments can examine the
intervention in a variety of learning environments.
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