Working memory capacity and fluid abilities:
The more difficult the item, the more more is better

Daniel R. Little (daniel.little@unimelb.edu.au)
School of Psychological Sciences, The University of Melbourne
Parkville, VIC 3010 Australia

Stephan Lewandowsky (stephan.lewandowsky@uwa.edu.au)
School of Experimental Psychology, University of Bristol
Bristol, UK BS81TU
School of Psychology, The University of Western Australia
Crawley, WA 6009 Australia

Stewart Craig (craig03@student.uwa.edu.au)
School of Psychology, The University of Western Australia
Crawley, WA 6009 Australia

Abstract

Recent evidence has suggested that the relationship be-
tween a test of fluid intelligence, Raven’s Progressive
Matrices, and working memory capacity (WMC) may
be invariant across difficulty levels of the Raven’s items.
We show that this invariance can only be observed if
the overall correlation between Raven’s and WMC is
low. We demonstrate that by using a composite mea-
sure of WMC, which yields a higher correlation between
WMC and Raven’s than reported in previous studies,
that there was a significant positive relationship between
Raven’s item difficulty and the extent of the itemwise
correlation with WMC. This result puts strong con-
straints on theories of reasoning and challenges some
existing views. Keywords: Raven’s Progressive Matri-
ces; Working Memory Capacity.

Introduction

Working memory (WM), the architecture responsible for
the retention and manipulation of information over short
periods of time, is a core component of human cogni-
tion. People’s working-memory capacity (WMC) shares
around 50% of the variance with general fluid intelligence
(Kane, Hambrick, & Conway, 2005) and is predictive of
performance in a number of reasoning tasks and other
measures of higher cognitive ability. However, there is
some dispute about the exact nature of the relationship
between WMC and one important assay of fluid intelli-
gence, Raven’s Progressive Matrices (e.g., Raven, Raven,
& Court, 1998).

Raven’s test is designed such that items differ con-
siderably in difficulty, with easy items—presented early
in the test—solvable by more than 90% of participants
and the hardest items—presented last—Dbeing solvable
by fewer than 10% of participants. Carpenter, Just,
and Shell (1990) presented a taxonomy of rule types
that were used to create each of the Raven’s items.
To illustrate, Figure 1 presents two sample Raven’s-like
problems created using different rules. The matrix in
panel A contains an incremental rule (i.e., the dots in-
crease across items) and a distribution of 3, permutation
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Figure 1: Two examples of matrices like those in the
Raven’s test. A: Example of an item containing a pair-
wise incremental rule and a distribution of 3 permutation
rule. B: Example of an item containing a constant rule
and a distribution of 2 (XOR) rule.

rule (i.e,. objects with 1, 2 and 3 triangles are permuted
across rows and columns). The matrix in panel B con-
tains a constant rule (i.e., the center dot appears in all
items) and a distribution of 2 (or logical XOR) rule (i.e.,
features which appear in the first two objects do not ap-
pear in the third object and features which appear only
in one of the first two objects also appear in the third
object). Carpenter et al.’s rule taxonomy also included
feature decrements between objects, logical disjunction
rules (OR) and logical conjunction rules (AND). Partic-
ipants must infer these rules from the objects in the ma-
trix and then predict and select the missing lower right
object in the matrix from the set of possible response
options.

Carpenter et al. (1990) compared two production sys-
tem models that demonstrated the importance of the
number and type of rules and WMC. Both of the mod-
els operated by finding correspondences between the
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Figure 2: Left Panel: Observed accuracy from Unsworth
& Engle (2005). Right Panel: Observed itemwise point
bi-serial correlations in Unsworth & Engle (2005).

symbolically-coded features of the items, transferring
these correspondences to a working memory buffer where
any rule satisfied by the extracted correspondences was
invoked, using the instantiated rules to generate the
missing item, and finally, searching through the response
options to find the best match. One model (called
FAIRAVEN) had no strategic memory organization and
did not have access to distribution of 2 (XOR) rules; the
other model (called BETTERAVEN) was endowed with
better control processes and contained access to all of
the rules types. The assumptions of the models were
consonant with observed accuracy, response time, and
eye fixation data and the models were able to explain
the performance of median Raven’s performers and the
very best Raven’s performers, respectively.

If we assume that increased WMC allows for an im-
proved ability to maintain goals and retain intermediate
results and rules necessary to successfully solve the most
difficult Raven’s items, the implication of the modeling is
that performance on more difficult items should be more
highly correlated with WMC. In subsequent tests of that
idea, Unsworth and Engle (2005) and Wiley, Jarosz,
Cushen, and Colflesh (2011) examined the correlation
between WMC and Raven’s performance across ordinal
item position, which is a proxy for item difficulty. Con-
trary to expectation, those studies found that the role
of WMC remained invariant across item position. The
left and right panels of Figure 2 show the accuracy and
itemwise correlations observed by Unsworth and Engle
(2005). Although the itemwise pattern is quite noisy,
there appears to be no systematic relationship between
ordinal item difficulty (on the abscissa) and the correla-
tion between performance on those items and WMC (as
measured by OSPAN). This impression of an invariant
relationship was statistically supported by the failure to
find an increasing correlation between OSPAN and the
proportion correct within each quartile of the Raven’s
test.

Those reports of invariant itemwise correlations have
been used to reject the model of Carpenter et al. (1990),
or indeed any other proposal that cites the ability to hold
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rules and goals in working memory as underlying Raven’s
performance. The failure to find a selective involvement
of WMC has motivated alternative theorizing about the
relationship between the Raven’s test and WMC. For ex-
ample, Unsworth and Engle (2005) concluded that the
variance shared by WMC and Raven’s reflected atten-
tional control mechanisms, presumed to be implicated
in both tasks, which were thought to be uniformly im-
portant across all of the Raven’s items. Thus, irrespec-
tive of item difficulty, a person with larger WMC benefits
from an enhanced ability to selectively focus on those fea-
tures of an item that are relevant to the item-appropriate
rule and to filter out distracting non-relevant goals and
features. Although this account has not been quantita-
tively formalized, there is empirical support from other
domains that working memory underwrites an ability
to filter out distracting information (Conway, Cowan,
& Bunting, 2001).

The current state of affairs thus presents a concep-
tual puzzle: On the one hand, intuition and at least one
theory (Carpenter et al., 1990) suggest that the impor-
tance of WMC should be accentuated for the more diffi-
cult Raven’s items, for the simple reason that the easiest
items are—by design—solvable by most participants and
hence ought not to correlate much with WMC. On the
other hand, there are now several reports that the role
of WMC is invariant across item difficulty (Unsworth &
Engle, 2005; Wiley et al., 2011). Those results appear
consonant with an attentional view of working memory
but run counter to the model of Carpenter et al. (1990).
However, there are several reasons to examine those re-
ports further: First, the counter-intuitive nature of those
results deserves to be underscored—after all, how can the
correlation between WMC and performance be identical
for items that are solved by 90% and 10%, respectively,
of participants?

There are other reasons to expect that the accep-
tance of an invariant relationship between Raven’s per-
formance and WMC may have been premature. By defi-
nition, those results rely on a failure to reject the null hy-
pothesis, and the “noisiness” of the data is considerable
(see Figure 2, right panel). Moreover, studies showing
an invariant itemwise correlation were marred by the fact
that only a single task (OSPAN) was used to measure
WMC—consequently, measurement error or “method
variance” from that single task might have masked a re-
lationship between WMC and the more difficult Raven’s
items in the studies of Unsworth and Engle (2005) and
of Wiley et al. (2011). In support of this claim, the cor-
relations reported in those papers (r = .335 and r = .33,
respectively) fall on the lower end of the range of cor-
relations between WMC and Raven’s identified in a re-
cent meta-analysis (i.e., .312 to .641; Ackerman, Beier,
& Boyle, 2005). Further, Unsworth and Engle (2005),
participants were allocated 30 minutes to complete the



Raven’s test rather than the standard 40 minutes, which
likely resulted in decreased overall accuracy, that may
have further obscured an increasing effect of WMC.

We suggest that there are strong and well-supported
reasons to expect the involvement of WMC in perfor-
mance to increase across item difficulty in the Raven’s
test. Reports to the contrary have relied on acceptance
of the null hypothesis and have involved limited measures
of WMC. The issue of how working memory relates to
Raven’s performance may therefore be worthy of further
exploration. We revisit this issue and resolve it by pre-
senting a behavioral study using a composite measure of
WDMC that correlates more strongly with Raven’s and re-
sults in an increasing itemwise correlation—as predicted
by Carpenter et al. (1990) and contrary to the null re-
sults reported to date.

Behavioral Study

In this study, we sought to maximize the likelihood of
finding an increasing itemwise corrrelation function by
using multiple tasks and deriving a composite latent
measure of WMC, thus reducing the task-specific vari-
ance and measurement error that beset a single-task
measure such as OSPAN. We therefore expected the cor-
relation between WMC and RAPM performance to be
greater than in relevant previous studies. Why should
we expect the overall correlation between WMC and
Raven’s to affect the itemwise correlation? The an-
swer lies in the constraints imposed by the decreasing
accuracy function across Raven’s items: Because nearly
everyone gets the early items correct, the correspond-
ing point-biserial correlations for those items must be
near zero. It follows that the overall correlation between
WMC and Raven’s can only express itself in the point-
biserial correlations for the later items where perfor-
mance is more variable across individuals. Consequently,
a greater overall correlation is preferentially observed in
the later items, which necessarily translates into an in-
creasing itemwise slope across the entire test.

This increasing slope fails to be observed only if per-
formance on the final test items falls sufficiently close to
the floor to constrain their variance, thereby curtailing
the itemwise correlations for the last items. The shorter
test duration used by Unsworth and Engle (2005) led to
near-floor performance on the later test items, thereby
preventing the detection of an increasing itemwise slope.
This is likely to have been the case even if the overall cor-
relation had been greater. For the increasing slope to be
observed, performance on the later items ought to be off
the floor and the overall correlation must be large. The
standard 40 minute allocation in our study should act
to increase accuracy for the later items, and the use of a
battery of WM tests should serve to increase the overall
correlation between WMC and Raven’s performance.
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Method

Participants The participants were 130 volunteers
(95 female; mean age 21.12) from the University of West-
ern Australia campus community. Participants received
either partial course credit for an undergraduate psy-
chology course or $20 for two 1-hour sessions.

Procedure In the first session of the study, partic-
ipants completed a battery of four WMC tasks (see
Lewandowsky, Oberauer, Yang, & Ecker, 2010).

Memory updating (MU). The MU task required par-
ticipants to (a) store a series of numbers in memory, (b)
mentally update these numbers based on a series of arith-
metic operations, and (c) recall the updated numbers.
On each trial, three to five frames containing random
digits were presented on the screen. Following memo-
rization, successive arithmetic operations, (e.g., ‘“+4’ or
-3’) were presented in the frames, one at a time for a
random number of steps before final recall was cued. The
key dependent variable is the proportion of updated dig-
its recalled correctly.

Operation span (OSPAN) and Sentence span (SS). On
each OSPAN trial, a series of arithmetic equations were
presented (e.g., 4+3=T), each of which was followed by
a consonant for memorization. Participants judged the
equation for correctness and recalled the consonants im-
mediately after list presentation in the original order.
The SS task was identical to the OSPAN, except that in-
stead of judging correctness of an equation, participants
judged the meaningfulness of sentences (cf. Daneman &
Carpenter, 1980). For OSPAN and SS, the key depen-
dent variable is the proportion of consonants recalled
correctly.

Spatial short-term memory (SSTM). The SSTM task
was adapted from Oberauer (1993) and involved memo-
rization of the spatial location of circles presented, one-
by-one, in various locations in a 10 x 10 grid. Partici-
pants used the mouse to indicate the memorized location
of the dots in any order by clicking in the correspond-
ing grid cells. For this task, participants are given a
score based on how similar their recalled pattern was to
the to-be-memorized pattern (see Lewandowsky et al.,
2010).

Fluid intelligence tests (RAPM) In the second session,
participants completed Sets I and II of the 1962 Raven’s
Advanced Progressive Matrices. As recommended by
Raven et al. (1998), RAPM Set I was included to famil-
iarize participants with the matrices. Participants had
5 minutes to complete the 12 items in Set I before being
given the standard 40 minutes to complete the 36 items
in Set II. We only report the results for the last 36 items
(Set II).

Results

Data from two participants who failed to complete all
tasks were removed from analysis, and data from two



Table 1: Means M, standard deviations SD, skewness,
and kurtosis for the operation span task (OSPAN), sen-
tence span task (SS), spatial short-term memory task
(SSTM), memory updating task (MU), and Raven’s Ad-
vanced Progressive Matrices (RAPM).

Measure M SD  Skewness Kurtosis
OSPAN 071 0.14 -0.99 4.07
SS 0.70 0.15 -0.70 3.30
SSTM 0.84 0.06 -0.14 2.37
MU 0.66 0.18 -0.34 2.48
RAPM 24.47 5.37 -0.34 2.90

further participants were discarded for having WMC and
Raven’s scores less than three standards deviations be-
low the mean, respectively. The final analyses thus used
a sample size of N = 126. Descriptive statistics for the
four WMC tasks and RAPM are shown in Table 1. The
top left panel of Figure 3 shows average performance on
the RAPM items from Set II. The pattern conformed
to expectation in that accuracy decreased with ordinal
item position.

WMC and item difficulty For the correlational
analyses, we computed a composite measure of WMC
by first converting each participant’s score on each WM
task into a z-score, and then computing that person’s
average z-score across the four tasks (zWMC). As antici-
pated, the overall correlation between zWMC and the to-
tal RAPM score was moderately large, r = .56, p < .001,
and larger than was found in previous studies using only
a single measure of WMC.

The top right panel of Figure 3 shows the point-
biserial correlations between WMC and performance
broken down across Raven’s items, together with the
best-fitting regression line. In contrast to Unsworth and
Engle (2005), accuracy was high enough to permit in-
clusion of all of the Raven’s items. The slope of the
regression line (.004) was significantly greater than zero,
t(34) = 2.87, p < .01, r? = .20.! The data confirm that
when there is at least a moderate correlation between
WMC and Raven’s performance, the itemwise correla-
tions increase with item difficulty.

Further, to analyse the relationship between zWMC,
item difficulty, and performance on Raven’s, we con-
ducted a multilevel logistic regression, which circumvents
problems due to items with very high or very low accu-
racy by relying on the logistic (or inverse-logit) func-
tion to model the accuracy proportions for each item.
We examined a model which includes WMC, ordinal
item position (as a proxy for difficulty), and the inter-

!The absolute value of this slope is not meaningful because
of the relatively large scale of the items (1 to 36) compared
to the range of the itemwise correlation.
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Figure 3: Left: Performance on Raven’s Advanced Pro-
gressive Matrices items. Right: Observed correlations
between working memory capacity (zWMC; based on a
battery of four tasks) and performance on each Raven’s
item. The solid line represents the best-fitting regression
line (intercept .13, slope .004). Bottom panels: Results
from a bootstrapping analysis resulting in correlations of
.52, .23, and .09, respectively, between WMC and over-
all Raven’s performance. All bootstrap results are based
on 10,000 replications and the shaded areas represent the
95% confidence regions for the bootstrapped means. The
framed bottom-left panel matches the overall correlation
and itemwise results in the top right panel.

action between these variables.? We also systematically
tested alternative random-effect models (i.e., letting one
or more of intercept or ordinal item position vary ran-
domly across participants.®) and determined the pre-
ferred model using BIC.

The logistic regression assumes that the predictors are
linearly related to the logit transformation of the depen-
dent variable; consequently, we examined the relation-
ship between each variable and accuracy using a White
test for nonlinearity (Lee, White, & Granger, 1993).
Ordinal item position showed a demonstrable nonlin-
ear relationship with accuracy x? (2) = 61.12,p < .001.
A Box-Tidwell analysis indicated that the nonlinearity
could be removed by raising ordinal item position to a
power of 1.704, x? (2) = 4.29,p = .12 (see Box & Tid-
well, 1962). Because item position is only a proxy for
difficulty, the transformation of that variable is accept-
able because it retains the ordinal association with the
unknown scale of actual difficulty. None of the other vari-
ables showed any nonlinear relationship with the largest

2We could rearrange the items in order of difficulty, but
this would bias the analysis towards the result we observe.
Instead, we present the items in the order they were presented
for parity with Unsworth and Engle (2005).

3These random effects models allow the decrease in accu-
racy across items to begin at a different level of accuracy or,
in addition, decrease at a different rate for each participant,
respectively



Table 2: Estimated parameters (and standard errors) of
mixed effects modeling of the RAPM behavioral study.
All significant coefficients are bolded.

Parameters Model 1 Model 2
Fixed

Intercept (o) 2.92 (0.11) 2.98 (0.11)
ZWMC (8.) 0.53 (0.14) 0.52 (0.14)
Ttem (By) -0.01 (0.0003) -0.01 (0.0004)
ZWMC x Item 0.001 (0.0005) 0.001 (0.0005)
Random

Intercept sg 0.67 (0.59) -0.05 (0.06)
Item sy 0.0001 (0.0001)
Evaluation

df 5 7
BIC 4089 4097

x? being for zZWMC (x? (2) = 2.86,p = .24).

Exponentiating ordinal item position to correct for
nonlinearity, our first model is given by the following
equation:

Yij = Bo+ Bazi + By} + Baxwyzi X ¥ + (Si + €i5) (1)

where y;; is a binary response variable indicating
whether participant ¢ made a correct (1) or incorrect
(0) response on item j, z; is the zZWMC score for partici-
pant i, 1; is the ordinal item position of item j, A equals
1.704 (as indicated by the above Box-Tidwell analysis),
S; is the set of subject random effects and e;; is an error
term.

We tested this model using only the intercept as a ran-
dom effect (e.g., Model 1, see Table 2) or the intercept
plus 9 as random (Model 2). Comparison of the BICs
pointed to the model in which only the intercept var-
ied randomly as being preferable (i.e., Model 1). This
model revealed significant effects of zZWMC (p < .001),
ordinal item position (¢*, p < .001), and the critical
2WMC X ordinal item position interaction (p < .01).
The latter interaction confirms that WMC played an
increasingly important role as item difficulty increased,
precisely paralleling our initial correlation-slope analysis.

Bootstrapping analysis We next conducted a boot-
strapping analysis in which we simulate the effect of de-
creasing the overall correlation. In other words, to con-
firm that the magnitude of the overall correlation was
responsible for the emergence of an item-difficulty ef-
fect in our study, we conducted bootstrapping analyses
based on the observed subject x item (126 x 36) re-
sponse matrix, with rows ordered according to the ob-
served zWMC. The overall correlation between zZWMC
and Raven’s was manipulated by generating new zWMC
scores for each participant and examining the effect of
that manipulation on the itemwise correlations.
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We created three conditions, each involving 10,000
bootstrapping runs. For each run, n, a new vector of
zWMC scores was randomly derived from the observed
values according to: zWMC™ = vx zWMC+e where

e~ N (07 V(11— 1/2)) and v varied across conditions.
This new vector contained zZWMC scores which were de-
rived from the observed zWMC scores but had a reduced
correlation with the observed Raven’s scores. The rows
of the observed binary response matrix were then re-
sorted according to the new vector zZWMC( yielding
another bootstrapped replication with a specified corre-
lation between zWMC and RAPM that maintained the
overall itemwise error rate and overall Raven’s correct for
each participant observed in the study. Item-wise cor-
relations were then computed between the bootstrapped
replication and the zZWMC scores.

The three bootstrapping analyses used v = .95, .50,
and .20, respectively, which yielded actual correlations
zWMC x RAPM of .53, .23 and .09 (left, center, and
right panel in bottom row of Figure 3, respectively).
These actual correlations span a large range of possible
overall correlations between WMC and Raven’s. The
bottom left panel provides an idea of the variability ex-
pected when the population correlation is approximately
equal to that observed in our study. The remaining two
panels show that as the population correlation decreases,
so does the slope of the itemwise correlations. The cen-
ter panel roughly corresponds to the correlation observed
by Unsworth and Engle (2005) and confirms that the
effect of item-difficulty is sufficiently small under those
circumstances to escape detection when statistical power
is insufficient.

Operation span and RAPM To provide further
empirical confirmation that a reduction in the over-
all correlation between WMC and RAPM attenuates
the itemwise effect, we examined the correlation be-
tween the OSPAN subtask and RAPM. For this task,
the overall correlation with Raven’s was much lower,
r = .36,p < .001. The slope of the regression line for
the point-biserial itemwise correlations was not signifi-
cantly greater than zero, #(34) = 1.39, p = .17, r% = .05.
Likewise, a multilevel logistic regression (see Equation 1)
in which zZWMC was replaced by OSPAN failed to find
a significant interaction between OSPAN and exponen-
tiated ordinal item position (p = .09). This result repli-
cated the invariant relationship found by Unsworth and
Engle (2005), supporting our claim the previously pub-
lished results were obscured by method-specific variance;
that is, with a single task, the correlation includes task-
specific variance that hides the true magnitude of the
underlying correlation between constructs.

Discussion

There were two principal differences between our
methodology and previous research. First, we used a



composite measure of WMC which resulted in a higher
overall correlation between WMC and Raven’s perfor-
mance. Second, we extended the test time for RAPM to
the recommended duration, which resulted in increased
overall accuracy. Our results converge on the conclusion
that when there is a moderate to strong overall correla-
tion between WMC and performance on the Raven’s test
of fluid abilities, then the role of WMC becomes increas-
ingly more important as item difficulty increases. Our
results suggest that other studies failed to find an effect
of item difficulty because in their cases the overall cor-
relation involving WMC was small in magnitude (e.g.,
Unsworth & Engle, 2005; Wiley et al., 2011). Moreover,
the study by Unsworth and Engle (2005) was subtly bi-
ased against finding an itemwise effect because of their
use of a shorter, non-standard time period for completion
of the RAPM test (30 instead of 40 minutes). This non-
standard timing made it more likely that performance on
the most difficult items would be near the floor (because
most people ran out of time before solving those items),
thereby necessitating their removal for lack of variance
with an ensuant reduction in the power of the analysis.

On the surface, the present work may appear to be
merely a statistical issue, but given the intense theo-
retical attention and interpretation this issue has re-
ceived, its resolution has considerable psychological im-
plications. In particular, our research cautions against
reliance on a null result which has been a substantial
barrier to theorizing in this domain. Previously, any
model hoping to account for the relationship between
WMC and Raven’s also had to explain the invariant rela-
tionship across item difficulty. The present result shows
that this invariance is of questionable generality. By
contrast, although not presented here due to space limi-
tations, we have replicated our result using the Raven’s
Standard Progressive Matrices in another study. Our re-
sults therefore open the door for quantitative models of
WMC and Raven’s that do not predict this invariance.
We now know that any model attempting to explain the
relationship between the two tasks has to predict that
high WMC will allow you to do particularly well on hard
items.

Our results are compatible with theoretical analyses
of Raven’s performance that appeal to working memory
as a repository for rules and intermediate results (e.g.,
Carpenter et al., 1990). Although those theoretical views
have fallen out of favor, largely due to the apparent ab-
sence of a modulating effect of item difficulty on the
relation between WMC and Raven’s performance, our
results suggest that abandoning those approaches may
have been premature.
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