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Abstract

People have generally been considered poor at probabilistic
reasoning, producing subjective probability estimates that far
from accord to normative rules. Features of the typical
probabilistic reasoning task, however, make strong
conclusions difficult. The present study, therefore, combines
research on probabilistic reasoning with research on category
learning where participants learn base rates and likelihoods in
a category-learning task. Later they produce estimates of
posterior probability based on the learnt probabilities. The
results show that our participants can produce subjective
probability estimates that are well calibrated against the
normative Bayesian probability and are sensitive to base
rates. Further, they have accurate knowledge of both base rate
and means of the categories encountered during learning. This
indicates that under some conditions people might be better at
probabilistic reasoning than what could be expected from
previous research.
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Introduction

Research concerned with human probability judgment has
been dominated by the general conclusion that people are
poor at reasoning with probabilities because they substitute
hard facts about probabilities with subjective variables that
are conveniently available (see e.g., Gilovich, Griffin, &
Kahneman, 2002). In fact, with respect to tasks requiring
people to integrate probabilities according to Bayes’
theorem the verdict is even harder, as summarized by a
quote from Kahneman and Tversky (1972, p. 450): “In his
evaluation of evidence, man is apparently not a conservative
Bayesian: he is not a Bayesian at all.”” In the present study,
we present results indicating that, at least under some
conditions, the claim by Kahneman and Tversky might have
been somewhat premature.

To appreciate the kind of task our participants are faced
with, imagine going to catch fish in a lake where the fishing
authorities have farmed two kinds of bass: copper bass, and
silver bass. The two kinds of bass look identical and the
only feature that distinguishes them is that the copper bass
weighs, on average, a little less than the silver bass. While
looking identical they, however, taste very differently. If
you want a delicious dinner, you should go for the silver
bass while if you want to feel sick you should choose a
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copper bass. To make sure that the lake is not over fished
the authorities have also decided that, at all time, the ratio of
copper to silver bass should be 8:2, a piece of information
not made publically available.

The fish scenario illustrates a type of situation that people
engage in frequently in their everyday lives. The fishermen
estimate the probability of a new object belonging to a
category based on previous experience. That is, each time a
fish is taken out of the lake the fisherman needs to estimate
the probability of a given fish being a copper or a silver
bass. The estimate is informed by experience with fish
previously taken up out of the lake and cooked for dinner,
thus effectively categorized as copper or silver bass. More
specifically, this illustrates a situation where an observer
needs to learn base rates and likelihoods from experience
and later integrate this information to reach an estimate of a
posterior probability. In such, the fish scenario incorporates
two areas of cognitive psychology: probabilistic reasoning
and category learning, that have been extensively
investigated separately, but seldom together (but see,
Nilsson, Olsson, & Juslin, 2005).

Probabilistic Reasoning

Research on human probabilistic reasoning has mainly been
concerned with the evaluation of subjective probability
estimates against normative rules of probability. In the
typical experiment, the subjective estimates are informed by
a set of probabilities explicitly stated in the task. Consider,
for example, the cab problem (Tversky & Kahneman, 1980)
where participants are asked to estimate the probability of a
cab involved in an accident being blue rather than green
based on the base rates of blue (.15) and green (.85) cabs
and the hit-rate (.8) of an eyewitness with both the base rate
and hit-rate being explicitly stated in the task. The
normative answer (.41) can be found by integrating the
information in the problem using Bayes’ theorem.

When presented with the cab problem, and similar
problems, people tend to give probability estimates that are
much higher than what is implied by Bayes’ theorem. Often
the modal response is closer to the hit-rate of the eyewitness
(.8). This pattern of results is commonly interpreted as a
captivation in participants by the hit-rate along with neglect
of the base rate (.15). The dominating explanation to this
apparent neglect of base rates has been that people are prone



to use judgmental heuristics (e.g. the representativeness
heuristic) that ignore base rates (e.g., Kahneman & Tversky,
1972; but see, Koehler, 1996). More recent accounts of
probabilistic reasoning, suggesting that people are prone to
linear additive information integration, argue instead that
the non-normative answers are the result of how
probabilities are integrated rather than the use of heuristics
per se (Juslin, Nilsson, & Winman, 2009; Juslin, Nilsson,
Winman, & Lindskog, 2011).

Regardless of the underlying mechanisms explaining the
results, the use of complex normative rules, such as Bayes’
theorem, to integrate probabilities seems to be beyond the
ability of most people (e.g., Eddy, 1982; Gigerenzer &
Hoffrage, 1995). In fact, even explicit instructions regarding
how to use Bayes’ theorem to integrate the information is
insufficient to improve people’s judgments (Juslin et al.,
2011). It should be noted, however, that the despite the
somewhat discouraging picture painted by previous
research, recent accounts of human cognition (e.g.,
Oaksford & Chater, 2009; Tenenbaum, Kemp, Griffiths, &
Goodman, 2011) have indicated that people are rational
Bayesian agents with a remarkable ability to integrate
information in accordance with the laws of Bayesian
probability theory.

The extent to which people’s probability estimates in
Bayesian reasoning tasks coincide with the normative
answer has largely been tested using tasks similar to the cab
problem. Three features of these types of tasks are
noteworthy, features that might influence the conclusions
that can be drawn about human probabilistic reasoning.
First, the information to be integrated (base rates,
likelihoods, etc.) is explicitly given to participants in the
form of probabilities (e.g., Kahneman & Tversky, 1972) or,
sometimes, frequencies (e.g., Gigerenzer & Hoffrage,
1995). Second, the tasks are commonly set up to give a
posterior probability that is low, often .40 or smaller.
Finally, the outcome for which the posterior probability is
estimated is often binary (blue or green cab, disease or no
disease, engineer or lawyer, etc.). All of these task features
make it difficult to draw strong conclusions about the ability
of people to integrate probabilistic information. In everyday
life, people are unlikely to come across situations where
probabilities are explicitly stated. They rather encounter
situations, like the fishing example above, where
probabilities are learned from experience. Many real life
situations also include an outcome, for which the posterior
probability is estimated, that is continuous rather than
binary. Furthermore, the restriction of the range of posterior
probabilities makes conclusions about the extent to which
people are calibrated against the Bayesian probability
difficult due to regression effects. In order to address these
three issues it is necessary to find a task where participants
learn probabilities from experience and where it is possible
to elicit probability estimates on the entire 0 to 1 range for a
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continuous outcome variable. One promising candidate is
found in category learning.

Probabilistic Reasoning and Category learning

In the typical categorization task participants are presented
with a number of stimuli from two or more categories and
are asked to assign an appropriate category to each based on
a set of features. During learning, the categorization is often
followed by feedback regarding the correct category.

The literature contains several different models of how
categorization is made, including prototype, exemplar, and
decision-bound models (Ashby & Maddox, 2005). The
purpose of this study is not to distinguish between the
different kinds of models. Rather, we draw upon the notion
that most models of human categorization make
assumptions about: a) how and what information is accessed
from the categories and what computations are performed
on this information and, b) how a response is selected after
computations are made (Ashby & Alfonso-Reese, 1995).
For most models that assume a probabilistic, in contrast to a
deterministic, response selection process, the decision rule
subjects are assumed to use could be described as; respond
category A to stimulus x with probability M(x) where:

ﬂASxA )
ﬂASxA + ﬁBSxB

In this expression f; is the response bias towards category
i and S,; is a measure of the similarity between stimulus x
and category j. At least under some conditions Eg. 1 can be
reduced to

M(x) = @

M (X) = AP(A) fAA(X) _ , (2)
P(A) f,(x) + P(B) f5(x)
where P(i) and f, are estimators of the base rate and

probability density function of category i respectively

(Anderson, 1991; Ashby & Alfonso-Reese, 1995). Ashby

and Alfonso-Reese (1995) argued that these properties of

the categorization task transform it into a density estimation
task where participants are faced with estimating base rates
and probability density functions of each category. Indeed,
several investigations of models of categorization have
shown that they are mathematically equivalent to density
estimation (e.g., Anderson, 1991; Ashby & Alfonso-Reese,

1995; Griffiths, Sanborn, Canini, & Navarro, 2008)

The similarities between Bayes’ theorem and Eq. 2
suggest that categorization tasks are similar to probabilistic
reasoning tasks with the difference that while probabilities
are explicitly stated in the reasoning task they need to be
learned from trial-by-trial feedback in the categorization
task. Further, while the literature on probabilistic reasoning
is somewhat pessimistic about people’s ability to integrate



probabilities the categorization literature suggests that
people are quite apt at categorization (Ashby & Maddox,
2005). However, while research on categorization has been
extensively concerned with how categories are represented
and the processes leading up to a categorization (Ashby &
Maddox, 2005) it has put much less focus on the extent to
which base rates and likelihoods are learned. Further, the
typical categorization task requires participants to assign a
stimulus to a category leaving the question of whether M(x)
in Eq. 2 is close to the normative posterior probability
unanswered.

It should be noted that categorization research indicates
that people are able to learn base rate information from
experience (Medin & Edelson, 1988), at least under some
conditions, and that models of categorization can be seen as
the cognitive substrate of subjective probability estimates
(Nilsson et al., 2005).

The Present Study

The present study investigates the accuracy of subjective
probability estimates in a Bayesian probability reasoning
task. Instead of being presented with base rates and
likelihoods explicitly, however, participants learn them
through experience in a categorization task.

Further, we elicit probabilities from the entire range of
possible posterior probabilities for a continuous outcome
variable in order to have a task that is as ecologically valid
as possible.

To investigate factors that might influence the learning of
base rates and likelihoods as well as the process used to
elicit probability estimates, we manipulate both base rate
and the distance between categories (i.e., the likelihood
ratio).

Method

Participants

Participants were 40 (24 female and 16 male) undergraduate
students from Uppsala University with a mean age of 25.1
years (SD = 4.3 years). They received a movie ticket or
course credits for their participation.

Design

The experiment used a 2x2 between-subjects design with
base-rate-ratios (8:2/6:4) and category-distance (short / far)
as independent variables.

Materials and Procedure

The computerized task was carried out on a PC and
consisted of a learning phase and a test phase. On each of
the 200 trials in the learning phase, participants categorized
an exemplar to one of two categories (A and B) along a
single dimension. The number of exemplars from each
category was determined by the base-rate-ratio. In the 8:2-
condition the ratio of the number of exemplars in the two
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categories was 8:2 (i.e., 160 A-exemplars and 40 B-
exemplars) and in the other condition it was 6:4. The 200
items were presented in an individually randomized order.

A unique training set was created for each participant by
randomly sampling stimuli from two Gaussian distributions
with equal standard deviation (¢ = 6). In the short category-
distance condition, the mean of the two Gaussians were 40
and 49 respectively while in the far condition they were 40
and 52. Whether category A or B had the highest mean was
counterbalanced over participants.

The experiment used two cover stories. Either the
categories where two types of projectors (Braun / Kodak)
categorized on their brightness (lumens) or two types of
disease (Buragamo / Terrigitis) categorized on the fictitious
PKS-value. Participants were told that the values they
would experiences were created specifically for this study
and that they could not use any prior knowledge to solve the
categorization task. The two cover stories, and which
category was A or B, was counterbalanced over participants.

On each of the 52 trials in the test phase participants were
presented with a value (lumens or PKS) not seen in training
and were asked to state the probability (in percent) that the
item belonged to category A (i.e., the category with the
highest base rate). To create the 52 items for the test phase
the range of the training set was divided into eleven
intervals based on the posterior probability pay that a test
item x belonged to category A (pax =0, 0 <pap<.1, .1 <
Pax < -2, ..., .9 < pax < 1.0, pax = 1.0). For each of the nine
middle intervals (0 < pax<.1, ... 9 < pax < 1.0) four items
were randomly drawn uniformly from that interval. Six
items each were randomly drawn from the two extreme
intervals, where the posterior probability is 0 and 1. Finally,
four critical items with an equal distance to the category
means were included in the test set. After completing the
test phase participants gave explicit estimates of the base
rates and means of the two categories.

Results

Learning Performance

To investigate learning performance, the learning phase was
divided into 10 blocks of 20 trials each. For each block, we
calculated the proportion of correct categorizations. Figure 1
illustrates that participants quickly learn to categorize the
training stimuli to the appropriate category with proportion
correct reaching .8 at the end of the training phase.

We investigated the extent to which the base-rate-ratio
and category-distance manipulations influenced the rate of
learning by entering proportion correct as dependent
variable into a 2x2x10 split plot ANOVA with base-rate-
ratio (8:2 / 6:4) and category-distance (short / far) as
between-subjects independent variable and training block as
within-subjects independent variable. The analysis revealed
a significant main effect of training block (F(9, 324) = 4.95,
MSE = 0.012, p <.001) with a significant difference
between the first and last block. Further, there was a
significant main effect of category-distance (F(1, 36) =



5.09, MSE = 0.068, p = .03) where participants in the far
condition performed better (M =.78, SEM = .018) than
participants in the short condition (M = .72, SEM =.018).
Notably this difference was significant also in the last
training block (t(38) = 2.6, p = .01).

Learning performance
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Figure 1: Proportion correct as a function of training block.
Vertical bars denote 95 % - confidence intervals.

Neither the main effect of base-rate-ratio (F(1, 36) = 2.83,
MSE = 0.068, p = .10) nor any of the interactions (all p:s >
.13) reached significance. Notice that while the main effect
of category-condition indicates that it was easier for
participants to learn the categories with means far apart as
opposed to close together, the lack of interactions suggest an
equal learning rate in all conditions.

Subijective Probability Estimates

In the test phase participant gave explicit estimates of the
posterior probability that an item x belongs to category A
(i.e., the category with the highest base rate). Figure 2
shows the mean estimated probability plotted against the
normative Bayesian probability. In the figure, estimates are
grouped into the eleven intervals described above.

As is evident from the figure participants are on average
fairly well calibrated in their subjective probability
estimates. To investigate the effect of base-rate-ratio and
category-distance on the subjective estimates of posterior
probability we calculated the mean absolute difference
between the estimated and normative probability. The
difference was entered as dependent variable into a 2x2
factorial ANOVA with base-rate-ratio (8:2 / 6:4) and
category-distance (short / far) as between-subjects
independent variables. There were no significant effects (all
p:s > .18). Thus, probability estimates were on average not
influenced by base-rate-ratio or category-distance.

To investigate a possible bias in the probability estimates
the signed difference (rather than absolute difference) was
entered into the corresponding ANOVA. Once again there
were no significant effects (all p:s > .26) and a single
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sample t-test on the signed difference revealed that it did not
differ significantly from 0 (t(39) = .96, p = .35).

Calibration curve

Subjective probability
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4 5 6 7
Bayesian probability

8 9 1

Figure 2: Subjective probability plotted against the
normative Bayesian probability. Dotted line indicates
perfect calibration.

The results illustrated in Figure 2 indicate that the
accuracy of subjective probability estimates might vary as a
function of the Bayesian posterior probability. To
investigate this probability we conducted a more fine
grained analysis where Bayesian probability interval was
added as a within-subjects factor in the analysis of absolute
error. This 2x2x11 split-plot  ANOVA revealed two
significant effects. First, the main effect of Bayesian
probability interval was significant (F(10, 360) = 3.07, MSE
= 0.018, p < .001). The effect is due to absolute errors for
the larger probability intervals being smaller than those for
the lower intervals. Second, the significant probability
interval by base-rate-ratio (F(10, 360) = 2.79, MSE = 0.018,
p < .001) is illustrated in Figure 3 by means of a calibration
curve. As can be seen in the figure, the interaction is due to
estimates in the low probability intervals being slightly
better for participants in the 6:4-condition than for
participants in the 8:4-condition while it is the opposite in
the high probability intervals.

The analysis above suggests that the base-rate-ratio
manipulation might influence the extent to which
participants use base rates to inform their subjective
probability estimates. To investigate this possibility we
analyzed participants’ probability estimates of the critical
items included in the test set. Remember that the critical
items are positioned with the same distance to both category
means. If participants disregard the base rate information
and instead use the ratio of the distance from a test item to
each of the two means as a proxy for the posterior
probability, or some similar strategy, they should estimate
the posterior probability of all critical items to be .5.
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Figure 3: Subjective probability plotted against the
normative Bayesian probability for the two base-rate-ratio
conditions separately. Dotted line indicates perfect
calibration.

Figure 4 displays the distribution of responses to the
critical items. As is evident from the figure a majority of
responses are larger than .5, indicating that participants take
the base rate of the two categories into account when giving
subjective probability estimates. To further investigate the
use of base rates the subjective probability estimates of
critical items were entered as dependent variable into a 2x2
factorial ANOVA with base-rate-ratio and category distance
as between-subjects factors. One participant, considered an
outlier (Jz] > 2.5), was excluded from the analysis. The
ANOVA revealed a significant main effect of base-rate-ratio
(F(1, 35) = 4.63, MSE = 0.037, p = .038) with higher
probability estimates in the 8:2-condition (M = .76, SD
.14) then in the 6:4-condition (M = .62, SD =.24). None of
the other effects reached significance (both p:s > .20). More
importantly in all conditions, participants gave estimates
larger than .5, even though not significantly larger in the
short-6:4-condition, indicating sensitivity to base rates.
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Figure 4: Distribution of subjective probability estimates of
critical items in the test phase.
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A further indication of sensitivity to base rates is given by
the explicit estimates of base rates illustrated in Figure 5.
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Figure 5: Means of explicit estimates of base rate for the
four different true base rates separately. Vertical bars denote
95 % - confidence intervals.

As can be seen in the figure the explicit estimates are
sensitive to the experienced base rates. In addition there is
little difference in the accuracy of estimates in the different
conditions indicating that the differences in use of base rates
seen above is not an effect of differences in learning.

Discussion

Research on probabilistic reasoning has long been
dominated by the general conclusion that people are very
poor at integrating information according to the laws of
probability (e.g., Bayes’ theorem). At the same time
research concerned with category learning, indicates that
people are quite apt at solving categorization tasks that, at
least mathematically, are similar to probabilistic reasoning
tasks. In the present study, we therefore combined these two
research traditions by eliciting subjective posterior
probabilities from base rates and likelihoods learned in a
categorization tasks.

Performance in the learning phase indicated that our
participants quickly learned to categorize the stimuli
correctly. Performance was somewhat better when category
means were far apart as opposed to close together. This was
expected because the closer the two category means get the
more two their probability density functions overlap, which
in turn makes it more difficult to distinguish the two
categories.

The subjective probability estimates given by participants
in the test phase were, as is illustrated in Figure 2, well
calibrated against the normative Bayesian probability. There
was no systematic bias in the estimates and the pattern of
results seen in Figure 2 suggests that the deviations from the
normative Bayesian probability could be attributed to



regression effects. Notably, even though there was a
difference in learning between the two category-distance
conditions, this did not affect the correspondence of the
subjective estimates.

The explicit estimates of base rates and category means
indicated that participants learned these category properties.
Arguably, however, they might not have used them to reach
a subjective probability estimate. However, the analysis of
the critical items included in the test phase showed that
participants in all conditions were sensitive to the base rate
and, at least to some extent, integrated this knowledge in
their probability estimates.

Similar to previous research demonstrating that people
can be good at reasoning under some conditions (e.g.,
Baron, 2000), the results of the present study show that
when people are allowed to learn base rates and likelihoods
in a category learning task they are at least under some
conditions able to produce subjective probability estimates
that are well calibrated and sensitive to base rates. This
suggests that the conclusion by Kahneman and Tversky
(1972, p. 450) may have been somewhat premature. An
interesting question for future research is to investigate the
processes leading up to what is apparently a normative
answer.
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