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Abstract

During the school semester, students face an onslaught
of new material. Students work hard to achieve initial
mastery of the material, but soon their skill degrades
or they forget. Although students and educators both
appreciate that review can help stabilize learning, time
constraints result in a trade off between acquiring new
knowledge and preserving old knowledge. To use time
efficiently, when should review take place? Experimen-
tal studies have shown benefits to long-term retention
with spaced study, but little practical advice is available
to students and educators about the optimal spacing of
study. The dearth of advice is due to the challenge of
conducting experimental studies of learning in educa-
tional settings where material is introduced in blocks
over the time frame of a semester. In this paper, we
turn to two established models of memory—ACT-R and
MCM—to conduct simulation studies exploring the im-
pact of study schedule on long-term retention. Based
on the premise of fixed time each week to review, con-
verging evidence from the two models suggests that an
optimal review schedule obtains significant benefits over
haphazard (suboptimal) review schedules. Further, we
identify two scheduling heuristics that obtain near op-
timal review performance: (1) review the material from
µ-weeks back, and (2) review material whose predicted
memory strength is closest to θ. The former has impli-
cations for classroom instruction and the latter for the
design of electronic tutors.

Keywords: spacing effect; memory model; ACT-R,
MCM, optimization, learning, review

Introduction
At every level of the educational system, from grade
school through college through professional school, in-
structors and textbooks typically introduce students
to new material in blocks. These blocks—sometimes
called sections or units—represent conceptually coherent
chunks of knowledge. For example, in a foreign language
class, students may learn conversational skills concern-
ing foods and restaurants one week, traveling the next
week, and vacation activities the following week. In med-
ical school, students may study vascular, pulmonary, and
renal systems in consecutive months.

At the end of each block, teachers typically adminis-
ter a quiz or assign a problem set to encourage students
to master the material in the block. Because the stu-
dents are rewarded for focusing on this task, they have
little incentive at that moment to rehearse and practice
material they have learned previously. As a result, for-
getting is inevitable. Although anyone who has taught a

class appreciates the need for review, the time demands
of review of old material must be balanced against the
need to introduce new material, explain concepts, and
encourage students toward initial mastery.

Achieving this balance requires an understanding of
when students will most benefit from review. Review-
ing material when it is fresh provides minimal benefit;
however, waiting until material has been forgotten is also
costly because the earlier study provides little benefit. A
long history of research in experimental psychology has
shown that the temporal distribution or spacing of study
has a substantive impact on long-term retention. Select-
ing the ideal spacing of study can lead to nearly doubling
retention of material on an educationally relevant time
scale of a year (Cepeda, Vul, Rohrer, Wixted, & Pashler,
2008). Evidence for the benefit of spaced study is found
not only in the domain of declarative learning, but in
conceptual understanding and cognitive skill acquisition
(Carpenter et al., in press), and spacing manipulations
have been shown to be effective in the classroom (e.g.,
Sobel, Cepeda, & Kapler, 2011).

The goal of this paper is to leverage computer simu-
lations to offer educators practical guidance about the
optimal spacing of review in the context of a semester-
or quarter-long class. In such a context, we assume that
the class is divided into blocks, new material is intro-
duced in each block, and some time during each block is
allotted for review of old material. The issue at hand is
what material should be reviewed and when. To state
the issue formally, suppose that a semester consists of
B blocks, and in block b, b = 1...B, the opportunity ex-
ists to review material from N previous blocks, denoted
Rb,n, 1 ≤ Rb,n < b and n = 1...N . What review sched-
ule, R ≡ {Rb,n}, will maximize the students’ memory
for material following some retention interval RI weeks
after the end of the semester?

Conducting controlled experimental studies to answer
this question is not feasible. Even if the opportunity is
afforded for the review of only one (N = 1) block, the
number of review schedules is 1 × 2 × ... × (B − 1) =
(B − 1)!, and the combinatorics get worse for larger
N . A typical high-school semester or a typical col-
lege quarter may have B = 10 weeks of new material,
for which 9! = 362880 possible review schedules exist.
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Although the number of candidate schedules could be
greatly pruned, it would be a significant undertaking
to conduct an experimental study comparing even two
alternative schedules over a time window spanning ten
study blocks and a subsequent final evaluation.

Because of the difficulty in conducting multi-session
studies over extended time periods, nearly all prior re-
search on spacing has either focused on the case of two
study sessions or spanned such a compressed time scale
that its educational relevance is questionable. (Kang,
Lindsey, Mozer, & Pashler, submitted, offer a contrast-
ing example.) Without recourse to controlled laboratory
studies, one might conclude that cognitive science has
little to offer educators beyond the qualitative advice to
review material occasionally.

However, a trustworthy computational model can be
used to optimize study, i.e., to search for the study sched-
ule that will maximize student retention at some spec-
ified point or time window in the future. The cost of
predicting performance with a computational model un-
der a given study schedule is negligible relative to the
cost of conducting a behavioral experiment. In past
work, we’ve shown the potential benefits of optimizing
study via a cognitive model (Lindsey, Mozer, Cepeda,
& Pashler, 2009). In the present work, we use mod-
els to explore a range of scheduling algorithms in order
to identify both optimal schedulers and heuristic sched-
ulers that well approximate the optimum in an extended
classroom setting.

Spaced Study And Memory Models

The spacing effect has been investigated for over a hun-
dred years (Ebbinghaus, 1885/1964), and in additional
to qualitative theories, many mathematical and compu-
tational models have been proposed to explain the phe-
nomenon (e.g., Benjamin & Tullis, 2010; Raaijmakers,
2003). However, two recent efforts have been fairly com-
prehensive in obtaining quantitative fits to data and both
have shown promise in predicting the outcome of exper-
imental studies: an extension of the ACT-R model of
memory (Pavlik & Anderson, 2005, 2008), and a model
we developed called the Multiscale Context Model or
MCM (Mozer, Pashler, Cepeda, Lindsey, & Vul, 2009).
We summarize the two models and then turn to using
the models as a proxy for human performance to pre-
dict the optimal spacing of study. Lindsey et al. (2009)
compared qualitative predictions of ACT-R and MCM
in hypothetical situations, and the models gave some
contrasting results. However, these earlier simulation
studies did not explore the predictions of the models in
a practical educationally relevant setting.

ACT-R

ACT-R (Anderson et al., 2004) is an influential cognitive
architecture whose declarative memory module is often

used to account for explicit recall following study. ACT-
R assumes that a separate trace is laid down each time
an item is studied, and the trace decays according to a
power law, t−d, where t is the age of the memory and d
is the power law decay for that trace. Following n study
episodes, the activation for an item, mn, combines the
trace strengths of individual study episodes:

mn = ln

(
n∑

k=1

bkt
−dk
k

)
+ β,

where tk and dk refer to the age and decay associated
with trace k, and β is a student- and/or item-specific pa-
rameter that influences memory strength. The variable
bk reflects the salience of the kth study session (Pavlik,
2007): larger values of bk correspond to cases where,
for example, the participant self-tested and therefore ex-
erted more effort.

To explain spacing effects, Pavlik and Anderson (2005;
2008) made an additional assumption: the decay for the
trace formed on study trial k depends on the item’s ac-
tivation at the point when study occurs:

dk(mk−1) = cemk−1 + α,

where c and α are constants. If study trial k occurs
shortly after the previous trial, the item’s activation,
mk−1, is large, which will cause trace k to decay rapidly.
Increasing spacing therefore benefits memory by slow-
ing decay of trace k. However, this benefit is traded off
against a cost incurred due to the aging of traces 1...k−1
that causes them to decay further. The probability of re-
call is monotonically related to activation:

p(m) = 1/(1 + e
τ−m
s ),

where τ and s are additional parameters. In total, the
variant of the model described here has six free param-
eters.

Pavlik and Anderson (2008) use ACT-R activation
predictions in a heuristic algorithm for within-session
scheduling of trial order and trial type (i.e., whether an
item is merely studied, or whether it is first tested and
then studied). They assume a fixed spacing between
initial study and subsequent review. Thus, their algo-
rithm reduces to determining how to best allocate a finite
amount of time within a session. Although they show an
effect of the algorithm used for within-session scheduling,
we focus on the complementary issue of between-session
scheduling. The between-session manipulation has a far
greater impact on long-term retention (Cepeda, Pashler,
Vul, Wixted, & Rohrer, 2006).

MCM

ACT-R is posited on the assumption that memory de-
cay follows a power function. We developed an alter-
native model, the Multiscale Context Model or MCM
(Mozer et al., 2009), which provides a mechanistic basis
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for the power function. Adopting key ideas from previ-
ous models of the spacing effect (Kording, Tenenbaum, &
Shadmehr, 2007; Raaijmakers, 2003; Staddon, Chelaru,
& Higa, 2002) MCM proposes that each time an item
is studied, it is stored in multiple item-specific memory
traces that decay at different rates. Although each trace
has an exponential decay, the sum of the traces decays
approximately as a power function of time. Specifically,
trace i, denoted xi, decays over time according to:

xi(t+ ∆t) = xi(t) exp(−∆t/τi),

where τi is the decay time constant, ordered such that
successive traces have slower decays, i.e., τi < τi+1.
Traces 1− k are combined to form a net trace strength,
sk, via a weighted average:

sk =
1

Γk

k∑
i=1

γixi, where Γk =

k∑
i=1

γi

and γi is a factor representing the contribution of trace
i. In a cascade of K traces, recall probability is simply
the thresholded strength: P (recall) = min(1, sK).

Spacing effects arise from the trace update rule, which
is based on Staddon et al. (2002). A trace is updated
only to the degree that it and faster decaying traces fail
to encode the item at the time of study. This rule has
the effect of storing information on a time scale that
is appropriate given its frequency of occurrence in the
environment. Formally, when an item is studied, the
increment to trace i is negatively correlated with the net
strength of the first i traces, i.e.,

∆xi = ε(1− si),

where ε is a step size. We adopt the retrieval-dependent
update assumption of Raaijmakers (2003): ε = 1 for an
item that is not recalled at the time of study, and ε = εr
(εr > 1) for an item that is recalled.

The model has only 5 free parameters (εr, and 4 pa-
rameters that determine the contributions {γi} and the
time constants, {τi}). MCM was designed such that
its parameters could be fully constrained by data that
are easy to collect—the function characterizing forget-
ting folllowing a single study session—which then allows
the model to make predictions for data that are difficult
to collect—the function characterizing forgetting follow-
ing a study schedule consisting of two or more study
sessions. MCM has been used to obtain parameter-free
predictions for various results in the spacing literature.

Methodology

Model Parameterization

Different parameterizations of ACT-R and MCM are
critical to accounting for a range of learning scenarios—
scenarios that encode the ability and background knowl-
edge of students, the difficulty of material, the manner of
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Figure 1: The 105
power-function
forgetting curves
used to represent
a diversity of
learning scenarios
(i.e., learning tasks
varying in material
difficulty, student
ability, manner of
study, and poten-
tial interference.

study, and the degree to which previously learned ma-
terial interferes with or facilitates the learning of new
material. Because our goal is to obtain results that have
some generality across scenarios, we simulate a wide
range of scenarios and base our results on the average
over scenarios. We summarize the many factors that
comprise a scenario in terms of a forgetting curve, which
specifies the probability that material learned in a sin-
gle study session will be available at some later point in
time. Figure 1 shows a family of 105 forgetting curves,
all of which decay according to a power function of time.
This family expresses a diverse range of naturally occur-
ring degrees of forgetting.

For MCM, we search for model parameters that well
approximate each forgetting curve. MCM has five free
parameters, one of which (εr) was set based on previous
simulations, and the other four of which directly deter-
mine and are fully constrained by the shape of the forget-
ting curve. For ACT-R, we fixed bk = 1, but because its
remaining free parameters are not fully constrained by
the forgetting curve, we used the parameterized MCM to
generate data which was then used to fit ACT-R param-
eters, ensuring that matched parameter sets had a loose
correspondence. The generated data consisted of two
study sessions with intersession intervals ranging from
minutes to weeks, and a subsequent final test days to
months later. This procedure yielded 105 matched in-
stantiations of MCM and ACT-R, reflecting a wide range
of scenarios.

Simulated Learning Experiment

We conducted separate simulations of MCM and ACT-
R to model the performance of a student learning new
material in each of B = 10 weekly blocks. We assumed
homogeneity of material in a block, allowing the block’s
material to be distilled into a single item for the pur-
pose of the simulation. Initial study was simulated as a
single training trial to the model, though this training
trial—and the corresponding memory trace—is intended
to correspond to the net effect of concentrated study over
multiple trials by a student learner.

Review was included in the curriculum starting after a
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Figure 2: (left, middle panels)
Activation trace from MCM
for 10 blocks of material for
good and poor review sched-
ules. (right panel) Pre-
dicted performance on cumula-
tive exam as a function of week
in semester for alternative re-
view schedules.

D-week delay. Review consists of selecting one previous
block’s material and presenting it as a training trial to
the model. We simulated the (B − 1)!/(D − 1)! distinct
review schedules. We allowed D to vary because when
review begins earlier in the semester, the number of sen-
sible review schedules significantly shrinks. For example,
with D = 1, the only option for week 2 review is week
1; this selection has consequences the next week because
in week 3, review of week 1 again adds little benefit, so
a sensible option is to review week 2; and so forth.

To evaluate the effectiveness of a review schedule,
mean recall accuracy over the B blocks was assessed by
querying the model with a final recall test following a re-
tention interval of RI weeks past the end of the semester.

Alternative Review Schedulers

To summarize, we consider two models of human learn-
ing (ACT-R and MCM), 105 scenarios (model parame-
terizations), 3 retention intervals (RI = 1, 4, 26 weeks),
and 3 review delays (D = 1, 2, 3 weeks), for a to-
tal of 1890 distinct combinations. For each combina-
tion, we conducted an exhaustive search through the
set of distinct review schedules to determine the optimal
schedule—the schedule that yields the highest average
accuracy on the final test according to the model.

In addition, we considered various heuristic sched-
ulers. Our goal is to identify heuristics that produce a
close-to-optimal schedule. The two best heuristic sched-
ulers were as follows. A µ-back scheduler follows a simple
rule: in week i, review material from week max(1, i−µ).
A θ-threshold scheduler is motivated by Bjork’s (1994)
notion of desireable difficulty—that material should be
restudied as it is on the verge of being forgotten. Using a
memory model to determine the strength of each week’s
material, this scheduler selects the material whose recall
probability closest to θ. Because we use the same model
for scheduling as we use for modeling the student, this
scheduler offers a best-case use of the θ-threshold. (We
also explored several variants of the threshold scheduler
which yielded poorer performance. One variant uses a
scaled threshold rule whereby the threshold value is rela-
tive to the range of performance over all weeks’ material.
Another uses an asymmetric threshold where the selec-
tion is for material whose recall probability is close to
the threshold on one side—either above or below.)

Results

Figure 2 provides an intuition about the operation of
our model-based scheduling. The left panel of the Figure
shows ten curves, each representing the memory strength
predicted by MCM for one block of material as a func-
tion of weeks into the semester. The color coding from
red to blue indicates blocks 1-10, respectively. In this
example, block i is introduced in week i and is then re-
viewed in week i+ 1. As a result, the block gets a bump
in strength in weeks i and i + 1, and then decays from
that point on. The curves in the Figure represent the
average over the 105 learning scenarios, and the ordi-
nate of the graph shows the expected recall probability
over these scenarios. The absolute probability is imma-
terial and is a consequence of the specific scenarios we
simulate. However, relative probabilities matter. To em-
phasize this point, the middle panel of the Figure shows
an activation trace for an arbitrary and somewhat bad
review schedule. The right panel shows the same time
history of activation, but averaged over the individual
blocks to obtain a prediction of cumulative-exam perfor-
mance (weighting all blocks equally) at a given time. The
superiority of the one-back schedule (left panel) over the
arbitrary (middle panel) is reflected in a higher average
recall probability. Four weeks following the end of the
10-week semester, the better review schedule achieves a
89.7% improvement in retention over no review, and a
16.1% improvement in retention over the poorer quality
review schedule.

Exhaustive Search Of Alternative Schedules

Figure 3 shows a set of curves that reflect the expected
perfomance of all possible review schedules for a given
simulation, sorted from worst to best. The average is
taken over learning scenarios. Each graph shows three
simulations, one per retention interval (RI = 1, 4, 26
weeks). The top and bottom rows are simulations of
MCM and ACT-R, respectively. The columns from left-
to-right correspond to simulations in which review begins
following weeks 1, 2, and 3 (D = 1, 2, 3). The colored
squares on the left of each graph indicate the perfor-
mance of a ’no review’ condition for the retention interval
of the corresponding color. Not surprisingly, all review
schedules are superior to no review, and well-timed re-
view is as much as 33% better than poorly-timed review.
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Figure 4: (a) Relative performance predicted by MCM
and ACT-R for the θ-threshold heuristic as a function of
θ (for D = 1, RI = 1). (b) Relative performance of the
2-back schedule over all learning scenarios, sorted from
best to worst (for D = 1, RI = 1). In both graphs, per-
formance is relative to the exhaustive space of schedules.

θ-Threshold Heuristic Scheduler

The key result in Figure 3 concerns the performance
of heuristic schedulers relative to the optimum sched-
ule discovered by exhaustive search. For each curve, the
location of the green disk indicates the relative rank-
ing of the θ-threshold schedule, for the best setting of
θ. The further to the right along the x-axis, the higher
the ranking. The two models are consistent in predict-
ing that the θ-threshold scheduler is as good or nearly
as good as the best schedule found by exhaustive search.
Figure 4a shows how the predicted performance varies
as a function of θ for the two models, for a delay of
D = 1 week and a retention interval of RI = 1 week.
The ordinate indicates the relative performance in the
range defined by the complete space of schedules, where
100% and 0% correspond to the best and worst sched-

ules found by exhaustive search, respectively. Notably,
the two models yield very similar curves, and although
the θ-threshold scheduler does not produce the very best
schedule, it comes reasonably close. Notably, both MCM
and ACT-R are consistent in indicating that a threshold
in the neighborhood of θ = .4 is best. We have shown
the curve for D = 1 and RI = 1, but curves for the other
values of D and RI are quite similar, and all have the
same optimum for θ.

The limitation of a threshold scheduler is that it re-
quires an accurate model to predict memory strength as
a function of time given some history of study. In our
simulation, we’ve assumed that the model we use for de-
termining memory strength—either MCM or ACT-R—is
a veridical model of our (simulated) student. An im-
portant question for future research concerns how the
accuracy of the model used for scheduling affects the
performance of the θ-threshold scheduler. However, it is
clear that whatever model is used must take into account
the history and spacing of past study, because the ef-
fect of distributed practice—as embodied in both MCM
and ACT-R—is central to the difference in performance
across review schedules.

µ-Back Heuristic Scheduler

Figure 3 also depicts the performance of the 1-, 2-, and
3-back schedules, all of which do reasonably well across
models, delays, and retention intervals. However, be-
cause ACT-R predicts the 1-back schedule to be inferior
for D = 2, 3, and because MCM predicts the 3-back
schedule to be slightly worse for D = 1, 2, we suggest
that the µ = 2, or the 2-back schedule, might be adopted
as a robust solution across conditions.

All results we’ve presented to this point are the av-
erage over the 105 learning scenarios. It’s possible that
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the µ-back schedules work well on average but not for
specific scenarios. To examine the performance of the
2-back schedule across scenarios, Figure 4b shows the
performance in each scenario, sorted from best to worst.
The curves for MCM and ACT-R are remarkably simi-
lar, and indicate that the 2-back schedule performs well
for the majority (60-80%) of scenarios we considered,
further supporting our claim of its robustness.

Discussion
In a metaanalysis of the experimental literature, the op-
timal spacing of study was found to grow monotonically
with the retention interval (Cepeda et al., 2006). Al-
though in past work we’ve shown that MCM and ACT-R
both predict this characteristic, neither model strongly
predicts that the best µ in the µ-back scheduler should
increase with the retention interval (Figure 3). Most
likely, this inconsistency is due to the fact that as µ in-
creases, the initial µ+ 1 weeks of study become focused
on the first week’s material, and there are diminishing
returns of this focus. Consequently, the benefits of in-
creased spacing must be outweighed by the cost of ill-
spent review time. This result suggests to us the impor-
tance of moving beyond laboratory studies of spacing—
typically with two study sessions and a single block
of material to be learned—to situations more reflective
of real-world educational constraints, i.e., semesters in
which multiple blocks of material are presented staggered
in time and initial study must be interlaced with review.

Our results provide practical guidance to educators:
To preserve learning beyond the end of a semester, a
2-back review schedule should generally be appropriate.
Although classroom teachers do not have access to math-
ematical models of human memory, and therefore cannot
exploit the θ-threshold scheduler, we see great poten-
tial of incorporating model-based scheduling into elec-
tronic tutors used in synchronization with classroom in-
struction (Lindsey et al., in preparation). Indeed, such
an approach opens the possibility to personalized review
appropriate for a specific student rather than a one-size-
fits-all approach. Our caveat in suggesting this approach
is that it requires accurate psychological models of mem-
ory. Models based on intuition—as embodied in existing
web-based flashcard apps—are unlikely to be adequate.
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