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Abstract Table 1: Top ten properties from McRae norms with produc-
tion frequencies foknife andpig.

We present a highly performant, minimally supervised gyste

for the challenging task of unconstrained conceptual pitgpe knife pig

extraction (e.g.banana is fruit spoon used for eating Our is sharp ] 29 ananimal 21
technique employs lightly supervised support vector naehi used for cutting 25 lives on farms 20
to acquire promising features from our corpora (Wikipedid a is dangerous 14 ispink 20
UKWAC) and uses those features to anchor the search for plau- has a handle 14 hasatail 17
sible unconstrained relations in our corpus. We introduce a has a blade 11 hasacurly tail 15
novel backing-off method to find the most likely relation for aweapon 11 hasasnout 12
each concept/feature pair and produce a number of metrics a utensil 9 eaten as bacon 11
which act as potential indicators of true relations, tragnour made of steel 8 oinks 9
system using a stochastic search algorithm to find the opti- is serrated 8 is fat 8
mal reweighting of these metrics. We also introduce a human found in kitchens 8 is dirty 8

semantic-similarity dataset; our output shows a strongeeor

lation with human similarity judgements. Both our gold stan 556 10 extract features for a given concept as well as those
dard comparison and direct human evaluation results ingrov

on thOS.e Of prev!ous ap-pro-a:ches’ W|th our human judgements featureS’ I’e|at|0nShIp W|th that Concept, SpECIflca”y, &WE]
evaluation showing a significant 20 percentage point perfor to extract properties in the form @bncept relation feature

mance Increase. triples (e.g.knife used for cutting, pig lives on farm), where
] both the relation and the feature are unconstrained. Okr tas
Introduction is particularly challenging because while we seek a very spe
Recent theories in cognitive psychology attest a propertycific ‘type’ of information (namely, conceptual properfies
based, distributed and componential model of conceptughere is an enormous amount of variation across the features
representation for concrete concepts (estephant, screw-  and relations of properties which exhibit such charadiess
driver) in the brain (Farah & McClelland, 1991; Tyler, Moss,  Previous approaches to our specific conceptual property
Durrant-Peatfield, & Levy, 2000; Randall, Moss, Rodd,extraction task (Baroni, Murphy, Barbu, & Poesio, 2009; De-
Greer, & Tyler, 2004). To explore the validity of these the- vereux, Pilkington, Poibeau, & Korhonen, 2009; Kelly, De-
ories, researchers employ real-world knowledge taken fronvereux, & Korhonen, 2010, 2012) have been successful to
property norming studies where human volunteers are askeefrying degrees, however each has suffered from limitation
to list properties for concepts. McRae, Cree, Seidenbe), a Baroni et al., for example, did not explicitly offer relatis
McNorgan (2005) performed the largest such study to datdpetween their extracted concepts and features. The neatio
collecting properties for over 500 concrete nouns (we callextracted by the Devereux et al., system were rather unso-
these the ‘McRae norms’). Some example properties fronphisticated, with the relation corresponding to the vermid
these norms can be found in Table 1. along the grammatical relation path linking concept to fea-
However, as has been widely discussed (Murphy, 2002ture. The Kelly et al. (2010) system had reasonable perfor-
McRae et al., 2005), these studies suffer from a number ofance but was founded on manually constructed rules and
weaknesses. For example, human participants often undeielied heavily on WordNet for its feature selection.
report certain properties, even when they are facts presum- The system of Kelly et al. (2012) approached this task as
ably known by the volunteers: though all participants areone of relation classification. The relations generatedewer
likely to have known that animals have heatiss heart is  derived directly from its training set; it was therefore bie
not reported as a property for any animal concept. Similarlyto posit new or unseen relationships between its extracted
is animal is listed as a property of all animals in the norms concepts and features. We believe their feature output; how
while breathes is only cited as a property favhale. A re-  ever, was promising and we extend and enhance their feature
lated issue is inconsistency across similar concépisiegs  extraction method in the first component of our own system.
is listed as a property déopard but is absent fotiger. Our system works by first employing a wealth of lexical,
Our task is to automatically extract such conceptual represyntactic and semantic machine-learning attributes io tia
sentations from large text corpora using NLP techniques. Waupport vector machine for feature-extraction. Unlikeesth
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approaches, we make heavy use of unlabelled training datdjstance (or margin) to the nearest training data pointsiolie
rendering our system only very lightly supervised. Next, weclass. This plane is subsequently used to classify unsdan da
return to our unlabelled corpus to find relations for the ex-points. SVMs can also be extended to the multi-class case.
tracted features, using a novel, probabilistically mdtea We trained an SVM by constructing paths through each
backing-off technique. In doing so, we are not constrainegsentence’s GR-POS graph from the concept to prospective
by relations found in the McRae norms: our method allowsfeatures and used the GR path labels, POS tags, relation verb

for the extraction ofnyrelation. instances and path-length as machine learning attribWes.
augmented this (mostly syntactic) set of machine learning a
Data tributes to incorporate additional semantic and lexicédin
Recoded norms mation: bigrams and concept/feature clustef@he intuition

We used the same set of recoded norms employed by Ke||98hind this was that similar types of concepts/features (as

et al. (2012) to train our system. This set, containing 5108Xhibited by cluster membership) might also exhibit simila
concepts in total, is a coding of an anglicised versiofthe ~ tYP€s of relationships (e.g., ‘tool’ concepts ansd for rela-
McRae norms into a uniformoncept relation feature for- tions); the aim was to enable the SVM to detect the regulari-

mat, where eacteature andconcept contain one word; the ties that exist in the relationships between different seina
relation slot can contain one or more words. classes of concepts and features. o

Every possible attribute across the training set corre-
Corpora sponded to a distinct dimension of the vector space. The

We used Wikipedia and the more general UKWAC corpusmajority of the co-ordinates of the training data pointskoo
(Ferraresi, Zanchetta, Baroni, & Bernardini, 2008), conta binary values depending on whether the dimension’s corre-
ing English-language webpages, as corpora. Together thes@onding attribute appeared in the path (except the clogter
offered a suitable balance of general and encyclopaedic texand path-length attributes which took integer values). hEac
We used the C&C-parser (Clark & Curran, 2007) to extracttraining data point was labelled with its relation (or ‘cdgs
grammatical relations (GRs) a_nd part of speech (POS) inforLearning instances We applied the SVM Light software
mation from sentences, allowing us to construct a GR-POS3pachims, 1999) to our learning attributes to extract aMSV
graph for each. We trained our system on the corpora indigcore (the sum of absolute values of the decision functibn va
vidually and in combination. ues, which can be interpreted as a measure of confidence of
Chunking the SVM in its classification) for each concept-feature .pair

We al d chunked _ ¢ w ch kWe also calculated log-likelihood (LL) (Dunning, 1993) and
YVe aiSo used chunked versions of ourtwo corpora. .hun I,E)ointwise mutual information (PMI) (Church & Hanks, 1990)
ing is a technique which identifies the constituent blocks o

. statistics across the top 200 returned concept-featurs foai
a sentence (verb phrase, noun phrase, prepositional phra

fach concept.
etc.). To chunk our corpora, we used the Apache OpenNL . P . .
. . : ; Previous work has ignored a large amount of potentially
1.5 suite (Baldridge, 2005), using the Tokenizer, POS Tagge . o L :
. . instructive training data by only examining sentences whic
and Chunker tools. The various components of the suite wer

trained using models supplied with the OpenNLP package. ik ent|t|es‘expl|c.|tly, f_ound n .the training set. . Howevgr
the use of ‘negative’ information could prove informative

Method and therefore we trained on all GR-POS paths linking one

. . . of our concepts tany potential feature terfhin each sen-
We trained our system with 466 of the 510 concepts in the aNfence. The size of our training set was 5.52 million instance

glicised McRae set to fix our training parameters and evalu;

ted with th ining 44 s th i the ESSLLI for the Wikipedia corpus and 20.07 million instances for the
ated wi € remaining 44 concepts, nose In the SXukwac corpus® As we were unaware of the nature of the
pansion set (Baroni, Evert, & Lenci, 2008) (discussed Jater

relationship between these concept/feature terms, wédabe
Feature derivation these unknown training paths asknownrel.

In the first stage we focussed on extracting terms relevant to (Ijué gglstefmhwas therc(:afpre only dvser% I'g?ﬂ%’ S“Pf_“"i‘?d:

our concepts in order to generate a promising set of feature§"Y ©- % of the UKWAC input an ) 1% o the Wikipedia

similar to those found in our norms. input to the system was labelled with relations drawn from
the McRae norms. Consequently, our SVM classified every

Machine learning attributes Support vector machines

(SVMs) are non-probabilistic binary linear classifiers wthi ®We generated 50 and 150 clusters for the concepts and feature

take a set of input data and predict, for each given input’respectlvely using hierarchical clustering on WordNet.

3 ._ . . .
which of two possible classes it corresponds to. This works "¢ Multi-class implementation, SVM Multiclass (v. 2.20).
Potential features were defined as all adjectives and singu-

by plotting training data points in a high-dimensional spac |ar/plural nouns in a sentence.

and separating them with a hyperplane which has the largest SDue to memory constraints associated with the very large-num

- ber of training instances, we were only able to train our UKGVA
1See Taylor, Devereux, Acres, Randall, and Tyler (2011) &sr d models on one third of the UKWAC corpus; we selected evengthi

tails. learning pattern for training.
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concept/feature pair into thenknownrel relation class. We e [NP Mrrors_NNS] [VP are_VBP found_VBN] [PP in_IN|

i i i [NP the_DT bedroom NN] becamemirror found in bedroom
therefore_ ignored the relation output from this stage of the. [NP MbsT JJS cats NS [VP have VBP] [NP furry AN
system, instead using the top 200 returned concept/feature ; 5 | s NNS] becamesat have tail
pairs ranked by their SVM scores as input to the next stagee [NP The_DT ni crowave_NN| [VP was_VBD runni ng_VBG
In this way, we were interpreting a higher-rated SVM score [PP on_INl [NP electricity NN becamemicrowave run

S on electricity

as a proxy for the likelihood that a feature would haeene

kind of relationship with the concept at hand. Relation selection

Relation extraction The third stage of our system worked by taking eaoh-
cept—feature pair from both the SVM and chunking output,
The underlying hypothesis of our relation extraction stageand finding the best relation for that pair from the chunking
was that if we found sequences of chunks in our corpus semyutput to generate a triple. It also assigned to that triple a
tences which were anchored at each end by a kramgept  number of metrics relating to its constituent parts, thelas
andfeature (from the previous stage), and those chunks’ la-tjye frequency and association scores.
bels matched the labels of our chunked property norms, then \\e assumed that eaclncept—feature pair had one cor-
we could use the surface text of the chunk(s) between the anasponding relation. We called the set of extracted trigks
chors as theelation in ourconcept relation feature format. erated by Stage 7, (with triples (c,r, f) € T) and the set of
Chunk pattern selection To decide which patterns of all extracted relations from Stage R, For each concept, we
chunks were likely to be indicative of property norm rela- also generated a final potential feature $gt,which, for a
tions, we turned to our training set. We passed the full texgiven concept, was the union of the top 200 features from
of the non-ESSLLI McRae norms through the chunker, andStage 1 (ranked by their SVM score) and the top 200 features
manually examined the output for chunk label patternsyikel from Stage 2 (ranked by their frequency in the extracted rela
to indicate relations. tions, but excluding features which appeared only once).
Using this output, we created a ruleset for selecting sen- We defined Concept Feature Frequency (CFF) to be the
tence fragments (chunk sequences) which were similar iftumber of times a concept, and feature.f, co-occurred
structure to our property norms. We called a sequence oéthreBCross our extracted relations:

labelled chunks a three-chunk, a sequence of four chunks a CFHc, f) = ERfreq(Q rf) (1)
four-chunk, etc. We employed the first four most frequent T€ ) )

label combinationsNP VP NP; NP VP PP NP; NP VP ADUP: We also calculated a Distinct Relation Score which mea-
and,NP VP ADVP) to form our ruleset; together these covered Sured the number of distinct relations linkingo f:

95.6% of the three- and four-chunk label patterns generated DRS(c, f) =|D¢t|for D s ={r: (c,r,f) e T} )

from our training set. By using th8P VP PP NP-labelled
four-chunks we were able to extract multi-word, prepositib
verbs (e.g.worn on, used for) as potential relations: previous
approaches to our task have not attempted this. Step 1 For each conceptg, and feature,f, we iterated

Chunk pre-sdlection We needed to select those chunksthrough all relations relating to that pair and calculated a
most relevant to our relation extraction task. To do this weExact Match Score:
passed through our chunked corpus, generating sets of 3 and EMS(c, f) = max{freq(c,r,f) :r € R} (3)

4 sequential chunks and pre-selecting those which were rele A
If EMS(c, f) > 0 then we selected as our best relation,

vant to our concepts. Our criterion for relevancy at thigeta X )
the relation corresponding to that score. If there was more

was that the final term contained within the first chunk, when - -
lemmatised, corresponded to a training concept. than one relation with the same score, then we chose the least

common (i.e., that which had the lowest frequency across all

Chunk to triple conversion Having pre-selected our our relations). If EMc, f) = 0 then we left undefined.
chunks we generated triples from the chunk text. For three-

chunks we did this by simply taking the final term in the first, Stép 2 Our first step only retrieved a relation if there was an
second and third chunks and lemmatising each to give ougXact match amongst our relation extraction output.
concept, relation andfeature terms respectively. For four-  If there wasn't, we took a split approach; given a particular

chunks we followed the same process for the first and fourtifonceptc, and featuref, we calculated separate probabili-
chunks to yield ouconcept andfeature. To extract thee-  ties across all our relations efoccurring with each relation,

lation we took the final term of the secontiR) chunk and ~and of f occurring with each relation. We then calculated for

compounded it with the final term of the thir@R) chunk;  €ach relationr, a combined score for the combination®f
the only exception to this was if the POS of the final term off and f by multiplying the constituent probabilities together.
the second chunk wagG, in which case we lemmatised that Our pairwise combination score was defined:
term and compounded it with the third chunk’s final term. For p(cr) = freq(c,r, f)
example: ' & freq(c) - freq(r)

We next wanted to choose relations for our varicos-
cept—feature pairs,(c, f) € C x F.. We did this in three steps.

(42)
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p(r, f) freg(cr, f) (4b) ~ Table 2: Our best precision, recall and F-scores against the

& freq(r) -freq(f) synonym-expanded ESSLLI norms across our corpora, found
PCYe, 1) = {rﬁ,](;;(%(g(rr)f%g ;S?I,zeg} 40) using the training® parameters.
’ T Relation  Corpus Prec. Recall F
If we had not already selected a best relatipthén we de- Wikipedia  0.1131 0.2265 0.1509
fined it as the relatiorr, which corresponded to this pairwise with YKWAC ~ 0.1000  0.2005 0.1335
combination score. Again, if there was more than one ratatio Egﬁ?/bel?:ﬁ 811223151 8'222531 8_'11252‘?
with the same score, then we chose the least common. Wikipedia — 0.1214 0.2431 0.1620
. . . With (aug.) UKWAC  0.1048 0.2101 0.1398
Step 3 Our final step assigned relations to concept/feature Combined 0.1298 02598 0.1731
pairs which lacked an exact mutually linking relation. This Wikipedia  0.2798 0.5603 0.3732
occurred around 17% of the time and was usually due to both Without YKWAC — 0.2560 = 0.5132 = 0.3416

Combined  0.2798 0.5606 0.3733

the concept and feature terms being relatively low frequénc Kellyetal. 02417 0.4847 0.3225

To achieve this, we backed-off to semantic feature clusters
we definedf, as the cluster for featurg andF, as the set of ten lemmatised properties for each of 44 concepts from the
all feature clusters, and defined our Feature Cluster Scoreecoded McRae norms, together with a feature expansion set
FCS(c, f.), analogously to our Pairwise Combination Score,generated for eactioncept relation feature triple. One of
merely substituting all instances bfor f,. Our bestrelation, the reasons for using this set is that McRae et al. normalised
f, was defined as the relation corresponding to this FCS.  their features by channelling synonymous properties into a
single representation. The ESSLLI set undoes some of these
normalizations, expanding the feature terms to a set of syn-
In our system’s fourth and final stage we used the metriconyms. In this wayloud, noise andnoisy (for example) can
derived above to assign an overall score for each triplegusinall be counted as matches against the propertyud. The
a weighting of parameters; we used our training set to deriveelations were not expanded.
the most optimal values for these parameters. We normalised Our results can be found in Table 2. We also assessed our
our various metrics so that they all lay between 0 and 1. system using the full text of the relations found in the orai

Our relation selection stage had already fixed a relation, "McRae norms as additional ‘relation synonyms’; these aug-
for each concept and feature. Hence we calculated for eaghented results can be found under the ‘With (aug.)’ relation
of our triplest = (c,?, f) an overall score: heading. We have exceeded the performance of Kelly et al.

scordt) = Bewi - PMI(t) +Bue - LL (t) +Bsvm - SVM(t) (2012) (best F-scorg of 0.1654) with a best overall F-scére o
4 Bere- CFRt) + Bors: DRS(t) + Bews- EMS(1) (5) 0.1731 for the combined corpus. _
We also note that performing these evaluations on the top
+Bpcs- PCSt) + Brcs: FCSt)

) o ) ten properties returned further improved the situatiorr-pe
We wished to optimise our parameters for superlorfeaturehaps unsurprising since the ESSLLI set contains only ten

F-score performance against our training set. We employed Broperties per concept); for example, evaluating our top te
stochastic process to find best-possible values for ounitrgi triples against the relation synonyms set returned a ficetis
parameters, using a random-restart hill-climbing algwnt 4 0.2215 for the combined corpus. Furthermore, the pre-
repeated 1000 times and selecting the output (&melues)  cisjon on the combined corpus for the top ten evaluation of
offering the best F-score across these iterations. features-only was 0.4409, surpassing Baroni et al. (2008) w

This process offered a reasonable approximation of the begfifer a best score of 0.239 on the same evaluation.
possible F-scores our system could produce and their corre-

spondingp values; following this process, our best F-scoresHuman-generated semantic similarity

were 0.2739, 0.2803 and 0.2996 for our Wikipedia, UKWAC comparison with the ESSLLI gold standard is still an in-
and combined corpora respectively.

Reweighting

complete evaluation: not all conceptual properties fovagi

. concept are contained therein, and lexical variation carkma
Evaluation valid relations as wrong. Furthermore, one of the primary ad

We evaluated our system using gold standard, humamantages of our computational approach is its ability toamtt

semantic-similarity and direct human evaluations. a large number of properties for a given concept. Hence, we

introduced an alternative approach to calculate how seman-

tically meaningful our output was by evaluating the triples

We began by comparing our top twenty output using the ESSeapacity to predict human-rated similarity between words.

LLI gold standard set. This ‘expansion’ set comprisestipe to We asked five native English speakers to rate the similar-

— _ _ _ _ o ity of 90 concept pairs, where concepts in the pairs were all
_°Only a small proportion of our triples derived their relatin - grawn from the ESSLLI set. The raters were given instruc-

this way; at this point, in our training sets we had assigreations . . .

to over 94% of triples from our Wikipedia corpus, and 97% frola  tions explaining the task and then presented with each con-

UKWAC corpus. cept pair, one by one, a scale of 1 to 7 and asked to rate how

Gold standard evaluation
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Table 3: Pearson correlation) fesults with confidence inter-

vals between ou¥lyman Vector and our similarity vectorg

Table 4: Inter-annotator agreement and judgements for our
extraction system applied to our three corpora.

(with dimensionalityD and derived from the top properties) Judge % Kappa
from our system. Corpus A B Ag c/p (Agree)
G — ——— 0 T A A R
UKWAC 20 712 0.629 [0.486, 0.740] UKWAC [/ 107 96 1015 062 (265
Wi Combined 692 0.671 [0.539,0.771] y
ith : c/p 212 216 214 0.7229
kipedia . .568, 0.787] Combined ;v ‘gg" ‘g1 gs /1.3 (266)
UKWAC 300 3442 0.683 [0.555,0.780]
Combined 3380 0.723 [0.606, 0.809] . . .
Wikipedia 778 0.720 [0.603,0.807] (W). Ourjudges were unaware of the aims of the evaluation.
UKWAC 20 456 0.754 [0.649,0.832] We concatenated their ratings using the methodology of De-
Without \(,:V?I??pbég?g 7‘:;;2 8'77322 [[g'ggsz’g'gglzj] vereux et aP however our instructions reflected the fact that,
UKWAC 300 8698 0.806 [0.719,0.868] unlike previous systems, our output contained preposition
Combined 8727 0.807 [0.721,0.869] relations and we therefore did not wish our volunteers to al-
Wit¥1vcl>tl:]t McRae ‘:‘3%% %77%57 [[%-%%% %88%%]] low for absent prepositions. This evaluation offers an impo
[SA 300 0.708 [0.586,0.798] tantinsightinto the viability of our method as a property ex

traction system. Our results are in Table 4, and Table 5 shows
similar the two concepts were. a sample of our output and the corresponding judgements.

To compare our system with these ratings we constructed It is clear that our best results were again in the combined
a vector space of dimensidd, whereD was the number COrpus, where an impressive 71.3% of our returned triples
of distinct properties across our triples. For each of our 44vere marked as either plausible or correct with a Kappa
concepts, we generated a concept-score vector with nan-zefFleiss, 1971) score of 0.7229 indicating substantial @gre
entries by inserting the triple scores, scoyeinto their cor- ~Ment between annotators. This constitutes a major improve-
rect entries in the concept-score vector. We then constduct ment over Kelly et al. (2012) who evaluated on the same set
a 44x 44 symmetric pairwise similarity matrix across our Of concepts and whose corresponding score was just 51.1%.
concepts by calculating the cosine similarity betweenrthei . .
concept-score vectors. From this we extracted a similarity Discussion
vector,V, for our 90 pairwise comparisons. As the first system to offer viable unconstrained property

We calculated twelve such matrices (using the top twentynorm-like extraction, this paper brings research into e&mc
and top 300 extracted triples, across three corpora and exdal property extraction to the next level. Our system eryplo
cluding and including the relation term). We also generatedoth full parsing and chunking to extract features and rela-
two such matrices using both the feature-heads and the fulions respectively and introduces a novel multi-step bagki
text of the McRae property norms, using the norm produc-off method for relation selection. Our gold standard perfor
tion frequencies as entries in each concept's vector, dsawel mance exceeded that of previous approaches, and our human
comparing our ratings with LSA-predicted (Landauer, Foltz evaluation indicated that we have outperformed the system
& Laham, 1998) similaritied. Our results are in Table 3. of Kelly et al. (2012) by a significant margin. We also intro-

Our systems’ performance, evaluating with and without re-duced a semantic similarity evaluation for this task, sty
lation and when using the top twenty triples, was comparablé&trong Pearson correlation of 0.754 with human ratings when
to LSA (correlation 0.708) with average correlations asros €mploying just 20 extracted properties per concept, with th
our corpora of 0.754 and 0.671 respectively. Including thecorrelation rising to 0.807 when using 300 properties. s th
top 300 extracted triples brought our correlations up t®@.8 latter case, the predicted similarities were almost aseeorr
and 0.754 respectively, an extremely strong result givan th lated with human judgements as the human judgements are
the average Pearson coefficient of correlation across the fiwith each other.

judges (considering all pairwise combinations) was 0.820. Potential criticisms of our system include the fact that our
_ chunk to triple conversion process won’t necessarily abvay
Human evaluation yield a true reflection of the sentence’s original meanirg. |

In our final evaluation, we asked two native English speakiS, for example, possible for the final chunk to contain ad-
ing human judges to assess the accuracy of our triples. Fol€Ctives which modify the final noun. These could have im-
lowing the methodology of Devereux et al. (2009), we askedPortance from a conceptual representation perspectige, (e.
them to classify output triples for 15 concepts into foureat féatures such asng neck for giraffe has long neck). Also,
gories: ‘correct’ (c), ‘plausible’ (p), ‘related’ (r) andwrong’  the modifying portion of a chunk may be semantically signifi-
cant, altering the final term’s meaning (e.gteabag is quite
7300 factors, using the TASA corpuslata. col or ado. edu. different from abag). It should be possible to have more gen-

8The correlation confidence intervals, calculated usindhéis
transformations (Fisher, 1915), are given at the 95% lef/elon-
fidence, and two-taileg < 0.05.

9.e. both ‘correct’ and ‘plausible’ triples were counted cs-
rect, while ‘related’ or ‘wrong’ triples were considereccorrect.

750



Table 5: Judges’ assessments of the top twenty extracted r®evereux, B., Pilkington, N., Poibeau, T., & Korhonen, A.

lation/feature pairs (combined corpus) for two concepts. (2009). Towards unrestricted, large-scale acquisition of
Judge Judge feature-based conceptual representations from corpas dat
knife A B pig A B Research on Language & Computatjda-34.

sharpened by hand ¢ € eat piglet c p Dunning, T. (1993). Accurate methods for the statistics
based on design C C getfat c ¢ 9 ( ) . . . -
made of steel ¢ ¢ produce pork oo of surprise and coincidenceComputational Linguistics
be small C p breed farm roor 19(1), 61-74.
pick on fork r r putinto sausage c ¢ Farah, M., & McClelland, J. (1991). A computational model
be make p I belage b P of semantic memory impairment: Modality specificity and
crafted from metal C C have baby c c - : )
scaled for use p p bedifferent p p emergent category specificityJournal of Experimental
make cut C C stunnedthrough use r w Psychology: GeneralLZ(X4), 339-357.
be sharp C C bebacon c r . . -
be weapon c ¢ bewelfare roor Ferraresi, A., Zanchetta, E., Baroni, M., & Bernardini, S.
have edge c ¢ discover sheep c ¢ (2008). Introducing and evaluating UKWAC, a very large
have handle ¢ C Kkilled for meat c ¢ web-derived corpus of English. Rroceedings of the 4th
be serrated c C used for food c c "
made of stainless W 1 label cattle wow Web as Corpus Workshop (wac-4) — Can we beat Google”
is for cutting C C beanimal c ¢ (pp. 47-54).
have blade ¢ ¢ shackled by ham rr Fisher, R. (1915). Frequency distribution of the valuesef t
be useful p C chew tail c c lati ffici . les f indefinitelv i
be tool C ¢ have disease c o correlation coefficientin samples from an indefinitely karg
be dangerous c c foundin guinea c ¢ population.Biometrika 10(4), 507-521.

Fleiss, J. (1971). Measuring nominal scale agreement among

eral chunk to triple extraction (e.g., by using a larger c@rp many ratersPsychological bulletin76(5), 378.
to mitigate the sparsity associated with multi-word terms)  Joachims, T. (1999). Making large scale SVM learning prac-

Finally, a major issue is our lack of comprehensive train- tical.
ing/testing data; our norms are incomplete insofar as ther&elly, C., Devereux, B., & Korhonen, A. (2010). Acquiring
were a large number of ‘correct’ properties absent from our human-like feature-based conceptual representations fro
gold standard. In future work we hope to implement large- corpora. InFirst Workshop on Computational Neurolin-
scale evaluation of our system’s output (e.g., using Amazon guistics(p. 61). Association for Computational Linguis-
Turk) which would allow us to rapidly obtain large amounts tics.
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