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Abstract 

Previous work has identified a distributed, network of neural 
systems involved in appraising the value of rewards, such as 
when winning $100. We hypothesized that involvement of 
intraparietal sulcus (IPS) in this network is specialized for 
processing numeric rather than monetary value. To test our 
hypothesis, we manipulated numeric magnitude and units to 
construct a range of economic rewards (e.g., +$1, +100¢) in 
response to simple decisions. Consistent with our hypothesis, 
BOLD activity in IPS was related to changes in numeric 
magnitude, independent of monetary value, whereas activity 
in OFC was associated with monetary value, independent of 
numeric magnitude. Finally, by using representation 
similarity analysis, we found that the information represented 
in IPS and OFC was more consistent with the patterns 
expected if representations of numeric magnitudes or 
monetary values, respectively, were in a compressive scale. 
Together, these findings show the importance of numerical 
cognition for understanding how the brain processes monetary 
rewards. 

Keywords: monetary rewards; IPS; OFC; fMRI, 
representation similarity analysis, numerical cognition 

Introduction 
Humans are continuously faced with choices, often 
involving incommensurable options. When choosing among 
options for a romantic date, for example, it is not clear how 
to compare the esthetic pleasure of a movie with the 
gustatory pleasure of a nice dinner. Making decisions 
apparently requires computing the value of each option in 
some way that would register the difference in values 
(Montague, King-Casas & Cohen, 2006). 

Economic models have long assumed that humans behave 
‘as if’ they compute value for each option in a common 
mental currency (i.e., subjective value), and experiments on 
the distributed neural correlates of valuation (i.e., valuation 
network) suggest that this assumption may be correct (Kable 
& Glimcher, 2009; Padoa-Schioppa & Asad, 2006, 2008; 
but see Vlaev, et al., 2011; Tremblay & Schultz, 1999; 
Seymour et al., 2007; Nieuwenhuis et al., 2005). 

One of the sources of information that comprise this 
common mental currency is the magnitude of the reward. 
Being rewarded two cookies feels better than being 

rewarded just one. A special case of using magnitude for 
valuation is the use of monetary rewards. By using money, 
dissimilar goods can be compared on the same scale (e.g., 
dollars or cents) and can be described with just one value, 
its numeric magnitude (e.g., +300 or -300). 

Although translation of value into a numeric scale has 
many benefits, it may also come with a price. Numeric 
magnitude, like luminance and loudness, has a compressive 
psychophysical scale (Fechner, 1860/1966; Weber, 
1846/1948; Dehaene, 1997). Thus, the difference between 
10 and 15 appears larger than the difference between 120 
and 125.  

The compressive nature of numerical judgments is 
important because it may play a large role in how the brain 
tracks monetary value and makes economic decisions 
(Furlong & Opfer, 2009; Peters et al., 2008). Indeed, “unit 
effects” on decision-making have been known for many 
decades. For example, Kahneman and Tversky (1981) 
observed that participants were willing to trade 20 minutes 
of their time to save $5 on a $15 calculator, but not on a 
$125 jacket, even though in both cases they are trading 20 
minutes of their time for the same amount of money (i.e. 
$5). Although, these effects can be explained by assuming 
that subjects pay more attention to the proportional gains, 
the compressive function of numeric representations might 
provide another explanation. Because larger numerals have 
smaller psychological distances between them, the 
difference between a $125 and $120 jacket is subjectively 
less than the difference between a $15 and $10 calculator.  

In this paper, we were interested in why neural activation 
also appears to devalue marginal monetary gains. 
Specifically, we addressed whether the neural response to 
increasing quantities of money are caused by increases in 
objective monetary value (the value hypothesis), by 
increases in the numeric magnitude used to represent the 
magnitude of the monetary reward (the number hypothesis), 
both, or neither. This issue is important because 
neuroeconomists typically assume that the brain areas 
responsible for processing monetary rewards are not 
affected by the magnitudes of the numerals that represent 
the rewards, but this assumption has never been tested. 

722



The Valuation Network: Neural Correlates of 
Monetary Value 

Research in the field of neuroeconomics has suggested the 
existence of a neural valuation network. This network 
computes the subjective value of options under 
consideration and uses that valuation to make choices. The 
most critical brain areas associated with economic value are 
the orbitofrontal cortex (OFC)/ventromedial prefrontal 
cortex (VMPFC), striatum, anterior cingulate cortex (ACC), 
and posterior parietal cortex (PPC) (Glimcher, 2009; Kable 
& Glimcher, 2009). In theory, the function of this valuation 
network is to integrate the multiple value dimensions of an 
option to provide a one-dimensional scale of subjective 
value according to which choices can be ranked for future 
decisions. 

Of critical importance for this paper are the roles of OFC 
and PPC. Both studies in monkeys and humans have 
consistently shown the importance of OFC in the valuation 
process. There are, however, different ways in which that 
value can be represented. Although some studies have found 
neurons in OFC that are associated with absolute value 
(Paddoa-Schioppa & Assad, 2006, 2008; Tom et al., 2007), 
other studies have found that other neurons in OFC are also 
associated with relative value with adaptive scaling 
(Kennerley, Behrens & Wallis, 2011; Tremblay & Schultz, 
1999). 

Parietal cortex activity related to valuation processes has 
been located in the lateral inferior parietal cortex (LIP) of 
monkeys and intraparietal sulcus (IPS) – its human 
homologue (Clithero, Carter, & Huettel, 2009; Kable & 
Glimcher, 2009; Platt & Glimcher, 1999). For instance, 
using pattern classification techniques, activity in IPS was 
related to the value of options, and it was even able to 
distinguish between intertemporal and probabilistic 
valuations (Clithero et al., 2009). Also, their data suggest 
that IPS is critical for the initial stages of valuation by 
representing and integrating the information necessary for 
computation of economic value in OFC and the striatum. 
Also, activation of IPS has recently been related to the 
outcome of monetary rewards, but not to the outcome of 
social rewards (Lin, Adolphs & Rangel, 2011). This result is 
important since it shows that the presence of (numeric) 
magnitude information in the reward presented may be a 
critical component of the value representation in IPS.  

However, the meaning of magnitude in the studies 
reviewed is ambiguous. Because numeric magnitude and 
value magnitude typically go hand in hand, it is not possible 
to know if the increases in activation in IPS (or OFC) are 
related to an increase in the value of the reward or in the 
numbers used to represent that value. Moreover, there is 
strong evidence that suggests that IPS is a central area in the 
processing of numeric information (Arsalidou & Taylor, 
2011 for a meta analysis). Therefore, we suggest – as an 
alternative hypothesis – that while OFC does process reward 
value, the role of IPS in these studies is to process the 
numeric magnitudes of the rewards being considered. If 
true, the activity of the valuation network would be 

susceptible to manipulations of numeric magnitude even 
when these manipulations do not change the objective 
monetary value of the rewards. 

Present Study  
Recently, Furlong and Opfer (2009) provided a method to 

discern between these two possibilities at the behavioral 
level. Although economic theories assume that the 
magnitude of the numbers should not affect economic 
behavior, Furlong and Opfer showed that in fact numeric 
magnitude and not economic value explained the degree of 
cooperation of participants in a prisoner’s dilemma task. 
The device used to prove this point was exceedingly simple. 
By manipulating the unit of the rewards between dollars and 
cents, it was possible to achieve rewards with the same 
objective economic value while drastically changing the 
numeric magnitude associated with the same reward (e.g. $1 
= 100¢). This simple manipulation makes it possible to 
provide participants with a variety of rewards in such a way 
that allows to parametrically vary numeric magnitude and 
economic value independently. 

To test whether IPS processes numeric magnitude or 
economic value, we conducted a functional magnetic 
resonance imaging (fMRI) study that was designed to 
introduce linear transformations to the magnitudes of 
rewards. In order to properly disambiguate the effects of 
numeric magnitude from those of monetary value on the 
valuation network, we developed a scratch-off lottery game 
in which we could manipulate the units (between dollars and 
cents) of the monetary rewards given to participants. 

Method 

Participants 
Seventeen adults participated (mean age 22.2, range 18-41; 
10 female). All were right-handed, had normal or corrected-
to-normal vision and reported no neurological problems. 
One participant was excluded for failing to complete the 
task and complaints of headaches during scanning. 

Design and Procedure 
Participants were recruited to play a lottery game; $15 was 
guaranteed for playing plus the chance to earn $0 to $20 
more depending on the value of tickets uncovered during the 
experiment. To uncover extra money, participants had to 
choose between two covered tickets (represented as two 
gray rectangles on a computer screen) by pressing one of 
two buttons on a button box. After choosing a ticket, the 
amount of extra money earned (or lost) would be revealed. 
Participants had only one second to choose a ticket lest the 
choice be made for them; were 25 tickets missed during the 
session, all extra money would be forfeit. 

Unbeknownst to participants, the lottery was rigged in 
several ways to optimize data for our experiment. First, the 
sequence of rewards and the jittered intertrial interval were 
presented in a pseudo-random order, determined by a 
custom MATLAB script (Poldrack, 2011) that optimizes 
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contrast efficiencies of fMRI event-related designs. Jittered 
intertrial intervals varied from 2s to 8s and were derived 
from a pseudoexponential distribution (mean ITI = 4s). The 
optimization routine was created for each of the 5 individual 
runs, and order of runs varied randomly between subjects. 
Thus, participants had no actual control of the amount of 
money they received. 

Critically, values of tickets came from all possible 
combinations of 5 numbers (i.e., 0, 1, 3, 100, 300), 2 units 
(i.e., dollars and cents) and 2 valences (i.e., win and loss). 
Combined, these components yielded a range of 17 possible 
tickets: (-1¢, -3¢, -100¢, -300¢, -$1, -$3, -$100, -$300, 0, 
+1¢, +3¢, +100¢, +300¢, +$1, +$3, +$100, +$300). To 
control for number of digits and position of units, rewards 
were presented such that valence signs always appeared in 
the leftmost position, units rightmost, and numbers between 
with three digits and one dot (e.g., “- 1.00 ¢”). 

The experiment consisted of 5 fMRI runs of 8 minutes 
each. Each run contained 57 trials, 51 trials corresponding to 
3 repetitions of each of the 17 different tickets, and 6 extra 
tickets. Extra trials were added because equal repetitions of 
all tickets would yield no net gain thereby earning 
participants no extra money. Instead, the lottery was rigged 
so all participants earned an extra $10.50 from the 30 extra 
tickets distributed randomly over the 5 runs. 

 
fMRI Scanning Parameters 
Imaging data was collected on a Siemens Tim 
MAGNETOM Trio 3T MRI scanner. For registration of 
images, we used a T1-weighted MPRAGE sequence (TR = 
1900ms; TE = 4.68ms). In each run, we acquired 237 
whole-brain T2* weighted echo planar images (TR = 
2100ms; TE = 25ms; flip angle 90°). The first 4 volumes of 
images were discarded to allow for stabilization of the 
scanner. Parameters of functional scans were selected to 
minimize susceptibility problems associated with imaging 
of prefrontal cortex (PFC). 

Data Analysis 
fMRI data were analyzed using FEAT 5.98 (FMRI Expert 
Analysis Tool) from FSL toolbox (www.fmrib.ox.ac.uk/fsl). 
Preprocessing of data consisted of brain extraction, motion 
correction, spatial smoothing with a 5mm (FWHM) 
Gaussian kernel, and registration to standard MNI space. 

Statistical analyses were conducted with a whole-brain 
GLM parametric analysis in which parametric regressors 
were created to model wins and losses separately to account 
for the different subjective value functions predicted by 
prospect theory (Kahneman & Tversky, 1979). Specifically, 
activity for each trial was modeled using units (i.e. dollars = 
1, cents = -1) and numbers (i.e. 1, 3, 100, 300) as regressors: 

BOLD(wins) = Units(wins) + Number(wins) + 
(Number(wins) * Units(wins)) 
BOLD(losses) = Units(losses) + Number(losses) +  
(Number(losses) * Units(losses)) 

Where the Number*Units interaction corresponds to the 
objective monetary value of each ticket. In addition to these 
regressors of interest, motion correction parameters from 

MCFLIRT motion correction procedure were also included 
in the models as regressors of no interest. Whole brain 
statistical analyses were performed using a multi-stage 
approach to implement a mixed-effects model treating 
participants as random-effects. Regressors of interest were 
constructed by convolving a boxcar function representing 
the onset time of the stimulus, the magnitude of the 
parametric regressor and its duration with a canonical 
double-gamma (HRF). All reported results in the following 
section were assessed for cluster-wise significance (P < 
0.05, FWE-corrected) using a defining threshold of Z > 2.3.  

Results 

Behavioral Results 
To ensure that participants were paying attention to the task, 
they were instructed to choose a lottery ticket within 1s of 
their onset on the screen. The typical participant was very 
attentive and only missed 3.88 tickets (range 0 – 11). 

Imaging Results 
The experimental design of this study allowed examining 
the effects of manipulating numeric magnitude, units and 
valence on neural activity. Wins and losses were modeled 
separately in agreement with prospect theory (Kahneman & 
Tversky, 1979). For space reasons, we will only describe 
results concerning winning trials. 
Win Trials 
As predicted by the number hypothesis, we found that 
bilateral activation of IPS was related to increases in 
numeric magnitude, but not to increases in monetary value. 
The activation clusters associated with the number 
parametric regressor extended to adjacent areas in lateral 
occipital cortex, inferior temporal gyrus, superior parietal 
lobule and angular gyrus. Also, we found significant 
clusters in middle frontal gyrus. (Fig. 1). Further, no clusters 
showed a negative relation between number and neural 
activation. These patterns are consistent with the literature 
on number processing (Arsalidou & Taylor, 2011) and show 
the importance of numeric information in the processing of 
monetary rewards. Further, these findings contradict the 
idea that the role of IPS in the valuation network is to 
compute economic value (Glimcher, 2009). 

Conversely, activity in bilateral OFC, insula, inferior 
frontal gyrus, ACC, VMPFC, angular gyrus, and lateral 
occipital gyrus, (Fig. 2) was associated with increases in 
monetary value. These results are consistent with what is 
known about the neural correlates of absolute value (Kable 
& Glimcher, 2009; Padoa-Schioppa & Assad, 2008). 

Activity associated with the units regressor (i.e. greater 
activity for dollars than for cents) was found in areas of 
bilateral OFC, insula, VMPFC, paracingulate cortex, ACC, 
and left striatum (Fig. 1). Here, areas that show significant 
relations with receiving rewards in dollars overlap with the 
areas associated with increases in monetary rewards. This 
overlap makes sense because – all else being equal –  
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Figure 1: Regions for which activation was significantly 
modulated by numeric magnitude (red), monetary value 

(blue), dollars (yellow) and cents (green) of winning tickets. 
 
changing the unit of the received lottery ticket from cents to 
dollars entailed a 100-fold increase in monetary value. 
Conversely, areas of left postcentral gyrus, anterior IPS, and 
right lateral occipital gyrus showed greater activity for cents 
than for dollars. Following a similar logic, a change from 
dollars to cents – holding the amount of money constant – 
entailed a 100-fold increase in numeric magnitude. 
However, as can be seen in Fig. 1 and unlike in the previous 
case, the areas in posterior parietal cortex that showed 
significant BOLD activity related to cents do not overlap 
with the areas associated with increases in numeric 
magnitude. 

Evidence that PPC activation is associated with numeric 
magnitude adds to the current literature of the neural 
correlates of valuation by pointing out an important 
confound present in all studies of valuation that have used 
monetary rewards. Several of these studies have reported 
IPS activity and as a result have suggested that PPC is 
directly implicated in the network that computes economic 
value (Ballard & Knutson, 2009; Clithero et al., 2009; Hare, 
et al., 2011; Lin, et al., 2011; Louie, et al., 2011; 
Nieuwenhuis, et al., 2005; Platt & Glimcher, 1999). 
However, the present results suggest that the involvement of 
IPS in the valuation network is related to the processing of 
numeric magnitude information and not to economic value. 

Conversely, signatures of absolute monetary values were 
obtained in OFC, VMPFC, striatum and ACC. In these 
areas, the magnitudes of the numbers used to represent the 
economic values did not affect the representation of 
economic value. These results are consistent with the 
previous literature (Kable & Glimcher, 2009) since these are 
all major areas of the suggested neural network charged 
with processing economic value. Combined, the findings 
from winning tickets are in agreement with the idea that 
there are in fact multiple valuation networks that may have 
different properties. 
Representation Similarity Analysis 
An important question underlying this study is whether 
brain regions like IPS or OFC treat 100¢ more like $1 (same 
economic value) or like $100 (same numeric value). One 
way   to    answer   this   question   is to  examine   how   the 

 
 

Figure 2: Regions of OFC, VMPFC and insula for which 
activation was significantly modulated by increases in 

monetary value for winning tickets. 
 
information of interest is represented in a particular brain 
area. Here, the main goal is not just to detect activation, but 
to characterize the information present in the particular area 
(Kriegeskorte & Bandettini, 2007). Representation 
similarity analysis (RSA; Kriegeskorte, Mur & Bandettini, 
2008) is one kind of multivariate approach to fMRI data 
analysis that tries to accomplish this. RSA aims to find 
correspondences between the relations among stimuli, and 
the relations between the patterns of brain activation in a 
particular brain area in response to the same stimuli. 
Therefore, RSA can be applied to the present problem, since 
it can provide an answer to the question of whether a given 
brain area treats the full matrix of monetary rewards more 
like the numerical representation of those rewards or more 
like a sequence of distinct monetary values. 

Furthermore, we were interested in comparing multiple 
theories of how the brain patterns of activity elicited by the 
full set of stimuli might be related. For the purposes of this 
study, RSA allowed us to compare the patterns of brain 
activity from anatomical regions of interest (ROI’s) to the 
patterns expected if the given brain area processes numeric 
magnitude (both in linear and logarithmic scales), or 
monetary value (both in linear and logarithmic scales). 
Additionally, by using RSA we were able to check if 
positive and negative rewards were treated equally or not. 

To conduct RSA, we computed dissimilarity matrices 
(DSMs) among all presented stimuli for the patterns of 
activity in each ROI, as well as for each theoretical model. 
Once these DSMs were obtained, Spearman correlations 
were computed between the ROIs and the model DSMs. 
This analysis allowed us to rank order the ROI-model 
similarities (Fig. 3). 

As can be seen in Fig. 4, the DSM obtained from IPS 
activation was more similar to the DSM expected if the 
information represented were numeric magnitude in a log 
scale. Conversely, the DSM obtained from OFC activation 
was more similar to the DSM expected if the information 
represented were monetary value in a log scale (Fig. 4). 
These results not only are consistent with the GLM results 
presented in the previous section, but also provide important 
additional  information  regarding  the  details  of  the neural 
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Figure 3: Middle: Single subject IPS dissimilarity matrix 
(DSM); Top Left: Absolute-magnitude Log Number DSM; 

Top Right: Log Number DSM; Bottom Left: Absolute-
magnitude Log Monetary Value DSM; Bottom Right: Log 
Monetary Value DSM. In RSA the brain DSM is correlated 
with Spearman correlations to the model DSMs to provide a 

rank order of which model matches better the brain data. 
 
representations. In particular, the results from RSA show 
that both numeric magnitude in IPS, and monetary value in 
OFC are represented in compressive scales. 

Discussion 
We proposed that the neural response to monetary rewards 
could be accurately predicted by the cognitive components 
of valuation. One such component, the processing of 
numeric magnitude, seemed likely to be especially 
important, though previous studies had not controlled it 
systematically. We thought this an important oversight: 
because the function relating objective numeric magnitudes 
to subjective magnitudes is compressive, a similar relation 
might exist in the neural response to monetary rewards. 

The results presented in this paper generally confirm this 
hypothesis. In particular, when winning money of varying 
amounts, IPS activity was strongly associated with the 
numeric – and not monetary – value of the rewards. In 
contrast, activity of OFC, insula, ACC and VMPFC was 
strongly associated with the monetary – and not numeric – 
value of rewards. Further, RSA showed that numeric 
information in IPS and monetary value in OFC are 
represented in a compressive scale. 

The fact the IPS was associated with increases in numeric 
magnitude and not to monetary value provides a new way to 
understand previous studies about the valuation network 
(Ballard & Knutson, 2009; Clithero et al., 2009; Hare, et al., 
2011; Louie, et al., 2011; Nieuwenhuis, et al., 2005). In 
these studies IPS activity was interpreted as processing 
monetary value, but our results suggest that it is better 
understood as processing numeric information. Moreover, 
this conclusion is strengthened by the fact that IPS has been 
continuously associated with processing of numeric and 
mathematical information (Arsalidou & Taylor, 2011). 

On  the  other  hand,  the finding  that  activity  in  OFC, 

 
 

Figure 4: Spearman correlations between model DSMs and 
group-averaged DSM for IPS (left) and OFC (right). 

 
ACC, VMPFC, and insula was related to monetary value, is 
consistent with a wealth of studies that have established 
strong relations between these areas and the process of 
monetary value (Cunningham et al., 2009, Glimcher, 2009, 
O’Doherty, et al., 2003; Padoa-Schioppa & Assad, 2008). 
Thus, it seems that though the value hypothesis applies to 
OFC, the number hypothesis applies to the IPS. 

Our results from RSA suggest that both numeric 
magnitude on IPS and monetary value in OFC are 
represented in compressive scales. An interesting question 
that should be explored further is whether the information is 
first compressed in one area (e.g., OFC uses the already 
compressed numerical information from IPS when 
processing monetary rewards) or whether information is 
compressed in both areas independently. Thus, performing 
effective connectivity analyses such as dynamic causal 
modeling (Friston et al., 2003) could provide useful 
information about the interactions between these brain 
areas.  

Combined with the effects that numeric information have 
on economic behavior (Furlong & Opfer, 2009; Peters et al., 
2008), the implications of these findings can be far reaching. 
The fact that simply changing the numerical magnitude of a 
reward (without altering at all the monetary value) can 
create these stark effects on the neural valuation network – 
and in particular in IPS – implies that individual differences 
in IPS should predict differences in decisions that involve 
monetary information. Therefore, people who suffer 
dyscalculia or neurological disorders that affect the 
functionality of parietal cortex (such as Williams or Turner 
Syndrome) may be at risk for deficits in economic decision-
making. 

 For example, Peters and collaborators (2008) found that 
individual differences in both numeracy and number sense 
had an impact on the use of numeric information on 
economic decisions. Activity in IPS in response to monetary 
value can provide a neural link to this line of research.  

Finally, the fact that both numeric magnitude and 
monetary value are represented in a compressive scale 
suggests that more attention has to be paid at the way we 
present monetary information when important decisions 
have to be made. For example, recent political discussions 
about deficit reduction deal with extremely large numeric 
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Figure 2. fMRI imaging of brain areas engaged in counting as opposed to subitizing. (a) Regions showing greater activation
when quantifying four to seven elements (counting) than when quantifying one to three elements (subitizing). Group results
are superimposed on sagittal, axial and coronal slices of an individual normalized anatomical image. (b) Left and right
posterior parietal regions showing a nonlinear effect of number. Graphs (i) and (ii) show BOLD activation as a function of
time, averaged across all subjects. The centre brain slice shows an axial view (z = 50) of the group results superimposed on an
individual normalized anatomical image. Graphs (iii) and (iv) show the mean activation index for each stimulus type. Error
bars indicate the inter-subjects standard error.

ear response, paralleling behavioural performance, was
observed in the bilateral posterior intraparietal sulcus, the
frontal and supplementary eye fields, the anterior cingu-
late cortex, the anterior insula, the orbitofrontal gyrus and
basal ganglia (see table 1). Activation of these regions
tightly mirrors the proposed subitizing/counting dichot-
omy in that it shows a minimal or no increase from numer-
osity one to three, a sudden discontinuous increase
between numerosity three and four, and a linear increase
from four onwards.

(iii) A single-trial measure of posterior parietal activation
Posterior parietal regions were the focus of further

analyses. For each subject, we isolated the bilateral acti-
vation in the posterior parietal cortex with the contrast
that showed a nonlinear increase with number. To com-
pare brain activation with behavioural performance, we
then calculated a single-trial index of the intensity of the
activation. On each trial, a linear regression was calculated
between the normalized blood oxygenation level depen-
dent (BOLD) signal at the four data points following each
stimulus, and the standard SPM haemodynamic function
(without a constant term). Note that the BOLD signal is
a relative measure where the reference point 0 is simply
the mean activity of that region. Thus, the above acti-

Proc. R. Soc. Lond. B (2003)

vation index provides a relative, not an absolute, measure
of single-trial activation. In particular, negative values
need not indicate a deactivation relative to the inter-trial
period, but merely indicate a low signal intensity with
respect to the overall experiment.

We first submitted this activation index to a one-way
ANOVA identical to the one applied to RTs. This showed
a significant effect of target type (F7 ,63 = 22.85; p , 0.001
and F7 ,63 = 35.54; p , 0.001 for the right and left parietal
clusters, respectively). Moreover, a quadratic trend test
over progressively larger stimulus intervals showed that
the first significant nonlinear increase was observed
between numbers three and four (F1 ,63 = 12.93, p , 0.05
and F1 ,6 3 = 6.78, p , 0.05 for the right and left parietal
clusters, respectively). The sudden increase in parietal
activity at number four can be clearly seen in figure 2b,
where the increase in activity between three and four is
higher than either the increase between two and three, or
between four and five.

We then used the activation index as a single-trial meas-
ure of the deployment of the parietal attention system, and
attempted to use it to infer stimuli and subjects’ strategy.
On data from the first blocks of all subjects (1/4 of the
total data), we performed a discriminant analysis, which
finds the optimal linear combination of the right and left

Piazza et al. (2003)

Number: Correlates of N

Appraising the value of monetary rewards involves a distributed network of neural systems 
(Peters & Bucher, 2009; Tom et al., 2007). Two areas commonly identified in this valuation 
network are OFC and IPS, though the role of each has been unclear. 

Because processing monetary rewards is likely to be constrained by our ability to process 
magnitude information, we hypothesized that the role of IPS (or OFC) in the valuation network 
might be confined to processing of numeric magnitudes. Indeed, evidence strongly suggests 
that IPS is the central area in the processing of non-monetary numeric value (Piazza et al., 2003). 
Further, in studies implicating OFC correlates of monetary value, monetary value is often 
confounded with numeric value.

This issue is important because neuroeconomists typically have assumed that brain areas 
responsible for processing monetary rewards are not affected by the magnitudes of the numerals 
that represent the rewards, but this assumption has never been tested.

striatum, correlate better with the subjective value of delayed
than probabilistic monetary rewards.

Subjective valuation during probability discounting
Figure 5 (left) shows that a network of regions, the most pro-
nounced being located in the right superior/inferior parietal lob-
ule (42, !38, 44; z value " 5.26) and the left middle occipital
gyrus (!48, !62, !10; z value " 5.10), along with ventral stria-
tum (!8, 4, !8; z value " 5.13), correlated with subjective value
during PD (for a complete list, see supplemental Table 4, avail-
able at www.jneurosci.org as supplemental material). A subset of
these regions showed significantly better correlations with sub-
jective value during PD than during DD (Fig. 5, right) (supple-
mental Table 5, available at www.jneurosci.org as supplemental
material), the most pronounced clusters being located in the right
inferior/superior intraparietal lobule and left middle occipital
gyrus.

A core network for subjective reward valuation
We then performed a conjunction analysis (Nichols et al., 2005)
searching for regions that correlate with subjective value during
both DD and PD. Note that this conjunction analysis requires
that a given voxel exceeds the threshold in both contrasts inde-
pendently. Left ventral striatum (!8, 4, !8; z value " 5.13;
mean # SEM parameter estimate: DD, 3.12 # 0.39; PD, 2.95 #
0.40) and right central OFC (26, 18, !16; z value " 3.62; mean #
SEM parameter estimate: DD, 1.68 # 0.35; PD, 1.51 # 0.35)
coded for the subjective value of both delayed and probabilistic
rewards, strongly implicating this network in domain-general
reward valuation (Fig. 6) (supplemental Table 6, available at www.

jneurosci.org as supplemental material).
At a reduced uncorrected threshold of p $
0.005, this conjunction also revealed ac-
tivity in a region of the ventromedial PFC
(!4, 34, !6; z value " 3.09; mean # SEM
parameter estimate: DD, 1.27 # 0.36; PD,
1.27 # 0.36).

Additional models
For completeness, we report the results
for the delay/probability and magnitude
regressors orthogonalized with respect to
subjective value in supplemental Tables
7–10 (available at www.jneurosci.org as
supplemental material).

Results from an additional GLM in
which the order of orthogonalization was
changed (i.e., the subjective value regressor
was orthogonalized with respect to delay/

probability and magnitude) are provided in supplemental Tables
11 and 12 (available at www.jneurosci.org as supplemental ma-
terial). We also investigated two additional GLMs including only
single parametric regressors, one in which only inverse delay-to-
reward/reward probability were included and one model including
only reward magnitude (Kable and Glimcher, 2007). The results
from these analyses can be found in supplemental Tables 13–16
(available at www.jneurosci.org as supplemental material). Subjec-
tive value correlated better with the fMRI data than reward magni-
tude, inverse delay-to-reward or reward probability alone, in all of
the above mentioned regions from the primary GLM, supporting
our preference in interpreting the fMRI data in terms of subjective
value rather than other aspects of the rewards.

Experiment 2
Experiment 1 was based on the assumption that delayed and
probabilistic rewards are equally valuable if their discounted
value is the same. To directly test this assumption, we conducted
an additional behavioral experiment.

Participants (n " 18, 13 also participated in experiment 1)
made repeated choices between €20 available with a given delay
and €20 available with a given probability (supplemental Meth-
ods, available at www.jneurosci.org as supplemental material). As
in experiment 1, delays and probabilities were computed based
on previous behavioral testing sessions such that, in half the trials,
the delayed option had the greater subjective value, and in the
remaining trials the probabilistic option had the greater subjec-
tive value. If subjective value is sufficient to account for choice
behavior in this setting, this would indicate that the two types of

Figure 6. Regions in which the correlation with subjective value was significant (display threshold, p $ 0.001, uncorrected) for
both DD and PD in left ventral striatum (VS; a) and right OFC (b). L, Left; R, right.

Figure 5. Brain regions in which activity was positively correlated with the subjective value of the probabilistic option (display threshold, p $ 0.001, uncorrected). Regions of the intraparietal
sulcus, bilateral posterior parietal, prefrontal and inferior temporal cortices, as well as the ventral striatum showed this pattern (left). A similar set of regions, with the exception of the ventral
striatum, showed a better correlation with subjective value during PD than during DD, including the intraparietal sulcus and middle occipital gyrus (right). Parameter estimates of the subjective value
regressor were positive for PD and below or %0 for DD, for both the IPS (mean # SEM parameter estimate: DD, !0.85 # 0.38; PD, 2.92 # 0.38) and MOG (mean # SEM parameter estimate: DD,
!0.11 # 0.49; PD, 3.49 # 0.49). IPS, Intraparietal sulcus; MOG, middle occipital gyrus; L, left; R, right.
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gambles in the ventral striatum and VMPFC. Al-
though null results in fMRI must be interpreted
with caution, these results are consistent with
the conclusion that losses and gains are coded
by the same mechanism rather than by two
separate mechanisms. Moreover, this aggre-
gate representation of decision utility appears
to be represented by the same neural circuitry
that is engaged by a range of experienced re-
wards (11). These results support previous
studies showing increased and decreased ac-
tivity in the striatum for experienced monetary
gains and losses, respectively (11, 13).

We next investigated whether individual dif-
ferences in brain activity during decision-making
were related to individual differences in behavior,
using whole-brain analyses to identify regions
where the neural response to gains or losses was
correlated with behavioral loss aversion. Unex-
pectedly, greater behavioral loss aversion was
associated with greater neural sensitivity not only
to losses but also to gains. For increasing gains,
we observed a significant correlation with
behavioral loss aversion in the sensorimotor
cortex and superior frontal cortex (fig. S4). On
the other hand, as potential losses increased, an
extensive set of areas showed a more rapidly
decreasing response to mounting losses among
individuals who were more loss averse (fig. S5).
Notably, these regions encompassed many of
the areas that showed an overall decrease in
neural activity with increasing potential loss.
The association of decreased behavioral loss
aversion with decreased neural responses to
both losses and gains during decision-making is
consistent with the long-standing notion that
some forms of risk taking may have their roots
in sensation seeking by individuals who have a
diminished physiological response to stimula-
tion (22).

Examination of regions of interest in the
striatum and VMPFC from the gain/loss con-
junction analysis (Fig. 3) revealed that these

regions exhibited a pattern of “neural loss aver-
sion”; that is, the (negative) slope of the decrease
in activity for increasing losses was greater than
the slope of the increase in activity for increas-
ing gains in a majority of participants (striatum:
loss > gain for 14 out of 16 participants, P =
0.004; VMPFC: loss > gain for 13 out of 16
participants, P = 0.021). In order to more directly
assess the relationship between neural loss aver-
sion and behavioral loss aversion, we performed
a whole-brain robust regression analysis with
these measures (21). This analysis revealed
significant correlations between behavioral and
neural loss aversion in several regions, including
bilateral ventral striatum (Fig. 4), bilateral lateral
and superior PFC (pre-supplementary motor
area), and right inferior parietal cortex (figs. S6
and S7 and table S2). These results demonstrate
that differences in behavior were strongly pre-
dicted by differences in neural responses.

The present study replicates the common
behavioral pattern of risk aversion for mixed
gambles that offer a 50/50 chance of gaining or
losing money and shows that this pattern of
behavior is directly tied to the brain’s greater
sensitivity to potential losses than gains. These
results provide evidence in favor of one of the
fundamental claims of prospect theory (1, 2),
namely that the function that maps money to
subjective value is markedly steeper for losses
than gains [see also (4)]. Moreover, mediation
analysis (21) suggests that individual differences
in behavioral loss aversion (as inferred by will-
ingness to accept mixed gambles) are driven
primarily by individual differences in neural sen-
sitivity to potential losses. Although the present
study focuses on loss aversion in the context of
mixed gambles, recent work has found that the
coefficient of loss aversion (i.e., the ratio of sen-
sitivity to losses versus gains) is highly correlated
across risky and riskless contexts (23). Therefore,
we surmise that a similar mechanism may con-
tribute to other manifestations of loss aversion.

Previous studies have shown that anticipated
or experienced losses give rise to activation in
regions that have been associated with negative
emotions, such as the amygdala or anterior insula
(11, 17, 18). In contrast, the present study dem-
onstrates that, in the context of decision-making,
potential losses are represented by decreasing
activity in regions that seem to code for sub-
jective value rather than by increasing activity in
regions associated with negative emotions. This
difference between present and previous results
reinforces the importance of distinguishing
among experienced, anticipated, and decision
utility in economic theories of choice (15). It is
possible that amygdala engagement for ex-
perienced losses reflects negative prediction error
(11, 24) rather than negative value, whereas the
lack of immediate outcomes in the present study
(which was designed to isolate decision utility)
precludes the computation of prediction errors.

The neural basis of decision under risk was
investigated in a recent study by De Martino
et al. (25), who found that amygdala activity
correlated with choices of risky gambles framed
as losses and sure outcomes framed as gains.
However, the reflection in risk attitudes when
moderate-probability gambles are framed as losses
versus gains has been attributed in prospect theory
primarily to the reflection in curvature of the value
function for losses versus gains (2) and secondar-
ily to distortions in probability weighting rather
than to loss aversion. In contrast, we asked partici-
pants in the present study to evaluate balanced
(50/50) gain/loss gambles, which allowed us to
isolate the role of loss aversion. Thus, although
amygdala activation may play a role in some
decisions under risk, it does not appear to be a
necessary component in loss aversion.

Fig. 4. Scatterplot of correspondence between neu-
ral loss aversion and behavioral loss aversion in
ventral striatum [Montreal Neurological Institute
coordinates (x, y, z): 3.6, 6.3, 3.9; center of gravity
in millimeters]. Regression line and P value were
computed with the use of robust regression by
iteratively reweighted least squares to prevent the
influence of outliers; however, this regression also
remained highly significant (P = 0.004) when the
extreme data point (top right-hand corner) was
removed from the analysis. bloss and bgain are the
unstandardized regression coefficients for the loss
and gain variables, respectively.

Fig. 3. Conjunction analysis re-
sults. (A) Map showing regions with
conjointly significant positive gain
response and negative loss response
(P < 0.05, whole-brain corrected, in
each individual map) (see also table
S1). Red pixels indicate regions
showing significant conjunction; green
circles highlight clusters included in
the respective heatmaps to the right.
L, left; R, right. (B) Heatmaps were
created by averaging parameter
estimates versus baseline within each
cluster in the conjunction map for
each of the 16 cells (of 16 gambles
each) in the gain/loss matrix; color
coding reflects strength of neural
response for each condition, such
that dark red represents the stron-
gest activation and dark blue repre-
sents the strongest deactivation.
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gambles in the ventral striatum and VMPFC. Al-
though null results in fMRI must be interpreted
with caution, these results are consistent with
the conclusion that losses and gains are coded
by the same mechanism rather than by two
separate mechanisms. Moreover, this aggre-
gate representation of decision utility appears
to be represented by the same neural circuitry
that is engaged by a range of experienced re-
wards (11). These results support previous
studies showing increased and decreased ac-
tivity in the striatum for experienced monetary
gains and losses, respectively (11, 13).

We next investigated whether individual dif-
ferences in brain activity during decision-making
were related to individual differences in behavior,
using whole-brain analyses to identify regions
where the neural response to gains or losses was
correlated with behavioral loss aversion. Unex-
pectedly, greater behavioral loss aversion was
associated with greater neural sensitivity not only
to losses but also to gains. For increasing gains,
we observed a significant correlation with
behavioral loss aversion in the sensorimotor
cortex and superior frontal cortex (fig. S4). On
the other hand, as potential losses increased, an
extensive set of areas showed a more rapidly
decreasing response to mounting losses among
individuals who were more loss averse (fig. S5).
Notably, these regions encompassed many of
the areas that showed an overall decrease in
neural activity with increasing potential loss.
The association of decreased behavioral loss
aversion with decreased neural responses to
both losses and gains during decision-making is
consistent with the long-standing notion that
some forms of risk taking may have their roots
in sensation seeking by individuals who have a
diminished physiological response to stimula-
tion (22).

Examination of regions of interest in the
striatum and VMPFC from the gain/loss con-
junction analysis (Fig. 3) revealed that these

regions exhibited a pattern of “neural loss aver-
sion”; that is, the (negative) slope of the decrease
in activity for increasing losses was greater than
the slope of the increase in activity for increas-
ing gains in a majority of participants (striatum:
loss > gain for 14 out of 16 participants, P =
0.004; VMPFC: loss > gain for 13 out of 16
participants, P = 0.021). In order to more directly
assess the relationship between neural loss aver-
sion and behavioral loss aversion, we performed
a whole-brain robust regression analysis with
these measures (21). This analysis revealed
significant correlations between behavioral and
neural loss aversion in several regions, including
bilateral ventral striatum (Fig. 4), bilateral lateral
and superior PFC (pre-supplementary motor
area), and right inferior parietal cortex (figs. S6
and S7 and table S2). These results demonstrate
that differences in behavior were strongly pre-
dicted by differences in neural responses.

The present study replicates the common
behavioral pattern of risk aversion for mixed
gambles that offer a 50/50 chance of gaining or
losing money and shows that this pattern of
behavior is directly tied to the brain’s greater
sensitivity to potential losses than gains. These
results provide evidence in favor of one of the
fundamental claims of prospect theory (1, 2),
namely that the function that maps money to
subjective value is markedly steeper for losses
than gains [see also (4)]. Moreover, mediation
analysis (21) suggests that individual differences
in behavioral loss aversion (as inferred by will-
ingness to accept mixed gambles) are driven
primarily by individual differences in neural sen-
sitivity to potential losses. Although the present
study focuses on loss aversion in the context of
mixed gambles, recent work has found that the
coefficient of loss aversion (i.e., the ratio of sen-
sitivity to losses versus gains) is highly correlated
across risky and riskless contexts (23). Therefore,
we surmise that a similar mechanism may con-
tribute to other manifestations of loss aversion.

Previous studies have shown that anticipated
or experienced losses give rise to activation in
regions that have been associated with negative
emotions, such as the amygdala or anterior insula
(11, 17, 18). In contrast, the present study dem-
onstrates that, in the context of decision-making,
potential losses are represented by decreasing
activity in regions that seem to code for sub-
jective value rather than by increasing activity in
regions associated with negative emotions. This
difference between present and previous results
reinforces the importance of distinguishing
among experienced, anticipated, and decision
utility in economic theories of choice (15). It is
possible that amygdala engagement for ex-
perienced losses reflects negative prediction error
(11, 24) rather than negative value, whereas the
lack of immediate outcomes in the present study
(which was designed to isolate decision utility)
precludes the computation of prediction errors.

The neural basis of decision under risk was
investigated in a recent study by De Martino
et al. (25), who found that amygdala activity
correlated with choices of risky gambles framed
as losses and sure outcomes framed as gains.
However, the reflection in risk attitudes when
moderate-probability gambles are framed as losses
versus gains has been attributed in prospect theory
primarily to the reflection in curvature of the value
function for losses versus gains (2) and secondar-
ily to distortions in probability weighting rather
than to loss aversion. In contrast, we asked partici-
pants in the present study to evaluate balanced
(50/50) gain/loss gambles, which allowed us to
isolate the role of loss aversion. Thus, although
amygdala activation may play a role in some
decisions under risk, it does not appear to be a
necessary component in loss aversion.

Fig. 4. Scatterplot of correspondence between neu-
ral loss aversion and behavioral loss aversion in
ventral striatum [Montreal Neurological Institute
coordinates (x, y, z): 3.6, 6.3, 3.9; center of gravity
in millimeters]. Regression line and P value were
computed with the use of robust regression by
iteratively reweighted least squares to prevent the
influence of outliers; however, this regression also
remained highly significant (P = 0.004) when the
extreme data point (top right-hand corner) was
removed from the analysis. bloss and bgain are the
unstandardized regression coefficients for the loss
and gain variables, respectively.

Fig. 3. Conjunction analysis re-
sults. (A) Map showing regions with
conjointly significant positive gain
response and negative loss response
(P < 0.05, whole-brain corrected, in
each individual map) (see also table
S1). Red pixels indicate regions
showing significant conjunction; green
circles highlight clusters included in
the respective heatmaps to the right.
L, left; R, right. (B) Heatmaps were
created by averaging parameter
estimates versus baseline within each
cluster in the conjunction map for
each of the 16 cells (of 16 gambles
each) in the gain/loss matrix; color
coding reflects strength of neural
response for each condition, such
that dark red represents the stron-
gest activation and dark blue repre-
sents the strongest deactivation.
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gambles in the ventral striatum and VMPFC. Al-
though null results in fMRI must be interpreted
with caution, these results are consistent with
the conclusion that losses and gains are coded
by the same mechanism rather than by two
separate mechanisms. Moreover, this aggre-
gate representation of decision utility appears
to be represented by the same neural circuitry
that is engaged by a range of experienced re-
wards (11). These results support previous
studies showing increased and decreased ac-
tivity in the striatum for experienced monetary
gains and losses, respectively (11, 13).

We next investigated whether individual dif-
ferences in brain activity during decision-making
were related to individual differences in behavior,
using whole-brain analyses to identify regions
where the neural response to gains or losses was
correlated with behavioral loss aversion. Unex-
pectedly, greater behavioral loss aversion was
associated with greater neural sensitivity not only
to losses but also to gains. For increasing gains,
we observed a significant correlation with
behavioral loss aversion in the sensorimotor
cortex and superior frontal cortex (fig. S4). On
the other hand, as potential losses increased, an
extensive set of areas showed a more rapidly
decreasing response to mounting losses among
individuals who were more loss averse (fig. S5).
Notably, these regions encompassed many of
the areas that showed an overall decrease in
neural activity with increasing potential loss.
The association of decreased behavioral loss
aversion with decreased neural responses to
both losses and gains during decision-making is
consistent with the long-standing notion that
some forms of risk taking may have their roots
in sensation seeking by individuals who have a
diminished physiological response to stimula-
tion (22).

Examination of regions of interest in the
striatum and VMPFC from the gain/loss con-
junction analysis (Fig. 3) revealed that these

regions exhibited a pattern of “neural loss aver-
sion”; that is, the (negative) slope of the decrease
in activity for increasing losses was greater than
the slope of the increase in activity for increas-
ing gains in a majority of participants (striatum:
loss > gain for 14 out of 16 participants, P =
0.004; VMPFC: loss > gain for 13 out of 16
participants, P = 0.021). In order to more directly
assess the relationship between neural loss aver-
sion and behavioral loss aversion, we performed
a whole-brain robust regression analysis with
these measures (21). This analysis revealed
significant correlations between behavioral and
neural loss aversion in several regions, including
bilateral ventral striatum (Fig. 4), bilateral lateral
and superior PFC (pre-supplementary motor
area), and right inferior parietal cortex (figs. S6
and S7 and table S2). These results demonstrate
that differences in behavior were strongly pre-
dicted by differences in neural responses.

The present study replicates the common
behavioral pattern of risk aversion for mixed
gambles that offer a 50/50 chance of gaining or
losing money and shows that this pattern of
behavior is directly tied to the brain’s greater
sensitivity to potential losses than gains. These
results provide evidence in favor of one of the
fundamental claims of prospect theory (1, 2),
namely that the function that maps money to
subjective value is markedly steeper for losses
than gains [see also (4)]. Moreover, mediation
analysis (21) suggests that individual differences
in behavioral loss aversion (as inferred by will-
ingness to accept mixed gambles) are driven
primarily by individual differences in neural sen-
sitivity to potential losses. Although the present
study focuses on loss aversion in the context of
mixed gambles, recent work has found that the
coefficient of loss aversion (i.e., the ratio of sen-
sitivity to losses versus gains) is highly correlated
across risky and riskless contexts (23). Therefore,
we surmise that a similar mechanism may con-
tribute to other manifestations of loss aversion.

Previous studies have shown that anticipated
or experienced losses give rise to activation in
regions that have been associated with negative
emotions, such as the amygdala or anterior insula
(11, 17, 18). In contrast, the present study dem-
onstrates that, in the context of decision-making,
potential losses are represented by decreasing
activity in regions that seem to code for sub-
jective value rather than by increasing activity in
regions associated with negative emotions. This
difference between present and previous results
reinforces the importance of distinguishing
among experienced, anticipated, and decision
utility in economic theories of choice (15). It is
possible that amygdala engagement for ex-
perienced losses reflects negative prediction error
(11, 24) rather than negative value, whereas the
lack of immediate outcomes in the present study
(which was designed to isolate decision utility)
precludes the computation of prediction errors.

The neural basis of decision under risk was
investigated in a recent study by De Martino
et al. (25), who found that amygdala activity
correlated with choices of risky gambles framed
as losses and sure outcomes framed as gains.
However, the reflection in risk attitudes when
moderate-probability gambles are framed as losses
versus gains has been attributed in prospect theory
primarily to the reflection in curvature of the value
function for losses versus gains (2) and secondar-
ily to distortions in probability weighting rather
than to loss aversion. In contrast, we asked partici-
pants in the present study to evaluate balanced
(50/50) gain/loss gambles, which allowed us to
isolate the role of loss aversion. Thus, although
amygdala activation may play a role in some
decisions under risk, it does not appear to be a
necessary component in loss aversion.

Fig. 4. Scatterplot of correspondence between neu-
ral loss aversion and behavioral loss aversion in
ventral striatum [Montreal Neurological Institute
coordinates (x, y, z): 3.6, 6.3, 3.9; center of gravity
in millimeters]. Regression line and P value were
computed with the use of robust regression by
iteratively reweighted least squares to prevent the
influence of outliers; however, this regression also
remained highly significant (P = 0.004) when the
extreme data point (top right-hand corner) was
removed from the analysis. bloss and bgain are the
unstandardized regression coefficients for the loss
and gain variables, respectively.

Fig. 3. Conjunction analysis re-
sults. (A) Map showing regions with
conjointly significant positive gain
response and negative loss response
(P < 0.05, whole-brain corrected, in
each individual map) (see also table
S1). Red pixels indicate regions
showing significant conjunction; green
circles highlight clusters included in
the respective heatmaps to the right.
L, left; R, right. (B) Heatmaps were
created by averaging parameter
estimates versus baseline within each
cluster in the conjunction map for
each of the 16 cells (of 16 gambles
each) in the gain/loss matrix; color
coding reflects strength of neural
response for each condition, such
that dark red represents the stron-
gest activation and dark blue repre-
sents the strongest deactivation.
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- GLM anaysis revealed that IPS activity correlates better with number, OFC activity correlates 
better with money.
- RSA results show an overall preference for money. However, although the number DSM - 
brain DSM correlations were not significantly greater than the money DSM - brain DSM 
correlations, IPS multivoxel patterns correlated higher with number than money, and OFC 
multivoxel pattern correlate higher with money than number.
- RSA revealed that overall, patterns of activity for both number and money are more 
consistent with a logarithmic than linear function. 

Method

Data Analysis

GLM Parametric regressors:
BOLD(wins) = Units(wins) + Numbers(wins) + (Units(wins) * Numbers(wins))
BOLD(losses) = Units(losses) + Numbers(losses) + (Units(losses) * Numbers(losses))
** All Images assessed for cluster-wise significance (P<0.05, FWE- corrected); cluster 
defining threshold Z > 2.3.
ROI Analysis:
12mm spheres from previous meta-analyses (Arsalidou & Taylor, 2011; Liu et al., 2011)

In this study, we tested whether the roles of IPS and OFC in the processing of monetary rewards 
is due to the monetary value of rewards, the numeric magnitude used to represent rewards, 
both, or neither.

To test this issue, we manipulated the number (1 ,3, 100, 300), units ($, ¢), and valence (+, -) to 
generate a range of monetary rewards (+1¢ ,+3¢, +$1, +100¢, +$3, +300¢, 0, -1¢, -3¢, -$1, -100¢, -
$3, -300¢). 

Participants

Seventeen adults participated (mean age 22.2, range 18-41; 10 female). All were right-handed, had 
normal or corrected- to-normal vision and reported no neurological problems. One participant was 
excluded for failing to complete the task and complaints of headaches during scanning.

30 
 

100. $, + 100. ¢, - 1.00. $, - 1.00 $), such that the valence sign (i.e. ‘+’ or   ‘-‘) was 

always on the left hand side of the numbers, the numbers always had three digits 

and one dot, and the currency sign (i.e. ‘$’ or ’¢’) was always on the right hand 

side (See Figure 1). 

 

 

  

Figure 1. Experimental procedure. At the beginning of each trial, participants 
will fixate for a jittered time (µ = 4000ms). After the fixation period, two grey 
lottery tickets appear on the left and right side of the screen for a fixed amount of 
time (1000ms). During this time period, participants have to choose one of the 
tickets. After the 1000ms period, the value earned or lost by the chosen ticket is 
shown. If participants do not choose a ticket, a ticket is chosen automatically and 
a feedback message appears reminding participants to answer faster and how 
many tickets they have missed so far during the experiment. 

 

 

Representation Similarity Analysis (RSA):
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magnitudes. The compressive scales that we use to represent 
money imply that it is very likely that decisions made with 
very large values would not be consistent with the decisions 
made in an equivalent situation with smaller numeric 
magnitudes. If monetary values are treated differently when 
only the numbers used to represent them are different, 
people might be easily deceived in supporting proposals that 
go against their own preferences. 
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