Causal model and sampling approaches to reducing base rate neglect

Brett K. Hayes (B.Hayes@unsw.edu.au)

Ben R. Newell (Ben.Newell@unsw.edu.au)

Guy E. Hawkins (G.Hawkins@unsw.edu.au)

School of Psychology, University of New South Wales
Sydney, 2052, Australia

Abstract

Two studies examined how sampling of base rate information
and causal explanation of false positives facilitate intuitive
probability judgments. Experiment la varied these two
manipulations factorially. Each had an additive effect on
reducing base rate neglect and increasing choice of the
normatively correct solution. Experiment 1b showed that
description of relevant distributional information produced
similar facilitation to sequential sampling. These results
indicate that causal and sampling approaches impact on
different components of probability judgment.

Keywords: Causal reasoning, Sequential sampling, Base rate
neglect, Bayesian judgment, Belief updating

Introduction

One of the most commonly observed biases in human
judgment is neglect of relevant base rate information (Eddy,
1982; Gigerenzer & Hoffrage, 1995; Tversky & Kahneman,
1974). For example, when people attempt to solve intuitive
probability problems like that in Figure 1 (standard version),
they typically ignore the low base rate (p(Cancer) = .01),
generating probability estimates that are much higher than
the normative Bayesian solution (p(Cancer|Mammogram+)
~0.051, see Appendix for a derivation) .

Previous work has suggested a number of solutions to the
problem of base rate neglect. These include the use of
frequency rather than probability formats for relevant
statistics (Gigerenzer & Hoffrage, 1995), and instructions
that clarify set relations between the relevant samples
(Barbey & Sloman, 2007; Evans, Handley, Perham, Over, &
Thompson, 2000).

Two novel approaches to explaining and reducing base
rate neglect have recently been proposed. The first involves
consideration of the intuitive causal models that people
construct when solving probability problems. Krynski and
Tenenbaum (2007) outline a “causal-Bayes” account of
probability judgments which assumes that errors arise when
the statistics in a given problem do not readily map onto an
intuitive causal model. In the standard mammogram
problem for example, no causal explanation for the false
positive rate (the probability of a positive mammogram in
the absence of cancer) is given. According to Krynski and
Tenenbaum (2007) this makes it difficult to integrate the
false positive rate into Bayesian calculations, leading to
inflated probability estimates.  The problem can be
overcome by providing a causal explanation for the relevant
statistics. Krynski and Tenenbaum (2007) found that when

such an explanation was supplied (see the causal version in
Figure 1) there was a marked increase in the accuracy of
probability estimates.

Alternately Hogarth and Soyer (2011) suggest that people
are less likely to neglect relevant statistics when they have
had “experience” with the relevant sample. Specifically,
they suggest that trial-by-trial sampling of the frequency of
an event from the relevant probability distribution can lead
to more accurate estimates in problems involving low base
rates (cf. Lejarraga, 2010; Sedimeier, 1999). Hence,
Hogarth and Soyer (2011) allowed some participants to
draw sequential samples of women with a positive
mammogram from a distribution with a low base rate of
cancer. Sampling led to more accurate probability estimates
than when only a description of the base rate was provided.

Mammogram problem

Doctors often encourage women at age 50 to participate in a
routine mammography screening for breast cancer.

From past statistics, the following is known:

1% of women had breast cancer at the time of the screening

Of those with breast cancer, 80% received a positive result on the
mammogram

[Standard version] Of those without breast cancer, 15% received
a positive result on the mammogram

[Causal version] 30% of the women had a benign cyst at the time
of screening. Of those with a benign cyst, 50% received a positive
test on the mammogram

All others received a negative result
Suppose a woman gets a positive result during a routine

mammogram screening. Without knowing any other symptoms,
what are the chances she has breast cancer? __ %
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Figure 1. The mammogram problem

Combining causal model and sampling
approaches

A key motivation for the current work was that the causal
model and sampling approaches appear to address different
components of intuitive probability problems. Krynski and
Tenenbaum (2007), focused on incorporating information
about false positive rates into a causal model of the problem.
In contrast, Hogarth and Soyer’s (2011) sequential sampling
approach aimed at improving sensitivity to the low base
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rate. The major goal of the current research was to combine
these two approaches to overcoming base rate neglect. If
our analysis is correct, then the causal model and sampling
approaches should have additive effects on performance in
intuitive probability problems.

A secondary goal was to address a number of
methodological limitations of previous work using
sequential sampling to overcome base rate neglect. First,

Hogarth and Soyer (2011) asked participants to answer the
same probability problem on three occasions; after a
summary description of the base rate, after sampling
experience, and a final estimate. For mammogram
problems like that in Figure 1 this led to a complex pattern
of results with accuracy increasing when probability
problems were solved after sampling, but a marked decrease
in accuracy when participants subsequently solved the same
problem after reading a description of the base rate. To
allow for a more straightforward assessment of the effects of
description and experience, Experiment 1a used a between-
subjects manipulation in which half the participants
provided an answer to the intuitive probability problem after
reading a description and having relevant sampling
experience, whereas the remainder answered on the basis of
the description alone.

Second, Hogarth and Soyer (2011) assessed intuitive
probability accuracy using a relatively liberal performance
measure (participants had to choose the correct estimate
from four options). This is likely to yield higher levels of
accuracy than the more conventional method of requesting
point estimates of probability. To facilitate comparison of
the sampling and causal model approaches we therefore
assessed performance using both open-ended estimates (as
used by Krynski & Tenenbaum, 2007) and forced choice
questions.

Third and most importantly, we aimed to clarify the
nature of the information that gives rise to improved base
rate representations. Hence, in Experiment 1b participants
were provided with a yoked description of sampling
outcomes (e.g., out of 4 people observed, 1 person had
cancer) to examine whether improved performance was a
result of sequential sampling per se or simply the
distributional information provided by the sample (cf.
Rakow, Demes, & Newell, 2008).

Experiment la

This study examined the respective contribution of causal
explanation of false positives and sampling experience to
performance on the mammogram problem (Figure 1). Each
factor was varied factorially and performance was assessed
using both point estimate and forced choice methods. Based
on the previous work of Krynski and Tenenbaum (2007) and
Hogarth and Soyer (2011), we expected that providing
causal information and relevant sampling experience would
each lead to improved probability judgments. Based on our
argument that each of these approaches addresses a different
component of the task, we further predicted that these
effects would be additive.
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Method

Participants. One hundred undergraduate students (Mace =
20.1 years) participated for course credit. Equal numbers
were randomly allocated to the four experimental
conditions.

Design and Procedure. The experiment followed a 2 (False
positive information: standard vs. causal) x 2 (Base rate
presentation: description only vs. description + sampling)
design with both factors manipulated between subjects.

All participants were presented with the mammogram
problem shown in Figure 1 (cf. Krynski & Tenenbaum,
2007, Experiment 2). The problem was presented in either
the standard or causal version, with each version
administered to an equal number of participants. In both
versions the Bayesian solution to the question about the
likelihood of cancer given a positive mammogram was
(approximately) 5%.

In all conditions the problem description (the text in
normal font in Figure 1) was first presented on a computer
screen. In the Description only condition, an open-ended
question asking for an estimate of the likelihood of cancer in
a woman with a positive mammogram appeared after 15s.
As per Krynski and Tenenbaum (2007), the format of this
estimate was a % chance of cancer between 0 and 100.
Participants were invited to use an on-screen calculator to
assist in solving the problem. After a likelihood estimate
was entered, the cancer estimation question was repeated
together with four alternative “answers that people
commonly give to this question” (1%, 5%, 65%, 80%).
Participants used a mouse to click on the option they
thought was “closest to the correct answer”.

Those in the sampling condition received an additional
sampling phase between the problem description and the
request for a likelihood estimate. In this phase they were
told that to assist task completion they would be able to
draw samples of women who had received a positive
mammogram. Each time a participant clicked a “simulate”
button they were told whether or not a sampled woman had
cancer. In the standard condition the feedback for cancer-
absent cases was “this woman does not have cancer”. In the
causal condition it was “this woman has a benign cyst”.
Samples were drawn randomly from a uniform distribution
of 10 000 cases'. There was no limit on the number of
samples that could be drawn. At any time during the
sampling process participants could also click an on-screen
button to view a running tally of a) samples with cancer; b)
samples without cancer; and c) total samples viewed. To
familiarize participants with the sampling tool, prior to
commencing the main experiment they were shown the
outcomes of 10 samples of tossing an unbiased coin. After
the sampling phase those in the sampling condition received
the same open-ended and multiple choice questions as the

! Specifically, each time the simulate button was clicked a random
number between 1 and 10 000 was generated. If the number was
less than 511 then the woman had cancer.



description only condition, but were not provided with an
on-screen calculator. There was no time limit on any part of
the procedure.

An on-screen version of the 4-item Berlin Numeracy Test
(Cokely, Galesic, Schulz, Ghazal & Garcia-Retamero, 2012)
was also administered. Numerical ability (Mcorrect = 2.44)
did not differ across experimental conditions (p > .35).

Results and Discussion

As a preliminary step we examined behavior in the sampling
condition. The number of samples drawn ranged from 3 to
50 (MSAMPLES = 17.26, SD = 1222) A majority of
participants experienced no positive cases of cancer (42%)
or only one positive case (34%). The mean number of
samples did not differ between the causal or standard
versions of the sampling condition (p’s > 0.5).

Intuitive probability — Open-ended estimates. Estimates
of the likelihood of cancer were analyzed by computing the
simple deviation of the estimate from the normative solution
(5.1%, see Figure 2). To examine group differences in
estimate accuracy, deviation scores were entered into a
2(description vs. sampling) x 2(standard vs. causal version)
analysis of variance (ANOVA). Estimates in the sampling
condition (Mpeyiation = 25.69) were closer to the normative
solution than those in the description only condition
(MDEVIATION: 3991), F(l, 96) = 478, p= 03, Cohen’s d =
0.43. There was a non-significant trend for estimates in the
causal condition (Mpgyviation = 26.87) to be closer to the
normative solution than those in the standard condition
(MDEVIATION = 3874), F(l, 96) = 333, p= 07, d = 0.36.
There was no interaction between base rate presentation and
causal factors, p = .45.2

As per Krynski and Tenenbaum (2007), we also tallied
the frequency of estimates that could be classified as correct
(estimates in the range 4%-6%) or as base rate neglect
(estimates >= 65%). Binary logistic regression showed that
“neglect” estimates were less common in sampling than
description only (24% vs. 44% of responses in the
respective conditions), Wald (1) = 4.36, p = .04, and less
common in causal than the standard condition (24% vs.
44%), Wald (1) = 4.36, p = .04. However, the frequency of
estimates classified as normatively correct (M = 12%) did
not differ across conditions. No interactions between the
sampling and causal factors were found (p’s > .4).

Intuitive probability — Forced choice. These responses
were classified as correct (a choice of 5%), base rate
overuse (1%), or base rate neglect (a choice of 65 or 80%).
The proportion of responses in each category within each
condition is given in Figure 3. Logistic regression was
again used to examine changes in the proportion of each

2 These qualitative results remained unchanged when deviation
scores in the sampling condition were recomputed against a
normative solution that replaced the stated base rate of 1% with the
base rate implied by the sample drawn by each participant (i.e. the
observed proportion of positive cancer trials).
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type of response across conditions. Figure 3 shows that
selection of the correct response was more common in the
sampling than the description only condition, Wald (1) =
7.24, p = .007, and in the causal than the standard condition,
Wald (1) = 8.96, p = .003. The interaction between these
factors was not significant (p > .35). Choice of the base rate
neglect options was less common in the causal than the
standard condition, Wald (1) = 4.87, p = .03. These choices
were unaffected by the sampling manipulation and there
was no interaction with causal version (p’s > .15). Neither
manipulation affected selection of the base rate overuse
option, (p’s >.15).
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Figure 2. Deviation scores for probability estimates (with
standard error bars).

Additional analyses. In the description only condition,
accessing the on-screen calculator during testing was
positively correlated with the likelihood of giving the
correct estimate on the open-ended test, r(49) = 0.28, p =
.04, and with selection of the correct alternative in forced
choice, r(49) = 0.35, p = .01. In the sampling condition, no
sampling statistics (humber of samples drawn, number of
cancer positive cases observed, proportion of cancer
positive cases observed) were correlated with any
performance measures (all p’s > 0.1). However, the
frequency with which the summary tally was accessed was
positively correlated with the likelihood of providing a
correct estimate, r(49) = 0.32, p =.02.

Summary. The accuracy of judgments of cancer probability
was facilitated by an opportunity to sample instances with a
positive mammogram and by causal explanation of false
positives. Although correct probability estimates were rare,
both causal and sampling manipulations led to a downward
shift in estimates in the direction of the normative solution.
Both manipulations increased choice of the correct estimate
and decreased choice of the neglect option. Notably these
effects were additive, supporting the view that the causal
and sampling manipulations affect different components of
intuitive probability judgment.
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Figure 3. Experiment 1a. Proportion of forced choices.

Experiment 1b

The beneficial effects of sampling found in Experiment 1a
and in past work (Hogarth & Soyer, 2011) could arise from
a range of mechanisms. Hogarth and Soyer (2011) suggest
that “across time, a person observes sequences of outcomes
that can be used to infer the characteristics of the data
generating process” (p. 435). However it is unclear whether
sampling experience per se is critical here. Sequential
sampling may be just one of many methods of obtaining
information about the distribution of positive and negative
cases. Other methods such as description of a frequency
distribution (cf. Gigerenzer & Hoffrage, 1995) could convey
the same information, and hence may also reduce base rate
neglect. Some support for this view comes from the
Experiment 1 finding that use of a summary tally was
correlated with estimate accuracy.

Experiment 1b examined this possibility by presenting all
participants with a summary tally of positive and negative
cases of cancer from a sample of women with a positive
mammogram. This ‘enhanced description’ presents the
same base rate information that was present in the sampling
condition of Experiment 1a, but without trial-by-trial
sampling. To allow for close matching of the statistical
information presented to participants, the sampling tallies
used in this study were yoked to the outcomes of sequential
sampling in Experiment 1a (see Rakow et al., 2008, for a
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related manipulation). If sampling experience is crucial for
gaining a more accurate representation of the problem, then
the Experiment 1a sampling condition should yield superior
probability estimates to enhanced description. If the critical
issue is the generation of a representative distribution of
positive and negative cases, then enhanced description
should do as well as sequential sampling. As in Experiment
1a, descriptions of the problem included a standard or causal
explanation of the false positives.

Method

Participants

Fifty undergraduate students (Mage 19.3 years)
participated for course credit. Equal numbers were
randomly allocated to causal and standard conditions.

Procedure

The general procedure was similar to the causal and
standard description only conditions in Experiment 1a, with
the important exception that all participants were given an
on-screen tally of positive and negative cases of cancer from
samples of women with a positive mammogram. Fifty
tallies were generated based on sampling outcomes in the
sampling condition of Experiment la. For example, if a
participant in the earlier study drew 20 samples containing 1
cancer positive and 19 negative instances, then a tally
containing the same information was constructed for an
enhanced description participant. An on-screen calculator
was available to assist in answering the problem.

Results and Discussion

Intuitive probability — Open-ended estimates. Estimation
performance was again examined by calculating the
deviation of estimates from the normative solution (see
Figure 2). Accuracy as measured by deviation scores was
not affected by causal explanation, F(1, 49) = 0.2, p = .66.
The more important issue was how estimation
performance compared with the sampling and description
conditions in Experiment la. Inspection of Figure 2
suggests that the pattern of deviation scores in enhanced
description was more similar to the sampling than the
description condition from the earlier study. These trends
were examined using a cross-experimental task (description
only, sequential sampling, enhanced description) x causal
framing ANOVA. Planned comparisons compared
performance in the enhanced description condition with the
description only and sampling conditions respectively. The
analysis confirmed that estimates in the enhanced
description condition (Mpgyiation = 16.56) were more
accurate than in the description only condition, F(1, 144) =
14.04, p < .001, d = 0.74, but did not differ from estimates
in the sampling condition, F(1, 144) = 2.24, p = .14. No
significant influence of causal framing was found. ®

® These qualitative results remained unchanged when deviation
scores were recalculated using individual cancer base rates implied
by the sampling information instead of the stated rate of 1%.



Intuitive probability — Forced choice. Forced choice
responses in the enhanced description group are given in
Figure 4. Binary logistic regression found no significant
differences between the enhanced description and sampling
groups for any type of response, and no interactions with
causal framing, p’s > .06. Correct responses were more
common in enhanced description than in the description
only conditions, Wald (1) = 9.66, p = .002, and neglect
responses were less common, Wald (1) = 7.93, p = .005.
Across the enhanced and description only conditions, causal
framing led to a higher rate of correct responding than
standard framing, Wald (1) = 4.06, p = .04, but this effect
was stronger in the description only condition, Wald (1) =
4.87, p = .03. The enhanced description and description
only groups did not differ in base rate overuse.
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Figure 4. Experiment 1b. Proportion of forced choices.

Summary. This study examined whether sampling
experience is necessary to reduce base rate neglect in
intuitive probability. When people were given a description
of the relevant sampling information they performed as well
as those in the sampling condition of Experiment la, and
better than those in description only. It appears that what is
crucial is having relevant information about the distribution
of positive and negative cases; this can be obtained through
sampling or a description of the frequency distribution.

A puzzling finding was that causal framing, which had a
positive effect on probability estimates in Experiment 1a,
had little impact on enhanced description estimates. This
may have been due to the accuracy of intuitive probability
estimates in the standard version of enhanced description
being higher than the standard conditions in the earlier study
(see Figure 1). In other words, estimates may have been
approaching ceiling in the enhanced description standard
group, reducing the likelihood of finding further facilitation
due to causal explanation.

General Discussion

These studies examined how providing sampling
information about base rates and a causal explanation of
false positives can improve intuitive probability judgments.
Experiment 1a found that these manipulations led to a shift
in probability judgments toward the normative response,

and away from inflated estimates that would usually be
classified as base rate neglect. Moreover, each
manipulation increased choice of the normative solution.

The results replicate and extend previous findings of a
positive effect of causal framing (Krynski & Tenenbaum,
2007) and sampling experience (Hogarth & Soyer, 2011) on
intuitive probability judgment. Experiment la, however,
was the first study to combine these manipulations. An
important result was that effects of sampling and causal
explanation were additive. This is consistent with the view
that these manipulations address different aspects of
probability judgment. The sampling and enhanced
description  manipulations helped establish  greater
sensitivity to the base rate. The causal manipulation
facilitated the incorporation of false positives into the
problem solution.

Experiment 1b clarified the role of sampling experience in
improving probability judgment. Contrary to the views of
Hogarth and Soyer (2011), we found that sequential
sampling was not essential for reducing base rate neglect. A
similar level of facilitation was obtained when the relevant
statistical information was conveyed by a description of
sampling outcomes. This is consistent with other findings
in the judgment and decision-making literature which show
that detailed descriptions of statistical information can
produce equivalent effects to sequential sampling (e.g.,
Rakow et al., 2008).

The causal facilitation effects in these studies are
consistent with the broader perspective on probability
judgments outlined by Krynski and Tenenbaum (2007).
This “causal Bayesian” view suggests that encoding the
relevant statistics in an intuitive probability problem will not
lead to accurate judgments, unless the statistics can be
incorporated into a causal model of the problem. In the
current studies both standard and causal groups were given
equivalent statistical information about false positives but
only the latter were supplied with a cause. According to
Krynski and Tenenbaum (2007) this allows those in the
causal condition to construct an intuitive model with two
generative nodes that provide alternative explanations for
positive mammograms. More broadly, these findings are
consistent with the idea that people often fail to
spontaneously consider alternative causes for probabilistic
outcomes but can do so when prompted (e.g., Fernbach,
Darlow, & Sloman, 2011).

It is notable that although both causal explanation and
sampling shifted open-ended probability estimates in the
right direction, neither manipulation increased the rate of
normatively correct estimation. Similar results have been
reported in previous work on base rate neglect. Krynski and
Tenenbaum (2007) found that although causal explanation
of false positives reduced base rate neglect, most
participants in the causal condition still failed to produce a
normative probability estimate. Likewise, although
Gigerenzer and Hoffrage (1995) found that frequency
formats for relevant statistics improved the accuracy of
probability estimates, the majority of participants still gave



normatively incorrect answers to the mammogram problem.
This raises the question of what additional barriers need to
be overcome to produce normative probability estimates.

The causal Bayesian perspective suggests one answer.
According to this view the solution of probability problems
proceeds in three stages. The first involves constructing an
intuitive causal model of the problem. The second involves
encoding the relevant statistics and mapping these onto the
various nodes of the causal model. The third stage uses
Bayesian inference to update beliefs in the light of the
observed statistics.  Arguably, the causal and sampling
manipulations in the current studies impacted on the first
two stages. The finding that a majority still do not produce
normative estimates suggests that people may need further
assistance with the final stage of implementing Bayes’ rule
(cf. SedImeier & Gigerenzer, 2001).

A final caveat is that although an opportunity to draw
samples and description of sampling outcomes facilitated
performance, sampling should not be regarded as a panacea
for the problem of representing base rates. It is important to
note that in the current studies and in Hogarth and Soyer
(2011), samples were conditionalized on a woman having a
positive mammogram. This ensured that with sufficient
draws, a representative base rate was observed. However,
samples outside the laboratory are not always constrained in
this way. Sampling based on incorrect conditionalization
(e.g., drawing samples of women with cancer and seeing
whether they have a positive mammogram) can actually
lead to more biased intuitive probability estimates (e.g.,
Fiedler, Brinkmann, Betsch, & Wild, 2000).

These studies suggest that the causal Bayesian approach
represents a useful framework for analyzing the sub-
components of intuitive probability problems, and
intervening on these components to improve judgment
accuracy. Our findings show that using experienced or
described samples can reduce base rate neglect, and that
supplying a cause for false positives increases the likelihood
that these will be considered in probability judgments.
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Appendix

The normative probability of cancer (C) given a positive
mammogram (M) is given by:

p(CIM) = p(C)*p(MIC)

p(C)*p(MI|C) +p(=C)*p(M|-C)
= 0.01*0.80

0.01*0.80 + 0.99*0.15
0.051
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