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Abstract

Information distortion is a cognitive bias in sequential
diagnostic reasoning. Assumptions about the diagnostic
validity of later evidence are distorted in favor of the leading
hypothesis. Therefore the bias contributes to a primacy effect.
Current parallel constraint satisfaction models account for
order effects and coherence shifts, but do not explain
information distortion. As an alternative a new, probabilistic
constraint satisfaction model is proposed, which considers
uncertainty about diagnostic validity by defining probability
distributions over coherence relations. Simulations based on
the new model show that by shifting distributions in favor of
the leading hypothesis an increase in coherence can be
achieved. Thus the model is able to explain information
distortion by assuming a need for coherence. It also accounts
for a number of other recent findings on clinical diagnostic
reasoning. Alternative models and necessary future research
are discussed.

Keywords: Diagnostic reasoning; information distortion;
parallel constraint satisfaction model.

Information Distortion in Diagnostic
Reasoning

Diagnostic reasoning is an important cognitive activity in
many areas. Based on available evidence decision makers
infer hidden properties or diagnoses that account for the
observations made. Diagnostic reasoning is maybe most
important in the clinical domain. Making accurate diagnoses
is essential for physicians. Unfortunately clinical diagnostic
reasoning is affected by many biases, which may result in
medical error (Croskerry, 2003; Kostopoulou et al., 2008).
One of these biases is information distortion. When deriving
a diagnosis clinicians have been shown to bias their
interpretation of newly arriving evidence to support their
preferred hypothesis (Kostopoulou, Russo, Keenan, Delaney
& Douri, 2012). More precisely, clinicians alter their
assumptions about the diagnostic validity of observed signs
and symptoms (i.e., the likelihood of the diagnosis given the
sign) so that they lend greater support to the favored
diagnostic hypothesis. Similar findings on pre-decisional
distortion of evidence have been reported for other
professions like sales (Russo et al., 2006). Information
distortion has been explained by a need for coherence
(Russo, Medvec, & Meloy, 1996). By interpreting new
evidence as supportive of the leading hypothesis decision
makers increase the coherence among the favored diagnostic
hypothesis and the evidence. Consistency theories in turn
account for the need for coherence (cf. Simon et al., 2004).
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Parallel constraint satisfaction models, especially
Thagard’s (1989) ECHO model, have been used to
implement coherence-based accounts of diagnostic

reasoning (e.g., Gloeckner, Betsch & Schindler, 2009).
These models were extended to sequentially arriving
evidence, which affords frequent updating of diagnostic
hypotheses (Mehlhorn, Taatgen, Lebiere, & Krems, 2011;
Wang, Johnson, & Zhang, 2006). Although these models
can account for biased decision making, they cannot fully
explain information distortion. Constraint satisfaction
models in general assume that coherence relations among
evidence and hypotheses, which represent assumptions
about diagnostic validity, are stable. Research on
information distortion, however, shows that decision makers
are uncertain about these relations and may change
respective beliefs during decision making (Kostopoulou et
al., 2012; Russo et al., 1996; 2006). To account for these
findings we will put forward a new, probabilistic constraint
satisfaction model.

In the paper, we will first briefly describe a recent study
on information distortion to exemplify methods and
findings. Then we outline a standard constraint satisfaction
model of sequential diagnostic reasoning and discuss its
shortcomings. Next we propose a new, probabilistic
constraint satisfaction model. Results from a simulation
study will show that the model predicts information
distortion and other findings from the literature. Finally,
alternative models will be discussed and necessary future
research will be pointed out.

Exemplary Empirical Findings

Kostopoulou and colleagues (2012) recently published a
study on information distortion in the clinical domain.
Physicians were confronted with case vignettes presenting
diagnostic evidence and asked to evaluate two competing
diagnostic hypotheses A and B. Evidence was presented
sequentially in a particular order. The first set of cues
strongly favored Hypothesis A over B, the next set of cues
equally supported both hypotheses, while the third set
strongly favored Hypothesis B over A. Overall the evidence
was ambiguous. Participating clinicians were asked to make
two judgments after each new item: (i) to rate how much
this particular item favors either hypothesis (i.e., the item’s
differential diagnostic validity), and (ii) to rate the
likelihood of the diagnoses given all information received so
far. Both ratings were made on a scale ranging from one
hypothesis to the other. In addition, a control group of



physicians rated each item individually. Information
distortion was calculated by computing the difference
between individual cue ratings and mean control ratings.
From a normative perspective, no information distortion
should be expected as the diagnostic validity of individual
cues should be constant. Hence, any changes in assumptions
about diagnostic validity, which create additional support
for the favored hypothesis, constitute a bias.

Three findings are important for the purpose of this paper
(see Kostopoulou et al., 2012, for complete results). First,
there was a substantial variation between clinicians with
respect to the assumed diagnostic validity of cues, which
indicates that clinicians were uncertain about how much
each piece of evidence supported the hypotheses. Second,
participants exaggerated or reduced the diagnostic validity
of individual items to support the initially preferred
hypothesis. This was especially true for the neutral cues.
Third, a majority (56%) kept the initially preferred
hypothesis, while 38% switched to the hypothesis favored
by the evidence coming in last. Only 6% correctly judged
the hypotheses as equally likely. A good model should be
able to account these findings.

Constraint Satisfaction Models of Diagnostic
Reasoning

There are many cognitive models to describe sequential
hypothesis testing, including Bayesian and logical accounts.
We focus on parallel constraint satisfaction models here as
they have been very successful in modeling sequential
diagnostic reasoning. They also account directly for the
frequently found primacy, recency and coherence effects
(Mehlhorn et al., 2011, Wang et al., 2006). Thirdly, they are
supported by consistency theories, which provide a
psychological plausible explanation for why people strive
for coherence (Simon et al., 2004).

Many constraint satisfaction models are based on ECHO,
a connectionist model of the theory of explanatory
coherence (Thagard, 1989). The theory assumes that the
acceptance of a belief depends on its relations to other
beliefs. By accepting and rejecting beliefs, the overall
coherence of the belief set can be maximized. Roughly
speaking, a set of beliefs is coherent, if (i) beliefs connected
by a positive link (i.e., mutual support, consistency or
entailment) are both accepted or rejected, and (ii) only one
of the beliefs connected by a negative link is accepted (see
next paragraph for formal details).

ECHO has been implemented as a connectionist network
(see Figure 1). Hypotheses and items of evidence are
represented by nodes, while coherence relations are
represented as symmetrical links. Hypotheses and evidence
are connected by links with positive weights if they are
coherent with each other (e.g., if the evidence is a
diagnostically valid indicator), by negative links if they are
incoherent (e.g., if the evidence indicates the absence of the
diagnosis), or they are not related if they irrelevant for each
other. Evidence nodes are assumed to have a special status
as their acceptance not only depends on coherence with
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other beliefs but on observations. Therefore they receive
external activation from a special activation unit (not shown
in Figure 1). Evidence nodes in turn activate potential
diagnoses. Hypotheses coherent with the evidence get
positive activation, while contradicted hypotheses are
negatively activated. Different hypotheses are assumed to
compete in explaining the observations. Therefore they are
negatively related. Activations are passed through the
network and added to each other until a stable state is
reached. More precisely, the activation of each unit j is
updated by combining its current activation a;(t) with the net
effect (net;) of all the units i connected to it according to the
following formalism (Thagard, 1989; see also McClelland
& Rumelhart, 1981):
aj(t+1) = g;(t)*(1-0) + (net; *[max-g(t)], if net;> 0
= aj(t)*(1-©) + (net; *[a;(t) - min], if net;< 0

with netj =3 relij*ai
The parameter © represents a decay and min and max the
maximum and minimum activation (usually 1 and -1). Final
activations represent acceptance. Hence, the hypothesis,
which receives the highest positive activation in the end, is
the preferred diagnosis.

The coherence of a belief set can be calculated by
summing up the products of final activations and relations.
This measure has been called harmony (Thagard, 1989).

Harmony = Z;3; reli*a;*a;

To account for sequentially arriving evidence, the external
activation of evidence nodes is assumed to shift towards the
new arriving evidence (Wang et al., 2006). In line with
findings on the limited capacity of attention, the received
activation is kept constant and is decayed exponentially
across items. The activation received by an item of evidence
is calculated according to the following equation:

Aev= 8ev™ eXP(-1*A[Number of subsequent items seen])

The parameter A represents how strongly the activation of
an item is decayed due to later items. Little or no decay
results in primacy effects, i.e., the first evidence biases
decisions in favor of the initially preferred hypothesis.
Strong decay leads to recency effects (Wang et al., 2006).

Figure 1. Parallel constraint satisfaction model of
sequential diagnostic reasoning. Nodes represent hypotheses
(HypA/B) and pieces of evidence (e.g., ProA). Solid lines
represent coherent, dashed lines incoherent relations. Pieces
of evidence arrive sequentially along the time line.



Figure 1 shows the structure of a constraint satisfaction
network with two competing hypotheses (Hyp A, Hyp B)
and nine pieces of evidence. The first three observations
(ProA 1-3) support Hypothesis A (indicated by the solid
lines) and contradict Hypothesis B (indicated by the dashed
lines). The next observations (Ambig 1-3) support both
hypotheses, while the final set favors Hypothesis B over A
(ProB 1-3). This is the order of evidence clinicians received
in the study by Kostopoulou et al. (2012).

This model predicts that Hypothesis A will be favored
over Hypothesis B unless there is a very strong decay of the
initial evidence (see simulations for respective evidence).
But it cannot explain information distortion. As outlined
above, information distortion means that assumptions about
the diagnostic validity, i.e., the relations between evidence
and hypotheses are distorted. The model presented here
keeps these relations constant assuming that decision
makers have stable beliefs about coherence relations. Hence
the model cannot account for the findings by Kostopoulou
and colleagues (2012) that participating clinicians distorted
their assumptions about diagnostic validity for a particular
case depending on their currently favored hypothesis.

A probabilistic constraint satisfaction model

Decision makers may be uncertain about the coherence
relations among evidence and hypotheses. Consider the
medical domain. Although a particular diagnostic cue may
have a positive predictive value for Diagnosis A, there will
be cases in which another diagnosis will prove to be true.
Standard constraint satisfaction models of diagnostic
reasoning do not allow us to represent this uncertainty. This
uncertainty can be captured by conceptualizing the relations
connecting evidence and hypotheses as beliefs and defining
probability distributions over these beliefs. Probability
distributions are used to represent the uncertainty in many
cognitive models, e.g., Bayesian models (Chater &
Oaksford, 2008), but they have not been used in constraint
satisfaction models so far. Nevertheless, their application
seems straightforward. There are three types of coherence
relations: positive links, negative links, and no links
(representing irrelevance). The probability distribution
defines the likelihood that evidence and hypothesis are
connected by a positive, a negative or no relation.

For example, to represent the assumption that a piece of
evidence X almost always supports a Hypothesis A the
probability of a positive link between X and A is set to a
high value (i.e., P(+ax) = 1) while the probabilities of a
negative or no link are assumed to be very small (i.e., P(-ax)
~ 0, P(Oax) = 0). To derive predictions for a particular
probability distribution, a set of constraint satisfactions
networks is instantiated and run. Based on the resulting
activations of the networks the likelihood that each
hypothesis will receive the highest final activation is
estimated. In addition, the mean resulting harmony is
calculated to estimate the expected overall coherence.

Like standard parallel constraint satisfaction models the
probabilistic models can account for primacy and recency
effects by assuming differential decay of sequentially
arriving information. Moreover, they may also account for
information distortion. By shifting the probability
distribution over coherence relations the overall coherence
(i.e., harmony) may be increased. Thus a need for coherence
may cause a change in beliefs about coherence relations
resulting in information distortion. There is a limit however.
To preserve the belief that a certain piece of evidence is
coherent with a hypothesis in general, the probability
distribution can only be shifted to a certain degree. To be
more precise, the sign of the sum of weights of the relations
multiplied with their respective probabilities has to remain
the same. For example, if Hypothesis A and Evidence X are
assumed to be coherent X P(relationax)*relationax > 0. Thus
probabilistic constraint satisfaction models may predict
information distortion without assuming an outright change
in beliefs about the diagnostic validity of cues.

Simulations

To explore the predictions of probabilistic constraint
satisfaction models, we implemented the model shown in
Figure 1 with various probability distributions over
coherence relations (see Table 1). The overall relation
between each piece of evidence and the two hypotheses was
kept the same across all distributions. The first three pieces
of evidence were generally coherent with Hypothesis A and
incoherent with B, the ambiguous evidence supported both
hypotheses, and the final set contradicted A and favored B.

Table 1: Probability distributions over coherence relations of the model depicted in Figure 1.

Relation HypA - HypB - HypA — HypB - HypA - HypB -
Pro A1-A3 Pro A1-A3 Amb1-Amb3 Amb1-Amb3 Pro B1-B3 Pro B1-B3

Distrib.  P(+) P() P(0) P() P() P@©) P(#) P() PO) PH) P() Pl PH) PG) PO PH) PG PO)
M1 fixed 1 - - - 1 - 1 - - 1 - - - 1 - 1 - -
M2 9 - 1 - 9 1 9 05 05 9 05 05 05 9 .05 9 .05 .05
M3 pProa .9 - 1 - 9 1 9 05 05 5 26 25 3 4 3 4 3 3
M4 pos .9 - 1 - 9 1 5 25 25 9 05 05 05 9 .05 9 .05 .05
M5 5 - 5 - 5 5 5 25 25 5 26 25 - 5 5 5 - 5
M6 Proa .5 - 5 - 5 5 9 05 06 5 26 2 3 4 3 4 3 3
M7pProB .5 - 5 - 5 5 5 25 25 9 05 05 05 9 .05 9 .05 .05
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Table 2: Results of simulations. Harmony (i.e., degree of coherence of beliefs) after each new piece of evidence and
distribution of finally preferred hypotheses

Preferred Hypothesis

Harmony P(Hypothesis A)

Distribution  ProAl ProA2 ProA3 Ambl Amb2 Amb3 ProBl ProB2 Prog3 OVer- Stong  Weak

all Decay Decay
M1 fixed .26 .39 .50 46 43 41 .32 .25 .36 .80 0 1.0
M2 .25 .36 46 42 40 .39 31 .28 .33 .83 43 .99
M3 ProA .25 .36 46 46 A7 49 A7 46 46 1.0 .99 1.0
M4 proB .25 .36 46 .39 .35 .33 .29 .30 .35 .83 49 99
M5 .18 .23 .29 27 27 .28 27 .28 31 .83 62 .92
M6 ProA .18 .23 .29 .30 .33 .35 .34 .33 .34 .96 90 .99
M7 proB .18 .23 .29 .24 22 22 .23 .32 43 .36 A2 .58

The first distribution (M1) was identical to standard

models and assumed no uncertainty about the coherence Results
between evidence and hypotheses. The second (M2) closely  For each probability distribution 10.000  constraint

resembled the standard model and assumed the same
relations with a high probability of .9. The third distribution
(M3proA) represents shift of assumptions in favor of
Hypothesis A after the first three pieces of evidence. The
ambiguous evidence (Ambl-Amb3) is considered less
supportive of Hypothesis B, and the evidence clearly
favoring Hypothesis B (ProB1-ProB3) as less contradictory
for A and less supportive of B. The forth distribution
(M4proB) represents a shift in favor of Hypothesis B. Now
the ambiguous evidence is considered less supportive for
Hypothesis A. If the model adequately captures the
predictions of consistency theories, we should see an
increase in coherence for M3 over M2 and M4.

The fifth probability distribution over coherence relations
(M5) represents another set of basic assumptions. It assumes
that all pieces of evidence are considered moderately
supportive of the respective hypotheses. Distribution
M6ProA again represents a shift of distribution M5 in favor
of Hypothesis A while M7proB represents a shift of M5 in
favor of Hypothesis B. A comparison of the results for these
distributions will show whether any of these shifts would
increase coherence.

Model parameters were set to random values or kept
constant for all simulations. Links of coherence had a
weight of +.05, incoherence links of -.05. The incoherence
link between hypotheses was set to -.2. Initial activations of
hypotheses were set to random values between -.2 and +.2.
Evidence nodes were added sequentially to the network
after activations settled. Resulting activations were
transferred to the next step. External activations received by
evidence nodes were decayed when new evidence arrived.
The decay parameter A was randomly set to values between
1 (strong exponential decay) and .1 (almost not decay). The
activation added through the evidence nodes was kept
constant at .5 for all steps. In line with previous studies we
found that the qualitative pattern of activations hardly
depended on the specific parameters (Thagard, 1989).
Therefore only one set of results is reported here.
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satisfaction models were instantiated and run. The results of
the simulations are depicted in Table 2. Harmony, i.e., the
resulting overall coherence of the belief network, is shown
for each new piece of evidence. In addition, the percentage
of cases in which Hypothesis A was preferred over B is
given. For six out of seven distributions, Hypothesis A was
preferred over Hypothesis B. Thus a primacy effect resulted,
which is in accordance to the results of Kostopoulou et al.,
(2012). As expected, decay had a strong impact on results.
When the decay was strong (A=1), that is, the last piece of
evidence was strongly activated while previous evidence
hardly received any activation, a recency effect sometimes
occurred and Hypothesis B was favored. When decay was
weak (A=.1), that is, initial evidence was activated only
slightly less than the latest evidence, a primacy effect
resulted even when the distributions were shifted in favor of
Hypothesis B. Note that recent research indicates that weak
or no decay fits best with people’s actual decisions
(Mehlhorn et al., 2011).

A comparison of distributions M1 and M2 shows that a
probabilistic network with high probabilities basically
results in the same overall preferences as a deterministic
network which is identical to standard constraint satisfaction
models. Overall coherence was only slightly reduced when
relations became uncertain. A comparison of distributions
M2, M3pProA and M4proB indicates that the coherence of
beliefs increased substantially when the probability
distribution over coherence relations was shifted in favor of
Hypothesis A, but not when it was distorted in favor of B.
Note that an increase in coherence for M3pProA already
resulted for the ambiguous items of evidence, after which it
stayed at an elevated level. Thus the model predicts
information distortion especially for the ambiguous items of
evidence. This is what has been found empirically.

A comparison of distribution M5 to distributions M6pProA
and M7proB shows a different picture. Starting from less
assertive assumptions about the diagnostic validity of the
evidence, more coherence could be gained by shifting



assumptions in favor of Hypothesis B. A closer analysis
shows that coherence increased for the ambiguous pieces of
evidence by shifting assumptions towards Hypothesis A, but
that this gain evaporated when the evidence favoring
Hypothesis B arrived. Interestingly, a shift towards B only
yielded substantially more coherence for the last few items.
Thus the model predicts that people being uncertain should
be less likely to distort but more likely to end up choosing
Hypothesis B. This is what Kostopoulou and colleagues
(2012) found.

General Discussion

A probabilistic constraint satisfaction model has been
proposed to explain information distortion in sequential
diagnostic reasoning. The model takes into account that
diagnosticians may be uncertain whether a certain piece of
evidence supports a diagnostic hypothesis for a particular
case. To be more precise, it takes into account that people
are aware of the fact that a piece of evidence may not
always be present when a diagnosis is given and vice versa.
Note that the model like constraint satisfaction models in
general does not differentiate between the sensitivity of a
diagnostic sign (i.e., the probability of the sign given the
diagnosis) and the positive predictive value of the sign (i.e.,
the probability of the diagnosis given the sign). The model
does, however, differentiate between believing a certain
piece of evidence and believing that the information has
diagnostic implications for a hypothesis.

The model has been implemented by using the standard
formalism of ECHO (Thagard, 1989) and an exponential
activation decay function to account for the sequentially
arriving evidence. Uncertainty about diagnostic relations is
represented by probability distributions over coherence
relations among evidence and hypotheses. Belief in the
observed evidence and hypotheses is represented by
activations of the respective nodes.

Simulations were run to investigate the properties of the
model and to find out whether it is able to predict findings
reported in the literature. An analysis of the predictions of
different probability distributions yielded several interesting
results. First, the model shows a primacy effect which is
reported frequently in the literature when people first
receive several pieces of evidence favoring one hypothesis
over others (Brownstein, 2003; Hogarth & Einhorn, 1992).
However, many other models predict order effects, so this
prediction is not unique.

Second, the model predicts information distortion. The
results show that by distorting assumptions about the
diagnostic validity of the observed cues, i.e., by shifting
probability distributions over coherence relations, more
coherent beliefs can be achieved. Importantly, coherence
can be increased without giving up general assumptions
about the coherence between cues and hypotheses. Thus, the
model explains how the need for coherence can drive
changes in beliefs about diagnostic validity and why
information distortion may result.
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Crucially, the simulations also showed that not all
changes in beliefs about diagnostic relations may result in
higher coherence. They also indicated that a shift in beliefs
has an impact on coherence at a particular point during the
diagnostic process. Thus the model allows for very specific
predictions once initial beliefs about diagnostic relations are
known.

Alternative Models

A number of parallel constraint satisfaction models has been
proposed in the literature to account for diagnostic
reasoning (e.g., Mehlhorn & Jahn, 2009; Mehlhorn et al.,
2011; Wang et al., 2006; Gloeckner & Betsch, 2008;
Gloeckner, Betsch, & Schindler, 2009).

The parallel constraint satisfaction model of Gloeckner
and colleagues (2009) was designed to account for
distortions in validity in multiple-cue judgment. In their
research they found that participants changed their
assessments of diagnostic validity depending on the favored
option for a particular case. Although the model was
devised for concurrent, non-sequential decision making it
may be extended to cover sequential decision making. The
structure of the model is highly similar to the model
depicted in Figure 1 with cues being related to two
alternative options, which compete with each other. Cues
are assumed to be related to an activation unit. But, relations
and activations are given an interpretation that is very
different from our proposed model. The relation to the
activation unit is assumed to represent the general validity
of the cue, while the activation of each cue is considered to
represent the validity of this cue for the particular case. This
model is able to account for many findings in the judgment
and decision making literature (cf. Gloeckner et al., 2009).
Nevertheless, the model has difficulty to account for
information distortion, because it does not differentiate
between the validity of a cue and the diagnostic validity of
the cue for a particular hypothesis. The results on
information distortion (Kostopoupou et al., 2012) show that
participants may increase the diagnostic validity with
respect to Hypothesis A while decreasing the diagnostic
validity with respect to Hypothesis B. The activation of a
node, however, cannot increase and decrease at the same
time. Thus the activation may represent whether a piece of
evidence is considered valid or invalid, but not whether it is
considered valid with respect to a diagnosis. The
probabilistic constraint satisfaction model allows for this
differentiation. Assumptions with respect to diagnostic
validity are represented by probability distributions over
coherence links. Therefore assumptions about the diagnostic
validity with respect to several hypotheses may change
independently from each other. Such a probabilistic
constraint satisfaction model may account for the findings
of Gloeckner et al. (2009). It also predicts that participants
would lower their belief in the validity of cues contradicting
the preferred option, as the resulting activation for these
nodes would be negative.



The constraint satisfaction model proposed by Wang and
colleagues UECHO (2006) was specifically developed to
capture sequential belief updating and learning with a
parallel constraint satisfaction network. The structure of the
model is the same as the model shown in Figure 1. As
outlined above, the model accounts for sequentially arriving
evidence by a decay function over the activation distributed
by the special activation unit. We adopted this idea for our
model. The second important novel idea of UECHO is that
the strength of the coherence links may change due to
learning from feedback. We did not consider this idea for
two reasons. First, clinicians are very unlikely to change
their generic diagnostic knowledge in experimental studies
on diagnostic reasoning and information distortion. Second,
assigning specific weights to coherence links violates the
fundamentally qualitative notion of coherence stressed by
Thagard (1989). Either some evidence is coherent or
incoherent with a hypothesis, or it is irrelevant. Our
probabilistic model keeps this notion by assuming that links
are either positive, negative or zero, while at the same time
defining a probability distribution over these links
representing the idea that evidence may be found even when
the coherent hypothesis turns out to be false. Learning from
feedback could be added to our model by adding a Bayesian
learning algorithm that updates the probability distribution
over coherence links. This seems to be a viable and elegant
alternative to the proposal of Wang and colleagues (2006).
In principle, UECHO may be extended to account for
information distortion by assuming that the weight of
individual coherence links may change for a particular case
(i.e., change without learning). Like we envisioned for our
probabilistic model, this shift may be driven by increased
overall coherence (i.e., harmony). Such a model, however,
would not be able to represent the uncertainty about
coherence relations like the probabilistic model does.

Future Directions

The proposed probabilistic constraint satisfaction model
shares important features with other parallel constraint
models. In contrast to the other models it explains
information distortion. As outlined above, the model allows
for a number of specific predictions including conditions
under which information distortion should not be found.
However, to test these predictions, assumptions about
diagnostic relations have to be assessed on an individual
level and compared to later measurements of information
distortion. Respective research still needs to be done. Hence,
only future studies will show whether probabilistic
constraint satisfaction models are able to successfully
predict preferred hypotheses, information distortion and
validity judgments of individual diagnosticians.

536

References

Brownstein, A.L. (2003). Biased predecision processing.
Psychological Bulletin, 129(4), 545-68.

Chater, N. & Oaksford, M. (2008). The probabilistic mind.
Prospects for Bayesian cognitive science. Oxford: Oxford
University Press.

Croskerry, P. (2003). The importance of cognitive errors is
medicince and strategies to minimize them. Academic
Medicine, 78, 775-780.

Glockner, A., & Betsch, T. (2008). Multiple-reason decision
making based on automatic processing. Journal of

Experimental Psychology: Learning, Memory, and
Cognition, 34, 1055-1075.
Gloeckner, A., Betsch, T., & Schlindler, N. (2009).

Coherence shifts in probabilistic inference tasks. Journal
of Behavioural Decision Making, 23, 439-462.

Hogarth, R. & Einhorn, H. (1992). Order effects in belief
updating: the belief-adjustment model. Cognitive
Psychology, 24, 1-55.

Kostopoulou, O., Delaney, B.C., & Munro, C.W. (2008).
Diagnostic difficulty and error in primary care — a
systematic review. Family Practice, 25, 400-413.

Kostopoulou, O., Russo, J.E., Keenan, G., Delaney, B.C. &
Douiri, A. (2012). Information distortion in physicians’
diagnostic  judgments. Medical Decision Making.
Published online. DOI: 10.1177/0272989X12447241

McClelland, J. L., & Rumelhart, D. E. (1981). An
interactive model of context effects in letter perception.
Part 1. An account of basic findings. Psychological
Review, 88, 375-407.

Mehlhorn, K., Taatgen, N.A., Lebiere, C., & Krems, J.
(2011). Memory activation and the availability of
explanations in sequential diagnostic reasoning. Journal
of Experimental Psychology: Learning, Memory &
Cognition, 37, 1391-1411.

Russo, J.E., Meloy, M.G., Wilks, T.J. (2000). Predecisional
distortion of information by auditors and salespersons.
Management Science, 46(1), 13-27.

Russo, J.E., Medvec, V.H., & Meloy, M.G. (1996). The
distortion of information during decisions. Organizational
Behavior and Human Decision Processes, 66, 102-110.

Simon, D., Snow, C. J., & Read, S. J. (2004). The redux of
cognitive consistency theories: Evidence judgments by
constraint satisfaction. Journal of Personality and Social
Psychology, 86, 814-837.

Thagard, P. (1989). Explanatory coherence. Behavioral and
Brain Sciences, 12, 435-502.

Wang, H., Johnson, T.R., & Zhang, J. (2006). The order
effect in human abductive reasoning: an empirical and
computational study. Journal of Experimental and
Theoretical Artificial Intelligence, 18, 215-247.



