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Abstract

The most popular way to improve consumers’ control
over their electricity cost is by providing frequent and de-
tailed feedback with “in-home displays” (IHD). In this
study, we examined alternative ways to train experi-
mental participants to control and optimize their use of
electricity by “feedforward” training to map energy con-
suming behaviors to costs. The participants were trained
in one of four experimental conditions, one feedback
(“IHD”) and three feedforward conditions before they had
to control the electricity consumption in a simulated
household. Results showed that one of the feedforward
conditions produced somewhat higher utility and as good
or better satisfaction of a monthly budget than the feed-
back training condition, despite never receiving any feed-
back about the monthly cost, but the generalization to a
new budget constraint proved to be slightly poorer.

Introduction
The use of so-called “smart electricity meters” is rapidly
becoming common. It has been estimated that within the
European Union alone some 51 billion euro is being
invested in smart meters (Faruqui, Harris, & Hledik,
2009). In many countries, household energy consump-
tion is still billed once a month, but smart meters can
offer feedback that is detailed and more frequent with so
called In Home Displays (IHDs). Intuitively, the latter
kind of feedback system seems more beneficial, and,
indeed, many early studies suggested energy reductions
up to 15%. However, more recent studies point at con-
sumption reductions at 2-4%, few of them being signifi-
cant (Klopfert & Wallenborn, 2011). In the present
study, we focus at in-home displays (IHDs), which only
display the electrical consumption at different time
intervals, and, unlike smart meters, they do not have a
two-way communication with the central system. In a
previous laboratory experiment (Guath, Millroth, Elwin,
& Juslin, 2012), we investigated how feedback about
electricity consumption is best presented to electricity
consumers in order to control and optimize their use of
electricity. To measure a participant’s energy efficiency
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in an experimentally controlled environment, the partic-
ipants took on the role of an inhabitant in a simulated
household, performing different types of energy con-
suming behaviors within a given budget (Figure 1). The
goal of decreasing electricity consumption is often em-
phasized, but the participant’s task is actually an opti-
mization problem that requires an appropriate balance
between the cost of the electricity consumed and the
benefit or utility obtained. The problem is illustrated in
Figure 2, where the utility of electricity consumption is
plotted against cost. The maximum utility obtainable at
a given cost, assumed to be a decelerating function of
the cost, is illustrated by the curve in Figure 2. The
hypothetical utility obtained at a cost by a consumer is
illustrated with a dot. The task is to move closer to the
line for “maximal utility”, however, this is associated
with two constraints: achieving sufficient utility to make
life bearable and not surpassing a constrained budget.
Guath et al. (2012) showed that in a deterministic sys-
tem, frequent and detailed feedback was advantageous,
but in probabilistic system, feedback aggregated over
time was better, because it filtered out random noise.

The Present Study

In the present study, we wanted to evaluate if the same
improvement could be obtained by feedforward train-
ing, rather than feedback training (as in most IHDs),
hence, minimizing the negative effects from feedback
interventions as conceptualized in Kluger and DeNisi’s
(1996) study. Specifically, we wanted to avoid the de-
crease of effectiveness when attention is moved away
from the task to the self, thus, making the effects of the
training short-term. Another motive was to make the
mapping task more flexible, not being dependent on the
simulated household (Figure 1). Detailed and frequent
feedback (an IHD) was compared to three feedforward
conditions. Feedforward is defined as a process where
knowledge is used to act directly to control the system,
thus anticipating the changes that will occur (Basso &
Olivetti Belardinelli, 2006). In the present task, partici-



pants had to control the monthly cost of electrical con-
sumption. Feedback training involved feedback about
this criterion variable of daily and monthly cost of elec-
trical consumption from experience with the task (run-
ning the simulated household in Figure 1). Feedforward
training involved no feedback about the criterion varia-
ble (monthly electricity cost), but three different training
schemes in various ways teaching the participants to
directly map energy consuming behaviors to their costs
(“map” refers to the mathematical concept of associat-
ing each element in a set with an element of another set,
here the electrical cost to a certain electrical post).
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Figure 1. The computer display in the simulated household in
the experiment.
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Figure 2. llustration of the two ways of obtaining maximum
utility at a specific cost (the solid nonlinear function), either
by saving or by optimizing the use.

The choice of feedforward conditions was, in part,
inspired by Pachur and Olsson’s (2012) study of how
learning tasks affect performance and strategy selection.
They investigated two learning tasks, direct criterion
learning and learning by comparison, and how these
affected performance depending on the type of test
(paired-comparison, classification, estimation) and deci-
sion environment (linear vs. non-linear). Pachur and
Olsson (2012) concluded that direct criterion learning
invites exemplar memory processes (Nosofsky, 1986),
while learning by comparison invites processes of cue
abstraction. Because our task is non-linear, if anything,
exemplar memory should be a more efficient process
than the abstract processes involved in cue abstraction,
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which are constrained to mainly capture linear and addi-
tive tasks (Juslin, Karlsson, & Olsson, 2008).

Our first feedforward condition, metric mapping (cor-
responding to direct criterion learning), informed about
the function that relates the consumption to its cost, as
studied in research on function learning (e.g., Kalish,
Lewandowsky & Kruschke, 2004). When training func-
tion concepts, a continuous stimulus variable is associ-
ated with a continuous response variable, in this case an
electricity post (e.g., inner temperature) with its monthly
cost. The metric mapping consisted of learning to map a
certain electricity consuming activity (e.g., using hot
water 15 min/day) to its cost (i.e., 262 SEK/month).

The second condition was rank-order mapping (corre-
sponding to learning by comparison) as conceptualized
in decision by sampling (DbS) (Stewart et al., 2006). In
DbS, it is assumed that people do not store metric
knowledge in memory but only perform ordinal com-
parisons. Instead frequency accumulation in pair-wise
comparisons are used for evaluating a target attribute
against a decision sample. Indeed, the results in Pachur
and Olsson (2012) suggested that at least in linear tasks
learning by pairwise comparisons was more efficient
than training with metric mapping, despite that the
pairwise comparisons provide no explicit metric infor-
mation about the criterion. On the other hand, if people
also need to store metric knowledge in our task, then
metric mapping should be more efficient. The rank-
order evaluations are elicited by questions concerning
the relation between two electricity consuming device
(e.g., Which of the following has the highest monthly
cost: A: Having the lights on for 60 minutes per day or
B: Having the computer on for 10 minutes per day?).

The third feedforward condition was causal mapping
training, in which the participant is encouraged to ex-
periment with the individual and total monthly cost of
the electrical posts in a minimalistic computer program.
The causal mapping condition is inspired by the theory
of causal nets (Holyoak & Cheng, 2011) that accounts
for how people learn about strength and structure as
well as direction of causal relations. In view of this
literature, we expected that invitation to manipulate the
system in real time and experiment by changing indi-
vidual variables during training should produce a more
accurate (causal) model of relationships in the system.

Given that our decision task is non-linear, where the
linear and additive integration afforded by cue abstrac-
tion is less appropriate, and the results suggesting that
metric mapping invites exemplar memory (Pachur &
Olsson, 2012), performance in the metric mapping con-
dition is expected to be better than in the rank-order and
the causal mapping conditions. We also looked at the
ability to generalize knowledge to a new budget (from
2000 SEK a month to 1500 SEK a month).

Method

Participants

One-hundred-and-twenty-nine students at Uppsala Uni-
versity volunteered to participate and were compensated
with a cinema ticket (worth approximately $10) or by



course credit. The sample consisted of 89 females and
40 males, with mean age 24.5 years (SD=4.66).

Material and Procedure
The experiment consisted of four parts presented in the
following order: pre-test, systematic learning, post-test
for effects of the systematic learning and post-test for
ability to generalize to a new budget. Participants were
given written and verbal instructions for each part.

The participant was presented with a sketch of a home
on the computer screen indicating various energy con-
suming appliances, in all 18 posts (Figure 1). The task
was to regulate the electricity consumption in the house
so that its fictive inhabitant (an avatar called “Peter”)
received as much utility as possible from the consump-
tion. The avatar was a way to incorporate the two pa-
rameters of utility and cost in the task in a comprehensi-
ble way. In Pretest and Posttest 1 of all conditions, the
participant regulated the energy consumption each day
for a period of 30 days with the aim to maximize the
utility from the energy consumption within a budget of
2000 Swedish Crowns (SEK), approximately $300, per
month (changed to 1500 SEK in Posttest 2). On each
new day, the participant could adjust the indoor temper-
ature, the number of times of use per week for the dish-
washer, washing machine, and tumble drier etc. When
the settings had been made, they could not be changed
for that day. On each day, the previous day’s settings
were presented as default, but they could be changed by
the participant.

The utility of consumption for each appliance was
presented by a bar on the right side of the screen. A
separate bar for each post increased with the utility of
consumption associated with this post, and a global sum
in the upper right corner increased with the overall utili-
ty of the energy consumption. The utility ui(#;) obtained
by consumption #; of post i (i=1...18) at level j was,

18
ui(tij) = )W '(tija’ /rifl, ),

i=

(1

where w; is the linear weight in the overall summed
utility (Ew;=1), r; is a ceiling on the allowable consump-
tion, and ¢; is a parameter for the curvature of the utility
function for post i. Eq. 1 defines utility functions with
diminishing marginal return, where the posts differ both
in the rate of the diminishing return («;) and in their
weight in the total utility (w;). The parameters were
selected to approximate realistic utility functions.

The total utility U was the sum of the utility of each
of the 18 posts,

18
U= )u,), )
In pretests and posttests, feedback was presented only
for utility. Participants were given no feedback regard-
ing the cost of their settings. After the pretest, the partic-
ipants were assigned to one of four learning conditions.

Detailed and Frequent Feedback (“IHD”)
In the feedback condition, participants continued with
120 days in the simulated household. Furthermore, and
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most importantly, they also received feedback about the
cost of their consumption. After each day the partici-
pants received a bill containing feedback on the cost of
energy consumption where the feedback was presented
in terms of used kWh and the cost in SEK, as based on a
fixed price of 1.40 SEK per kWh. The bill showed the
cost for each appliance as well as the total sum for all
appliances. This detailed and immediate feedback re-
sembles that of an IHD. If the budget was exceeded, the
total cost was red-lighted; if not, it was green-lighted. A
normally and independently distributed random error,
with standard deviation equal to 5 % of the cost, was
added to the cost of each post to simulate probabilism'.
The total cost C was the sum of the consumption cost
c(t;j) of the individual posts:

C=§c(tij).

Metric mapping

For participants in the metric mapping condition, the
task was to learn to map consumption of each electricity
post directly to its cost. They were presented with ques-
tions such as: “What is the monthly cost for having the
computer on for 15 minutes a day?” Intervals of 5, 10,
15, 30 and 60 minutes were used to give the participants
a broad spectrum of the cost for each appliance. Partici-
pants reported their responses for one question at a time
and were then given feedback on whether the response
was correct or not and, if not, what the correct answer
was. The program coded answers within £20 percent of
the correct answer as correct. A stop criterion was set
for three correct responses in one block of five ques-
tions (one block involved the cost for 5, 10, 15, 30 and
60 minutes of use). When the participants achieved the
stop criterion for one appliance they continued with the
next appliance, until they had gone through all appli-
ances in the house. Electric posts for lighting and hot
water (shower and tap water) was lumped together,
creating 12 different appliances from the 18 electricity
posts in the simulated household. For appliances that
were run on a weekly basis, such as the dish washing
machine, participants were asked about the cost for
number of runs per week.

)

Rank-order Mapping

For participants in the rank-order mapping condition the
task was to learn which of pairs of electricity consuming
activities that is most costly. They answered questions
such as “What has the highest monthly cost? A: Having
the lights on for 60 minutes per day or B: Having the
computer on for 10 minutes per day?” After each guess
they were provided with feedback on whether the re-
sponse was correct or not. The items were sampled from
a pool of questions created by crossing the 12 applianc-

! The probabilism is intended to capture all factors that con-
tribute to the imperfect measurement value of a specific post
at a randomly chosen time. This includes both limits in the
precision of measurement as such and exogenous factors that
affect the cost but are unknown to the consumers.



es (as in the direct-mapping condition) by the five time
intervals (5, 10, 15, 30, 60 minutes, except for applianc-
es run on a weekly basis). The items were sampled
randomly with one constraint: each appliance had to
appear at least once during the training session. Each
participant received a unique sample. The participants
started with 200 items; thereafter, they continued until
they answered 19 of the latest 20 questions correctly.

Causal Mapping

For participants in the causal mapping condition the task
was to learn the relationship between consumption and
electricity cost by interacting with the appliances on a
real time basis, in order to obtain a sense of the cause
and effect relationships. Again, the participants trained
on 12 appliances with the same time intervals as in the
other mapping conditions (5, 10, 15, 30, 60 minutes,
except for appliances run on a weekly basis). Partici-
pants were presented with a program where they could
manipulate the usage of appliances on slide bars. Each
slide bar had five levels for the time intervals of 5, 10,
15, 30 and 60 minutes. Next to each slide bar, the cost
of the appliance was indicated. The cost changed simul-
taneously with the manipulation of the slide bar. Partic-
ipants could observe the monthly cost for their current
settings on the top of the screen, also changing simulta-
neously with the manipulation of a slide bar. All appli-
ances were presented on the same screen. The order in
which the appliances were presented on the screen was
randomized for each participant. A time limit of 15
minutes was set, and the participants were told to exper-
iment and learn as much as possible in this time, with
the goal to optimize their behavior in the household.

Posttests

After participants had finished their respective training
session, they all continued with another 30 days in the
simulated household, similar to the 30 days in the pre-
test. After that first post-test, the participants continued
with another round of 30 days in the simulated house-
hold, but this time the budget constraint was set to 1500
SEK instead of 2000 SEK, with the goal of investigating
participants’ ability to generalize the knowledge they
had acquired in the systematic learning conditions.

Design

The experiment involved a 4x2 mixed factorial design,
with learning condition (detailed and frequent feedback,
metric mapping, rank-order mapping, and causal-model
mapping) as between-subjects independent variable, and
budget constraint (2000 and 1500 SEK) as the within-
subjects independent variable. The participants were
randomized to one of the between-subjects conditions,
resulting in app. 30 participants in each condition. De-
pendent measures were the cost and utility of the use of
electricity, with a particular eye to the maximization of
utility within the indicated budget constraints of 2000
SEK and 1500 SEK per month.

Results
In pretest, there were no significant differences between
the conditions and all conditions exceeded the budget of
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67 SEK/day. All conditions reduced their median cost
from the Pretest to Posttest 1 (Wilcoxon Test, 7=1135,
Z=7.187, p < .001 across all four conditions; the same
holds separately within each condition, all ps <.005).

In Figure 3, the median utility is plotted against the
median cost for Posttest 1. The rank order condition was
unable to satisfy the budget. The three conditions satis-
fying budget performed similarly, although metric map-
ping produced somewhat more utility than the other two
conditions, which both fell below budget, as observed
previously with feedback training (Guath et al, 2012).
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Figure 3. The median utility obtained across the participants
plotted as a function of the median cost in Pretest and Posttest
1 in each of the four training conditions (N=30). The vertical
line represents the budget, while the curve is the maximum
utility obtainable as a function of the cost.

There was a significant difference between the condi-
tions in the median cost at Posttest 1 (Kruskal-Wallis
test: H (3, N= 129) =18.607 p =.003), where pairwise
multiple-comparisons indicate a significant difference
between rank-order mapping and feedback training
(p<.001) and between rank-order and causal mapping (p
=.005)". In both cases, rank order mapping has a signif-
icantly higher cost. There was also a significant differ-
ence between the conditions in median utility at Posttest
1 (Kruskal-Wallis test: H (3, N=129) =12.557 p =.000),
where pairwise multiple-comparisons indicate a signifi-
cant difference between rank-order mapping and feed-
back training (p=.019) and between rank-order mapping
and causal mapping (p = .009). In both cases, rank-order
mapping has a significantly higher utility. The main
differences is between the rank-order condition and the
other conditions, with small differences between the
other conditions, albeit with a slight hedge for metric
mapping that comes closest to optimal performance
(i.e., where the lines in Figure 3 intersect).

Figure 4 reports a more strict analysis only including
those participants that roughly satisfied the budget (i.e.,

? In the multiple-comparisons, we report raw p-values assum-
ing a=.05. The Bonferroni corrected a-level is app. .008. The
same is true for the multiple-comparisons reported below.



fell within £ 5 units of 67 SEK/day). While app. 50 %
of the participants were able to satisfy the budget with
feedback training and metric mapping only a minority
of participants were able to satisfy the budget with
causal mapping and rank order mapping (27% and 12%,
respectively). Among the only two conditions with
many participants satisfying the budget, metric mapping
produced significantly more utility than feedback train-
ing (Mann Whitney: U=75, Z=2.179, p=.029). Thus, if
anything, metric mapping appears to produce somewhat
better performance than feedback training in Posttest 1.

Electricity Efficiency at Posttest (Budget
constraint satisfied +- 5)
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Figure 4. The median utility across the participants plotted as
a function of the median cost in Posttest 1 in each of the four
training conditions for the participants able to (app.) satisfy
the budget (cost between 62 and 72 SEK/day). The vertical
line represents the budget, while the curve is the maximum
utility obtainable as a function of the cost. The percentages in
parenthesis refer to the proportion of participants in each
condition that satisfied the budget constraint.

All training conditions reduced their cost from Post-
test 1 to Posttest 2 (new budget) (Wilcoxon test: all ps <
.001), and reduced their utility (Wilcoxon test: all ps <
.001). As shown in Figure 5, in all conditions the medi-
an cost exceeded the budget, especially in the rank order
condition. There is again modest difference between the
other three conditions, although metric mapping ex-
ceeds the budget more than the other conditions.

There was a significant difference between the condi-
tions in median cost at Posttest 2 (Kruskal-Wallis test:
H (3, N=129) =17.606 p <.001), where pairwise multi-
ple-comparisons indicate significant differences be-
tween rank-order mapping and feedback training (p<
.001), between rank-order and causal mapping (p =
.033), and between feedback training and metric map-
ping (p=.045). There was also a significant difference
between the conditions in median utility at Posttest 2
(Kruskal-Wallis test: H (3, N= 129) =11.800 p =.008),
where pairwise multiple-comparisons indicate a signifi-
cant difference only between rank-order mapping and
feedback training (p=.011). The differences between
rank order and metric mapping (p=.061) and between
rank order and causal mapping (p=.050), however, ap-
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proach significance. Rank order mapping produced a
higher utility (but exceeds the budget). The rank-order
condition thus provides the poorest performance, while,
among the other three conditions, metric mapping seems
to suffer most going from Posttest 1 to Posttest 2.

Electricity Efficiency with New Budget (all
participants, all trials)
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Figure 5. The median utility across participants plotted as a
function of the median cost in Posttest 2 (new budget) in each
of the four training conditions (N=30). The vertical line repre-
sents the budget, while the curve is the maximum utility ob-
tainable as a function of the cost.
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Figure 6. The median utility across the participants plotted as
a function of the median cost in Posttest 2 (new budget), in
each of the four training conditions for participants that were
app. able to satisfy the budget (cost between 45 and 55 SEK a
day). The vertical line represents the budget, while the curve is
the maximum utility obtainable as a function of the cost. The
percentages in parenthesis refer to the proportion of partici-
pants in each condition that satisfied the budget constraint.

Figure 6 shows the results of a stricter analysis only
including participants with a cost falling within +5 units
of the budget (50 SEK/day). This figure also illustrates
that metric mapping training suffered more in the gener-
alization test, with only 22% of the participants satisfy-



ing the new budget, in contrast to 41% with feedback
and 45% with causal mapping training. In sum: the rank
order condition again produced poor performance, while
feedback training and causal mapping appear to allow
better generalization of the knowledge obtained to satis-
fy also a new budget, as compared to metric mapping.

Discussion

The results indicate that at an immediate test of perfor-
mance direct mapping training is as good as or better
than the detailed and frequent feedback in a typical
“smart-meter”. It should be noted that the performance
of the participants in the direct mapping condition is
quite impressive, with a cost virtually exactly on the
budget and higher utility, despite never receiving any
feedback about the total monthly cost in the house. An
objection, of course, could be that these participants did
not really learn anything from the metric mapping train-
ing, they just happened to be right because their prior
conceptions about electricity consumption happened to
be correct in regard to the simulated household (which
is intended to be “realistic”). That all training groups
changed their behavior significantly from the pretest to
the posttest to accommodate the budget speaks against
this explanation. Participants clearly learned to satisfy
the monthly budget from metric mapping training, de-
spite that they never received any feedback about it.

The good performance with metric mapping is in line
with the results in Pachur and Olsson (2012), where the
participants with direct criterion learning performed
better than learning by comparison in a non-linear con-
text due to the exemplar strategy. In the context of their
interpretation, this suggests that our participants relied
on exemplar memory rather than cue abstraction. An
obvious question, in that case, is how people generate
exemplar representations of the complex stimuli used in
our experiment. On plausible possibility, perhaps, is that
they rely on “exemplars” in the form of partial configu-
rations of electricity consumption that were associated
with very successful (or unsuccessful) performance.

When generalizing to another budget, the feedback
group performs somewhat better than the metric map-
ping group. This result was unexpected and we can only
speculate as to what explains this difference. One possi-
bility is that participants with metric mapping relied on
a more exemplar-based strategy, which is known to
offer less flexible generalization than the more analytic
knowledge of cue-criterion relations. Another possible
explanation could be the testing effect (Roediger &
Karpicke, 2006). Tests enhance retention more than
additional study of the material, even when tests are
given without feedback. In that perspective, the feed-
back training could be seen as a first test, and the post
tests as yet another tests. Another interpretation could
be that feedback training and causal mapping provided
the participants with better knowledge of the underlying
causes, that in turn, facilitated the generalization task.

In this task we found no evidence that people are es-
pecially apt at learning rank orders from pairwise com-
parison (Stewart et al., 2006), considering that the rank
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order condition allowed few participants to satisfy the
budget. In Posttest 1, only 27% of the participants satis-
fied the budget criterion (and only 9 % in Posttest 2). It
might be the case that metric information is more crucial
in the cost-benefit optimization task in our experiment.

To further investigate feedforward training, future ex-
periments will explore the flexibility with which metric
mapping and feedback training can adapt to new budg-
ets and compare mapping involving different metrics
(e.g., metrics instead referring to negative environmen-
tal effects). Also, it would be interesting to investigate
the testing effect, and how it pertains to this context.

The results reported in this study opens for the possi-
bility that shorter and cheaper feedforward training, for
example, involving a 15-minute session with a computer
program, can be a cost effective alternative to the large
scale implementation of complex information technolo-
gy to monitor consumption and cost in real time.
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