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Abstract 
The most popular way to improve consumers’ control 
over their electricity cost is by providing frequent and de-
tailed feedback with “in-home displays” (IHD). In this 
study, we examined alternative ways to train experi-
mental participants to control and optimize their use of 
electricity by “feedforward” training to map energy con-
suming behaviors to costs. The participants were trained 
in one of four experimental conditions, one feedback 
(“IHD”) and three feedforward conditions before they had 
to control the electricity consumption in a simulated 
household. Results showed that one of the feedforward 
conditions produced somewhat higher utility and as good 
or better satisfaction of a monthly budget than the feed-
back training condition, despite never receiving any feed-
back about the monthly cost, but the generalization to a 
new budget constraint proved to be slightly poorer.  
 

Introduction 
The use of so-called “smart electricity meters” is rapidly 
becoming common. It has been estimated that within the 
European Union alone some 51 billion euro is being 
invested in smart meters (Faruqui, Harris, & Hledik, 
2009). In many countries, household energy consump-
tion is still billed once a month, but smart meters can 
offer feedback that is detailed and more frequent with so 
called In Home Displays (IHDs). Intuitively, the latter 
kind of feedback system seems more beneficial, and, 
indeed, many early studies suggested energy reductions 
up to 15%. However, more recent studies point at con-
sumption reductions at 2-4%, few of them being signifi-
cant (Klopfert & Wallenborn, 2011). In the present 
study, we focus at in-home displays (IHDs), which only 
display the electrical consumption at different time 
intervals, and, unlike smart meters, they do not have a 
two-way communication with the central system. In a 
previous laboratory experiment (Guath, Millroth, Elwin, 
& Juslin, 2012), we investigated how feedback about 
electricity consumption is best presented to electricity 
consumers in order to control and optimize their use of 
electricity. To measure a participant’s energy efficiency 

in an experimentally controlled environment, the partic-
ipants took on the role of an inhabitant in a simulated 
household, performing different types of energy con-
suming behaviors within a given budget (Figure 1). The 
goal of decreasing electricity consumption is often em-
phasized, but the participant’s task is actually an opti-
mization problem that requires an appropriate balance 
between the cost of the electricity consumed and the 
benefit or utility obtained. The problem is illustrated in 
Figure 2, where the utility of electricity consumption is 
plotted against cost. The maximum utility obtainable at 
a given cost, assumed to be a decelerating function of 
the cost, is illustrated by the curve in Figure 2. The 
hypothetical utility obtained at a cost by a consumer is 
illustrated with a dot. The task is to move closer to the 
line for “maximal utility”, however, this is associated 
with two constraints: achieving sufficient utility to make 
life bearable and not surpassing a constrained budget.  

Guath et al. (2012) showed that in a deterministic sys-
tem, frequent and detailed feedback was advantageous, 
but in probabilistic system, feedback aggregated over 
time was better, because it filtered out random noise.  

 
The Present Study 
In the present study, we wanted to evaluate if the same 
improvement could be obtained by feedforward train-
ing, rather than feedback training (as in most IHDs), 
hence, minimizing the negative effects from feedback 
interventions as conceptualized in Kluger and DeNisi’s 
(1996) study. Specifically, we wanted to avoid the de-
crease of effectiveness when attention is moved away 
from the task to the self, thus, making the effects of the 
training short-term. Another motive was to make the 
mapping task more flexible, not being dependent on the 
simulated household (Figure 1). Detailed and frequent 
feedback (an IHD) was compared to three feedforward 
conditions. Feedforward is defined as a process where 
knowledge is used to act directly to control the system, 
thus anticipating the changes that will occur (Basso & 
Olivetti Belardinelli, 2006). In the present task, partici-
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pants had to control the monthly cost of electrical con-
sumption. Feedback training involved feedback about 
this criterion variable of daily and monthly cost of elec-
trical consumption from experience with the task (run-
ning the simulated household in Figure 1). Feedforward 
training involved no feedback about the criterion varia-
ble (monthly electricity cost), but three different training 
schemes in various ways teaching the participants to 
directly map energy consuming behaviors to their costs 
(“map” refers to the mathematical concept of associat-
ing each element in a set with an element of another set, 
here the electrical cost to a certain electrical post). 
 

.   
 
Figure 1. The computer display in the simulated household in 
the experiment.  
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Figure 2. Illustration of the two ways of obtaining maximum 
utility at a specific cost (the solid nonlinear function), either 
by saving or by optimizing the use. 
 

The choice of feedforward conditions was, in part, 
inspired by Pachur and Olsson’s (2012) study of how 
learning tasks affect performance and strategy selection. 
They investigated two learning tasks, direct criterion 
learning and learning by comparison, and how these 
affected performance depending on the type of test 
(paired-comparison, classification, estimation) and deci-
sion environment (linear vs. non-linear). Pachur and 
Olsson (2012) concluded that direct criterion learning 
invites exemplar memory processes (Nosofsky, 1986), 
while learning by comparison invites processes of cue 
abstraction. Because our task is non-linear, if anything, 
exemplar memory should be a more efficient process 
than the abstract processes involved in cue abstraction, 

which are constrained to mainly capture linear and addi-
tive tasks (Juslin, Karlsson, & Olsson, 2008).  

Our first feedforward condition, metric mapping (cor-
responding to direct criterion learning), informed about 
the function that relates the consumption to its cost, as 
studied in research on function learning (e.g., Kalish, 
Lewandowsky & Kruschke, 2004). When training func-
tion concepts, a continuous stimulus variable is associ-
ated with a continuous response variable, in this case an 
electricity post (e.g., inner temperature) with its monthly 
cost. The metric mapping consisted of learning to map a 
certain electricity consuming activity (e.g., using hot 
water 15 min/day) to its cost (i.e., 262 SEK/month). 

The second condition was rank-order mapping (corre-
sponding to learning by comparison) as conceptualized 
in decision by sampling (DbS) (Stewart et al., 2006). In 
DbS, it is assumed that people do not store metric 
knowledge in memory but only perform ordinal com-
parisons. Instead frequency accumulation in pair-wise 
comparisons are used for evaluating a target attribute 
against a decision sample. Indeed, the results in Pachur 
and Olsson (2012) suggested that at least in linear tasks 
learning by pairwise comparisons was more efficient 
than training with metric mapping, despite that the 
pairwise comparisons provide no explicit metric infor-
mation about the criterion. On the other hand, if people 
also need to store metric knowledge in our task, then 
metric mapping should be more efficient. The rank-
order evaluations are elicited by questions concerning 
the relation between two electricity consuming device 
(e.g., Which of the following has the highest monthly 
cost: A: Having the lights on for 60 minutes per day or 
B: Having the computer on for 10 minutes per day?). 

The third feedforward condition was causal mapping 
training, in which the participant is encouraged to ex-
periment with the individual and total monthly cost of 
the electrical posts in a minimalistic computer program. 
The causal mapping condition is inspired by the theory 
of causal nets (Holyoak & Cheng, 2011) that accounts 
for how people learn about strength and structure as 
well as direction of causal relations. In view of this 
literature, we expected that invitation to manipulate the 
system in real time and experiment by changing indi-
vidual variables during training should produce a more 
accurate (causal) model of relationships in the system.  

Given that our decision task is non-linear, where the 
linear and additive integration afforded by cue abstrac-
tion is less appropriate, and the results suggesting that 
metric mapping invites exemplar memory (Pachur & 
Olsson, 2012), performance in the metric mapping con-
dition is expected to be better than in the rank-order and 
the causal mapping conditions. We also looked at the 
ability to generalize knowledge to a new budget (from 
2000 SEK á month to 1500 SEK á month).  
 

Method 
Participants  
One-hundred-and-twenty-nine students at Uppsala Uni-
versity volunteered to participate and were compensated 
with a cinema ticket (worth approximately $10) or by 
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course credit. The sample consisted of 89 females and 
40 males, with mean age 24.5 years (SD=4.66). 

Material and Procedure  
The experiment consisted of four parts presented in the 
following order: pre-test, systematic learning, post-test 
for effects of the systematic learning and post-test for 
ability to generalize to a new budget. Participants were 
given written and verbal instructions for each part. 

The participant was presented with a sketch of a home 
on the computer screen indicating various energy con-
suming appliances, in all 18 posts (Figure 1). The task 
was to regulate the electricity consumption in the house 
so that its fictive inhabitant (an avatar called “Peter”) 
received as much utility as possible from the consump-
tion. The avatar was a way to incorporate the two pa-
rameters of utility and cost in the task in a comprehensi-
ble way. In Pretest and Posttest 1 of all conditions, the 
participant regulated the energy consumption each day 
for a period of 30 days with the aim to maximize the 
utility from the energy consumption within a budget of 
2000 Swedish Crowns (SEK), approximately $300, per 
month (changed to 1500 SEK in Posttest 2). On each 
new day, the participant could adjust the indoor temper-
ature, the number of times of use per week for the dish-
washer, washing machine, and tumble drier etc. When 
the settings had been made, they could not be changed 
for that day. On each day, the previous day´s settings 
were presented as default, but they could be changed by 
the participant. 

The utility of consumption for each appliance was 
presented by a bar on the right side of the screen. A 
separate bar for each post increased with the utility of 
consumption associated with this post, and a global sum 
in the upper right corner increased with the overall utili-
ty of the energy consumption. The utility ui(tij) obtained 
by consumption tij of post i (i=1…18) at level j was,  

∑
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where wi is the linear weight in the overall summed 
utility (Σwi=1), ri is a ceiling on the allowable consump-
tion, and αi is a parameter for the curvature of the utility 
function for post i.  Eq. 1 defines utility functions with 
diminishing marginal return, where the posts differ both 
in the rate of the diminishing return (αi) and in their 
weight in the total utility (wi). The parameters were 
selected to approximate realistic utility functions.  

The total utility U was the sum of the utility of each 
of the 18 posts, 

∑
=

=
18

1

)(
i

iji tuU .  (2) 

In pretests and posttests, feedback was presented only 
for utility. Participants were given no feedback regard-
ing the cost of their settings. After the pretest, the partic-
ipants were assigned to one of four learning conditions.  

Detailed and Frequent Feedback (“IHD”) 
In the feedback condition, participants continued with 
120 days in the simulated household. Furthermore, and 

most importantly, they also received feedback about the 
cost of their consumption. After each day the partici-
pants received a bill containing feedback on the cost of 
energy consumption where the feedback was presented 
in terms of used kWh and the cost in SEK, as based on a 
fixed price of 1.40 SEK per kWh. The bill showed the 
cost for each appliance as well as the total sum for all 
appliances. This detailed and immediate feedback re-
sembles that of an IHD. If the budget was exceeded, the 
total cost was red-lighted; if not, it was green-lighted. A 
normally and independently distributed random error, 
with standard deviation equal to 5 % of the cost, was 
added to the cost of each post to simulate probabilism1. 
The total cost C was the sum of the consumption cost 
c(tij)  of the individual posts: 

∑
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Metric mapping 
For participants in the metric mapping condition, the 
task was to learn to map consumption of each electricity 
post directly to its cost. They were presented with ques-
tions such as: “What is the monthly cost for having the 
computer on for 15 minutes a day?” Intervals of 5, 10, 
15, 30 and 60 minutes were used to give the participants 
a broad spectrum of the cost for each appliance. Partici-
pants reported their responses for one question at a time 
and were then given feedback on whether the response 
was correct or not and, if not, what the correct answer 
was. The program coded answers within ±20 percent of 
the correct answer as correct. A stop criterion was set 
for three correct responses in one block of five ques-
tions (one block involved the cost for 5, 10, 15, 30 and 
60 minutes of use). When the participants achieved the 
stop criterion for one appliance they continued with the 
next appliance, until they had gone through all appli-
ances in the house. Electric posts for lighting and hot 
water (shower and tap water) was lumped together, 
creating 12 different appliances from the 18 electricity 
posts in the simulated household. For appliances that 
were run on a weekly basis, such as the dish washing 
machine, participants were asked about the cost for 
number of runs per week.  

 
Rank-order Mapping 
For participants in the rank-order mapping condition the 
task was to learn which of pairs of electricity consuming 
activities that is most costly. They answered questions 
such as “What has the highest monthly cost? A: Having 
the lights on for 60 minutes per day or B: Having the 
computer on for 10 minutes per day?” After each guess 
they were provided with feedback on whether the re-
sponse was correct or not. The items were sampled from 
a pool of questions created by crossing the 12 applianc-

                                                             
1 The probabilism is intended to capture all factors that con-

tribute to the imperfect measurement value of a specific post 
at a randomly chosen time. This includes both limits in the 
precision of measurement as such and exogenous factors that 
affect the cost but are unknown to the consumers.    
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es (as in the direct-mapping condition) by the five time 
intervals (5, 10, 15, 30, 60 minutes, except for applianc-
es run on a weekly basis). The items were sampled 
randomly with one constraint: each appliance had to 
appear at least once during the training session. Each 
participant received a unique sample. The participants 
started with 200 items; thereafter, they continued until 
they answered 19 of the latest 20 questions correctly.  
  
Causal Mapping 
For participants in the causal mapping condition the task 
was to learn the relationship between consumption and 
electricity cost by interacting with the appliances on a 
real time basis, in order to obtain a sense of the cause 
and effect relationships. Again, the participants trained 
on 12 appliances with the same time intervals as in the 
other mapping conditions (5, 10, 15, 30, 60 minutes, 
except for appliances run on a weekly basis). Partici-
pants were presented with a program where they could 
manipulate the usage of appliances on slide bars. Each 
slide bar had five levels for the time intervals of 5, 10, 
15, 30 and 60 minutes. Next to each slide bar, the cost 
of the appliance was indicated. The cost changed simul-
taneously with the manipulation of the slide bar. Partic-
ipants could observe the monthly cost for their current 
settings on the top of the screen, also changing simulta-
neously with the manipulation of a slide bar. All appli-
ances were presented on the same screen. The order in 
which the appliances were presented on the screen was 
randomized for each participant. A time limit of 15 
minutes was set, and the participants were told to exper-
iment and learn as much as possible in this time, with 
the goal to optimize their behavior in the household.  

Posttests 
After participants had finished their respective training 
session, they all continued with another 30 days in the 
simulated household, similar to the 30 days in the pre-
test. After that first post-test, the participants continued 
with another round of 30 days in the simulated house-
hold, but this time the budget constraint was set to 1500 
SEK instead of 2000 SEK, with the goal of investigating 
participants’ ability to generalize the knowledge they 
had acquired in the systematic learning conditions.  

Design  
The experiment involved a 4x2 mixed factorial design, 
with learning condition (detailed and frequent feedback, 
metric mapping, rank-order mapping, and causal-model 
mapping) as between-subjects independent variable, and 
budget constraint (2000 and 1500 SEK) as the within-
subjects independent variable. The participants were 
randomized to one of the between-subjects conditions, 
resulting in app. 30 participants in each condition. De-
pendent measures were the cost and utility of the use of 
electricity, with a particular eye to the maximization of 
utility within the indicated budget constraints of 2000 
SEK and 1500 SEK per month.  

Results 
In pretest, there were no significant differences between 
the conditions and all conditions exceeded the budget of 

67 SEK/day. All conditions reduced their median cost 
from the Pretest to Posttest 1 (Wilcoxon Test, T=1135, 
Z=7.187, p < .001 across all four conditions; the same 
holds separately within each condition, all ps < .005).  

In Figure 3, the median utility is plotted against the 
median cost for Posttest 1. The rank order condition was 
unable to satisfy the budget. The three conditions satis-
fying budget performed similarly, although metric map-
ping produced somewhat more utility than the other two 
conditions, which both fell below budget, as observed 
previously with feedback training (Guath et al, 2012).  
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Figure 3. The median utility obtained across the participants 
plotted as a function of the median cost in Pretest and Posttest 
1 in each of the four training conditions (N≈30). The vertical 
line represents the budget, while the curve is the maximum 
utility obtainable as a function of the cost.   
 

There was a significant difference between the condi-
tions in the median cost at Posttest 1 (Kruskal-Wallis 
test: H (3, N= 129) =18.607 p =.003), where pairwise 
multiple-comparisons indicate a significant difference 
between rank-order mapping and feedback training 
(p<.001) and between rank-order and causal mapping (p 
= .005)2. In both cases, rank order mapping has a signif-
icantly higher cost. There was also a significant differ-
ence between the conditions in median utility at Posttest 
1 (Kruskal-Wallis test: H (3, N= 129) =12.557 p =.006), 
where pairwise multiple-comparisons indicate a signifi-
cant difference between rank-order mapping and feed-
back training (p=.019) and between rank-order mapping 
and causal mapping (p = .009). In both cases, rank-order 
mapping has a significantly higher utility. The main 
differences is between the rank-order condition and the 
other conditions, with small differences between the 
other conditions, albeit with a slight hedge for metric 
mapping that comes closest to optimal performance 
(i.e., where the lines in Figure 3 intersect). 

Figure 4 reports a more strict analysis only including 
those participants that roughly satisfied the budget (i.e., 
                                                             
2 In the multiple-comparisons, we report raw p-values assum-

ing α=.05. The Bonferroni corrected α-level is app. .008. The 
same is true for the multiple-comparisons reported below. 
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fell within ± 5 units of 67 SEK/day). While app. 50 % 
of the participants were able to satisfy the budget with 
feedback training and metric mapping only a minority 
of participants were able to satisfy the budget with 
causal mapping and rank order mapping (27% and 12%, 
respectively). Among the only two conditions with 
many participants satisfying the budget, metric mapping 
produced significantly more utility than feedback train-
ing (Mann Whitney: U=75, Z=2.179, p=.029). Thus, if 
anything, metric mapping appears to produce somewhat 
better performance than feedback training in Posttest 1. 

      Electricity Efficiency at Posttest (Budget
constraint satisfied +- 5)
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Figure 4. The median utility across the participants plotted as 
a function of the median cost in Posttest 1 in each of the four 
training conditions for the participants able to (app.) satisfy 
the budget (cost between 62 and 72 SEK/day). The vertical 
line represents the budget, while the curve is the maximum 
utility obtainable as a function of the cost. The percentages in 
parenthesis refer to the proportion of participants in each 
condition that satisfied the budget constraint.  

 
All training conditions reduced their cost from Post-

test 1 to Posttest 2 (new budget) (Wilcoxon test: all ps < 
.001), and reduced their utility (Wilcoxon test: all ps < 
.001). As shown in Figure 5, in all conditions the medi-
an cost exceeded the budget, especially in the rank order 
condition. There is again modest difference between the 
other three conditions, although metric mapping ex-
ceeds the budget more than the other conditions.  

There was a significant difference between the condi-
tions in median cost at Posttest 2 (Kruskal-Wallis test:  
H (3, N= 129) =17.606 p <.001), where pairwise multi-
ple-comparisons indicate significant differences be-
tween rank-order mapping and feedback training (p< 
.001), between rank-order and causal mapping (p = 
.033), and between feedback training and metric map-
ping (p=.045). There was also a significant difference 
between the conditions in median utility at Posttest 2 
(Kruskal-Wallis test: H (3, N= 129) =11.800 p =.008), 
where pairwise multiple-comparisons indicate a signifi-
cant difference only between rank-order mapping and 
feedback training (p=.011). The differences between 
rank order and metric mapping (p=.061) and between 
rank order and causal mapping (p=.050), however, ap-

proach significance. Rank order mapping produced a 
higher utility (but exceeds the budget). The rank-order 
condition thus provides the poorest performance, while, 
among the other three conditions, metric mapping seems 
to suffer most going from Posttest 1 to Posttest 2.  
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Figure 5. The median utility across participants plotted as a 
function of the median cost in Posttest 2 (new budget) in each 
of the four training conditions (N≈30). The vertical line repre-
sents the budget, while the curve is the maximum utility ob-
tainable as a function of the cost. 

      Electricity Efficiency with New Budget 
(Budget constraint satisfied +- 5)
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Figure 6. The median utility across the participants plotted as 
a function of the median cost in Posttest 2 (new budget), in 
each of the four training conditions for participants that were 
app. able to satisfy the budget (cost between 45 and 55 SEK a 
day). The vertical line represents the budget, while the curve is 
the maximum utility obtainable as a function of the cost. The 
percentages in parenthesis refer to the proportion of partici-
pants in each condition that satisfied the budget constraint.  

 
Figure 6 shows the results of a stricter analysis only 

including participants with a cost falling within ±5 units 
of the budget (50 SEK/day). This figure also illustrates 
that metric mapping training suffered more in the gener-
alization test, with only 22% of the participants satisfy-

523



  

ing the new budget, in contrast to 41% with feedback 
and 45% with causal mapping training. In sum: the rank 
order condition again produced poor performance, while 
feedback training and causal mapping appear to allow 
better generalization of the knowledge obtained to satis-
fy also a new budget, as compared to metric mapping.  

   
Discussion 

The results indicate that at an immediate test of perfor-
mance direct mapping training is as good as or better 
than the detailed and frequent feedback in a typical 
“smart-meter”. It should be noted that the performance 
of the participants in the direct mapping condition is 
quite impressive, with a cost virtually exactly on the 
budget and higher utility, despite never receiving any 
feedback about the total monthly cost in the house. An 
objection, of course, could be that these participants did 
not really learn anything from the metric mapping train-
ing, they just happened to be right because their prior 
conceptions about electricity consumption happened to 
be correct in regard to the simulated household (which 
is intended to be “realistic”). That all training groups 
changed their behavior significantly from the pretest to 
the posttest to accommodate the budget speaks against 
this explanation. Participants clearly learned to satisfy 
the monthly budget from metric mapping training, de-
spite that they never received any feedback about it.    

The good performance with metric mapping is in line 
with the results in Pachur and Olsson (2012), where the 
participants with direct criterion learning performed 
better than learning by comparison in a non-linear con-
text due to the exemplar strategy. In the context of their 
interpretation, this suggests that our participants relied 
on exemplar memory rather than cue abstraction. An 
obvious question, in that case, is how people generate 
exemplar representations of the complex stimuli used in 
our experiment. On plausible possibility, perhaps, is that 
they rely on “exemplars” in the form of partial configu-
rations of electricity consumption that were associated 
with very successful (or unsuccessful) performance.  

When generalizing to another budget, the feedback 
group performs somewhat better than the metric map-
ping group. This result was unexpected and we can only 
speculate as to what explains this difference. One possi-
bility is that participants with metric mapping relied on 
a more exemplar-based strategy, which is known to 
offer less flexible generalization than the more analytic 
knowledge of cue-criterion relations. Another possible 
explanation could be the testing effect (Roediger & 
Karpicke, 2006). Tests enhance retention more than 
additional study of the material, even when tests are 
given without feedback. In that perspective, the feed-
back training could be seen as a first test, and the post 
tests as yet another tests. Another interpretation could 
be that feedback training and causal mapping provided 
the participants with better knowledge of the underlying 
causes, that in turn, facilitated the generalization task. 

In this task we found no evidence that people are es-
pecially apt at learning rank orders from pairwise com-
parison (Stewart et al., 2006), considering that the rank 

order condition allowed few participants to satisfy the 
budget. In Posttest 1, only 27% of the participants satis-
fied the budget criterion (and only 9 % in Posttest 2). It 
might be the case that metric information is more crucial 
in the cost-benefit optimization task in our experiment.  

To further investigate feedforward training, future ex-
periments will explore the flexibility with which metric 
mapping and feedback training can adapt to new budg-
ets and compare mapping involving different metrics 
(e.g., metrics instead referring to negative environmen-
tal effects). Also, it would be interesting to investigate 
the testing effect, and how it pertains to this context.  

The results reported in this study opens for the possi-
bility that shorter and cheaper feedforward training, for 
example, involving a 15-minute session with a computer 
program, can be a cost effective alternative to the large 
scale implementation of complex information technolo-
gy to monitor consumption and cost in real time.   
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