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Abstract

Complex and dynamic decision making environments are
common throughout life, but little is known about how
normal aging influences performance on these types of
scenarios. To determine performance differences associated
with normal aging, we test older and younger adults in a
dynamic control task. The task involves the control of a single
output variable via multiple and uncertain input controls. A
computational model is developed to determine the behavioral
characteristics associated with normal aging in a dynamic
control task. Older adults exhibit a positivity effect, congruent
with previous research. Model based analysis demonstrates a
unique performance signature profile associated with normal

aging.
Keywords: dynamic decision making; learning; normal
aging; computational modeling

Introduction

Normal human aging is associated with cognitive changes
that lead to differences in the way older adults approach and
perform in decision making tasks. Specifically, older adults
appear to suffer from executive control deficits (Braver, et
al., 2001; Kray, Li, & Lindenberger, 2002; Ortega, et al.,
2012). However, emerging evidence suggests that older
adults can utilize compensatory strategies to return
performance to or beyond baseline levels (Glass, et al.,
2012; Huang, et al., 2012; Worthy, et al., 2011).

While previous research has focused on classic paradigms
such as category learning, task switching, and single-
response choice procedures, little is known about normal
aging in dynamic control tasks for which the participant
controls multiple input variables in an integrative and
uncertain task environment. Such complex dynamic
environments are analogous to many real-life situations. For
example, we make several distinct health choices on a daily
basis which influence our overall health and wellbeing in
uncertain ways. These types of environments are often noisy
and the specific influence of the various choices is often
unclear or unspecified.

The present research contrasts older adult and younger adult
performance in a dynamic control task designed to simulate
such real-life dynamic decision making environments
(Osman & Speekenbrink, 2011). A novel computational
modeling technique is developed to assess individual
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behavioral characteristics and strategies in the dynamic
control task.

Method

Procedure

In the present dynamic control task, the participant attempts
to control a single outcome value towards a goal. To do so,
on each trial the participant chooses values for three
separate cues. These cue values are then combined via the
dynamic control equation (Equation 1) then summed with
the outcome value plus some normally distributed random
noise (standard deviation = 8). In this way, the participant's
cue selections guide the outcome value. The outcome value
is initialized at 178 with a goal value of 62 and a “safe
range” ( £10 around the goal value)

y(@) = y(t—1)+ 0.65x; — 0.65x, + e
Equation 1.

where y(t) is the outcome on trial t, X, is the positive cue, X,
is the negative cue, and e is an error term randomly sampled
from a normal distribution with a mean of 0 and SD of 8.

The dynamic control equation was designed such that one
cue has a positive impact on the outcome value, one cue has
a negative impact, and a third cue has no impact. The impact
of the cue is not labeled or available to the participant, thus
the participant must learn to control the outcome value
based solely on the resulting movement of the outcome
value on each trial. After each trial, the cue input values are
reset to 0. The participant can then freely select input values
for each of the three cues before confirming the choices.

A critical feature of this control task is that the outcome
value can swing below the target, meaning the participant
must dynamically adapt in order to maximize performance.
After an initial learning phase, the participants completed 2
Test blocks of 20 trials each. The first Test block was a
Congruent Test in which the starting value and goal
criterion were equivalent to the learning phase. The second
Test block was a Transfer Test with a different starting
value and goal value than the earlier phases. At the
beginning of each block, the control task was reset to the
initial state.



Participants

27 younger participants aged 18 to 25 (M = 22.3, SD =5.4)
and 15 older participants aged 61 to 75 (M = 67.92, SD =
5.03) participated in the dynamic control task. The younger
participants were recruited from the Queen Mary,
University of London undergraduate community and paid
£6 ($9.50). The older participants were recruited via the
National Hospital for Neurology and Neurosurgery. The
older adults were recruited as a healthy control group via the
National Hospital for Neurology and Neurosurgery. To
qualify for the healthy adult participation pool, the older
adults completed the. Beck Depression Inventory-Il (BDI-II;
Beck, et al., 1996) and Mini-Mental State Examination
(MMSE) (Folstein, et al., 1975). All scores fell within the
normal cutoff range for both the MMSE (greater than 27)
and BDI-II (less than 18). None of the HCs had a history of
neurological or physical or psychiatric illness, head injury or
drug or alcohol abuse.

Computational Model

A computational model of behavior in the dynamic control
task was constructed to determine behavioral characteristics
of individual participants. The model is based on memory
trace reinforcement learning. After each trial, a
reinforcement history for each of the three cues is updated
according to whether the cue choices resulted in the
discrepancy between achieved outcome value and goal
value increasing or decreasing. On the following trial, the
reinforcement history becomes the basis for a probabilistic
action selection function using Luce's choice. Previous
research has found that participants often vary the value of
more than one cue on each trial. Thus, the model includes an
inter-cue gating mechanism which allows each cue value
selection to take into account the action selection
probabilities of the other two cues.

The resulting model features four free parameters: an
exploitation parameter governing the action selection
function, an inter-cue gating parameter, and two memory-
updating reinforcement strengths (one for successful trials,
and one for unsuccessful trials). To evaluate the model, the
model's probability of selecting the human participant's cue
choice are combined across all trials and all three cues into a
single model fit value. The model is fit to an individual
participant's responses by an optimization procedure that
determines the parameter values which maximize the fit
value.

Memory-Updating Reinforcement Strengths

After each trial, the computational model determines
whether the cue values it selected resulted in the outcome
value moving towards or away from the goal. For each cue,
a Gaussian curve with a mean equal to the chosen cue is
constructed (Equation 2).
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Equation 2.

where Pyae (V) is the probability of selecting a value of v
when the previous selected value was vy,

This curve is then summed (successful trial) or subtracted
(unsuccessful trial) to the cue's former reinforcement
history. A free parameter (one for successful trials, one for
unsuccessful trials) determines the relative weight of the
updating summation. For example, if the memory-updating
positive reinforcement strength is 0.8, then the
reinforcement history is updated such that 80% of the new
reinforcement history reflects the current cue value choice
and 20% reflects the previous reinforcement history
(Equation 3).

PHistory (17) = [(1 - Vs)P(V)]
+ [Sign(R) Vs Pupdate (17)]

Equation 3.

where Pyisory(V) is the cue selection probability history for
cue value v, y, is the memory-updating reinforcement
strength for feedback s (positive or negative), and R is the
change in the outcome value’s distance to the goal from the
previous trial.

In summary, there are two memory-updating reinforcement
strengths, one for positive outcomes and one for negative
outcomes. Each strength represents the weight with which
current choices impact choice history (see Figure 1).
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Figure 1: Sample probability density curves of selecting a
given value for a given cue. Over the course of a block, the
curves will alter in various ways depending on the model
parameters, trial success, and uncertainty inherent in the
outcome value.
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Inter-cue Parameter

Before the final probabilistic selection of the cue value
occurs, for each of the three cues, the reinforcement history
of the two other cues are taken into consideration. The level
of this consideration is controlled by an inter-cue parameter.
This parameter determines the strength at which the
reinforcement history of other two cues will influence the
action selection of the cue at hand. This is done using a
gating equation which weights the alternate cues using the
inter-cue parameter (Equation 4).

Ptercie(ves) = [ (1= 20) Patstary (ve,)|

415 Putsors ()]
15 Putsony (v
Equation 4.

where Piyercue(Vea) 1S the probability of selecting value v for
cue cu (e.g., cue 1), B is the inter-cue parameter, and c, and
cg are the other two cues (e.g., cue 2 and 3). As the inter-cue
parameter approaches 1, the computational model is more
likely to pick similar cue values for all three cue inputs. As
the inter-cue parameter approaches 0, the model is less
likely to select an action for one cue based on the
reinforcement history of the other two. In this way, the
computational model can vary the strength in which cue
values vary together in the action selection state of the
decision process.

Exploration Parameter

On each trial, the computational model evaluates the
reinforcement history of each cue to generate the probability
of selecting each of the 100 cue value options. From these
options, a single value is chosen using the Softmax decision
rule (Equation 5). The equation's exploitation parameter, K,
determines the level of determinism in the choice process
(Daw & Doya, 2006). As K approaches oo, the process is
more likely to choose the most probable option. As K
approaches 0, the equation is more likely to pick a less
probable option.

e [Pintercue@) K]

Zi%e

Prinai(vi) =

[Plntercue(vj)'K]

Equation 5.

where Prina (Vi) is the final probability of selecting cue
value v;, K is the exploitation parameter, and v; are all the
cue values from 0 to 100 for given cue.

Results
Task Analysis
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By considering the optimal cue actions that will maximize
the outcome value's movement toward the target, the
optimal selections can be computed for each trial (Equation
5). The difference between the optimal selections and the
actual chosen selections results in an optimality score for
each participant. Figures 2 and 3 shows that the Younger
group tended to select more optimal responses in both Test
blocks, although the difference was not statistically
significant.
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Figure 2: Optimality scores for Congruent Test block
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Figure 3: Optimality scores for Transfer Test block

At first blush, it may seem that the Older group performed
similarly to the Younger group. However, further analysis
of the strategies used by both groups demonstrates critical
differences in the way the Older adults completed the
dynamic control task. The strategy analysis considered four
different types of cue changes: varying none, varying one
cue, varying two cues, and varying all three cues. Figures 4



and 5 illustrate the cue varying strategies for both groups on
both the Congruent Test and Transfer Test. A 2 (Older,
Younger) x 2 (Congruent, Transfer) x 4 (Strategy Type)
repeated measures ANOVA reveals an Age by Block by
Strategy interaction, F(3, 120) = 2.95, p < 0.05, n = 0.07.
There was also a main effect of strategy, F(3, 120) = 24.42,
p < 0.001, » = 0.38. No other main effects of interactions
were statistically significant.
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Figure 4. Cue varying strategies for Congruent Test
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Figure 5. Cue varying strategies for Transfer Test

Not only did the Younger and Older groups differ in their
cue varying strategies, they also differed in the values
selected for the cues. Figures 6 and 7 report the mean cue
values (between 0 and 100) selected for each of the three
Cue Types. A 2 (Older, Younger) x 2 (Congruent, Transfer)
X 4 (Strategy Type) repeated measures ANOVA revealed a

main effect of Cue Type, F(2, 80) = 5.11, p < 0. 01, =
0.11, as well as an interaction of Age and Cue Type, F(2,
80) = 3.51, p < 0.05, # = 0.08. This suggests that the Older
group tended to select higher values for the Positive and
Null cues

Cue Values - Congruent Test

mOlderAdults YoungerAdults

30
25
20

15 TI I I

10 + —

Cue Value

Positive  Negative Null

Cue Type
Figure 6. Cue values selected for Congruent Test
Cue Values - Transfer Test
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Figure 7. Cue values selected for Transfer Test

Taken together, analyses of surface level behavior suggest
the Older group differed from the Younger group in
completing the dynamic control task. However, the nature
of the underlying cognitive processes which led to these
patterns of behavior remains elusive using basic task
analysis. In order to distill psychologically relevant
characteristics of the processes involved in the dynamic
decision making task performance, a computational
reinforcement learning model of the dynamic control task
was fit to individual participant data.
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Model Based Analysis

Task behavior was fit to the computational model using an
optimization procedure that attempted to minimize the
difference between observed trial-by-trial cue value
selections and the expected cue value selections as
determined by the model. This was done by considering the
probabilities given to the various cue values for each cue on
a given trial. The optimization procedure attempted to
determine best fitting free parameters (exploitation
parameter, inter-cue parameter, positive and negative
reinforcement sensitivity parameter) that maximized the
probability that the model would select the same cue values
as the human participant on a given trial.

Exploitation Parameter
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Figure 8. Exploitation Parameter
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Figure 9. Inter-Cue Parameter
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Pos. Sensitivity Parameter
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Figure 10. Positive Sensitivity Learning Parameter
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Figure 11. Negative Sensitivity Learning Parameter

Figures 8 through 11 reports the mean best fit parameter
values for the Younger and Older groups. In the Congruent
Test, those in the Older groups were best fit with a lower
exploitation parameter (t[40] = -2.37, p = 0.02), a higher
positive reinforcement strength parameter (t[40] = 3.17,p =
0.003), and a lower inter-cue parameter (t[40] = -2.35, p =
0.02). There was no significant difference in the negative
reinforcement strength parameter between the two groups,
t(40) = -0.29, p = 0.85. In the Transfer Test, the Older adults
continued to be better fit by a higher positive reinforcement
parameter than Younger adults, t(40) = 2.74, p < 0.01. In
short, in the Congruent Test, the Older group’s performance
was better fit with parameters associated with higher
exploration, higher positive feedback sensitivity, and lower
inter-cue selection. In the Transfer Test, the Older group



continued to be better fit by model parameters associated
with higher positive feedback sensitivity.

Discussion

The present study examined the role of normal aging in a
dynamic control task using a novel computational modeling
technique. Standard behavioral analysis revealed older
adults potentially utilized an alternative strategy in
completing the dynamic control task than younger adults. A
computational model of the task revealed specific
behavioral characteristics associated with normal aging. In
the Congruent block, older adults demonstrated more
exploratory behavior, less inter-cue behavior, and more
reliance on recent and positive success. On the Transfer
block, older adults did not differ from younger adults in
their exploratory and inter-cue behavior, but continued to
demonstrate more reliance on recent and positive success.

One possible interpretation of this pattern of results is that
older adults were able to achieve the final performance
profile of younger adults (as measured by deviation from
optimal responses) by relying on compensatory mechanisms
to engage the task. Specifically, in the congruent goal test,
the older adults were more exploratory, relied less on the
reinforcement history of alternative cues when determining
cue values, and were more influenced by trials on which
they received positive feedback. During the transfer goal
test, the older adult’s compensatory strategy gave way to a
closer performance signature exhibited by younger adults.
However, they remained more influenced by positive
feedback. This interpretation is supported by previous
research which has shown that older adults are able to
achieve the performance levels of younger adults via a
compensatory strategy (Glass, et al.,, 2012;Worthy &
Maddox, 2012).

Another interpretation of the current results is that older
adults approached the task by utilizing alternative
mechanisms which may be enhanced in older adults. For
example, older adults exhibit a positivity effect
characterized by superior emotional processing of positively
valenced content (Carstensen & Mikels, 2005). This could
account for the older adults' higher learning rate sensitivity
parameter for positive feedback, but not for negative
feedback. Thus, when older adults encountered successful
trials, their learning rate parameters increased such that prior
knowledge was discounted. In this interpretation, older
adults differed in their overall strategy due to specific
enhancements associated with normal aging. This
interpretation is supported by the positive learning rate
sensitivity parameter remaining higher for older adults than
younger adults in both the congruent and transfer tasks.
Future research should determine whether the differences in
strategies used by older adults to complete the dynamic
control task are simply the result of slower overall learning
rates, or due to differences in underlying cognitive
mechanisms associated with normal aging. Future work
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should incorporate  manipulations to test these
interpretations, such as limiting feedback types to determine
whether the aging positivity effect can account for
performance differences.
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