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Abstract 
Complex and dynamic decision making environments are 
common throughout life, but little is known about how 
normal aging influences performance on these types of 
scenarios. To determine performance differences associated 
with normal aging, we test older and younger adults in a 
dynamic control task. The task involves the control of a single 
output variable via multiple and uncertain input controls. A 
computational model is developed to determine the behavioral 
characteristics associated with normal aging in a dynamic 
control task. Older adults exhibit a positivity effect, congruent 
with previous research. Model based analysis demonstrates a 
unique performance signature profile associated with normal 
aging. 

Keywords: dynamic decision making; learning; normal 
aging; computational modeling 

Introduction 
Normal human aging is associated with cognitive changes 
that lead to differences in the way older adults approach and 
perform in decision making tasks. Specifically, older adults 
appear to suffer from executive control deficits (Braver, et 
al., 2001; Kray, Li, & Lindenberger, 2002; Ortega, et al., 
2012). However, emerging evidence suggests that older 
adults can utilize compensatory strategies to return 
performance to or beyond baseline levels (Glass, et al., 
2012; Huang, et al., 2012; Worthy, et al., 2011). 
 
While previous research has focused on classic paradigms 
such as category learning, task switching, and single-
response choice procedures, little is known about normal 
aging in dynamic control tasks for which the participant 
controls multiple input variables in an integrative and 
uncertain task environment. Such complex dynamic 
environments are analogous to many real-life situations. For 
example, we make several distinct health choices on a daily 
basis which influence our overall health and wellbeing in 
uncertain ways. These types of environments are often noisy 
and the specific influence of the various choices is often 
unclear or unspecified. 
 
The present research contrasts older adult and younger adult 
performance in a dynamic control task designed to simulate 
such real-life dynamic decision making environments 
(Osman & Speekenbrink, 2011). A novel computational 
modeling technique is developed to assess individual 

behavioral characteristics and strategies in the dynamic 
control task. 

Method 

Procedure 
In the present dynamic control task, the participant attempts 
to control a single outcome value towards a goal. To do so, 
on each trial the participant chooses values for three 
separate cues. These cue values are then combined via the 
dynamic control equation (Equation 1) then summed with 
the outcome value plus some normally distributed random 
noise (standard deviation = 8). In this way, the participant's 
cue selections guide the outcome value. The outcome value 
is initialized at 178 with a goal value of 62 and a “safe 
range” ( ±10 around the goal value) 

 𝒚(𝒕) =  𝒚(𝒕 − 𝟏) +  𝟎.𝟔𝟓𝒙𝟏 − 𝟎.𝟔𝟓𝒙𝟐 + 𝒆 
 

Equation 1. 
   

where y(t) is the outcome on trial t, x1 is the positive cue, x2 
is the negative cue, and e is an error term randomly sampled 
from a normal distribution with a mean of 0 and SD of 8. 

The dynamic control equation was designed such that one 
cue has a positive impact on the outcome value, one cue has 
a negative impact, and a third cue has no impact. The impact 
of the cue is not labeled or available to the participant, thus 
the participant must learn to control the outcome value 
based solely on the resulting movement of the outcome 
value on each trial. After each trial, the cue input values are 
reset to 0. The participant can then freely select input values 
for each of the three cues before confirming the choices. 

A critical feature of this control task is that the outcome 
value can swing below the target, meaning the participant 
must dynamically adapt in order to maximize performance. 
After an initial learning phase, the participants completed 2 
Test blocks of 20 trials each. The first Test block was a 
Congruent Test in which the starting value and goal 
criterion were equivalent to the learning phase. The second 
Test block was a Transfer Test with a different starting 
value and goal value than the earlier phases. At the 
beginning of each block, the control task was reset to the 
initial state. 
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Participants 
27 younger participants aged 18 to 25 (M = 22.3, SD = 5.4) 
and 15 older participants aged 61 to 75 (M = 67.92, SD = 
5.03) participated in the dynamic control task. The younger 
participants were recruited from the Queen Mary, 
University of London undergraduate community and paid 
£6 ($9.50). The older participants were recruited via the 
National Hospital for Neurology and Neurosurgery. The 
older adults were recruited as a healthy control group via the 
National Hospital for Neurology and Neurosurgery. To 
qualify for the healthy adult participation pool, the older 
adults completed the. Beck Depression Inventory-II (BDI-II; 
Beck, et al., 1996) and Mini-Mental State Examination 
(MMSE) (Folstein, et al., 1975). All scores fell within the 
normal cutoff range for both the MMSE (greater than 27) 
and BDI-II (less than 18). None of the HCs had a history of 
neurological or physical or psychiatric illness, head injury or 
drug or alcohol abuse. 

Computational Model 
 
A computational model of behavior in the dynamic control 
task was constructed to determine behavioral characteristics 
of individual participants. The model is based on memory 
trace reinforcement learning. After each trial, a 
reinforcement history for each of the three cues is updated 
according to whether the cue choices resulted in the 
discrepancy between achieved outcome value and goal 
value increasing or decreasing. On the following trial, the 
reinforcement history becomes the basis for a probabilistic 
action selection function using Luce's choice. Previous 
research has found that participants often vary the value of 
more than one cue on each trial. Thus, the model includes an 
inter-cue gating mechanism which allows each cue value 
selection to take into account the action selection 
probabilities of the other two cues. 
 
The resulting model features four free parameters: an 
exploitation parameter governing the action selection 
function, an inter-cue gating parameter, and two memory-
updating reinforcement strengths (one for successful trials, 
and one for unsuccessful trials). To evaluate the model, the 
model's probability of selecting the human participant's cue 
choice are combined across all trials and all three cues into a 
single model fit value. The model is fit to an individual 
participant's responses by an optimization procedure that 
determines the parameter values which maximize the fit 
value. 
 
Memory-Updating Reinforcement Strengths 
After each trial, the computational model determines 
whether the cue values it selected resulted in the outcome 
value moving towards or away from the goal. For each cue, 
a Gaussian curve with a mean equal to the chosen cue is 
constructed (Equation 2). 
 

𝑃𝑢𝑝𝑑𝑎𝑡𝑒(𝑣) =
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Equation 2. 

 
where Pupdate (v) is the probability of selecting a value of v 
when the previous selected value was vp. 
 
This curve is then summed (successful trial) or subtracted 
(unsuccessful trial) to the cue's former reinforcement 
history. A free parameter (one for successful trials, one for 
unsuccessful trials) determines the relative weight of the 
updating summation. For example, if the memory-updating 
positive reinforcement strength is 0.8, then the 
reinforcement history is updated such that 80% of the new 
reinforcement history reflects the current cue value choice 
and 20% reflects the previous reinforcement history 
(Equation 3). 
 

𝑃𝐻𝑖𝑠𝑡𝑜𝑟𝑦(𝑣) = [(1 − 𝛾𝑠)𝑃(𝑣)]
+ �𝑠𝑖𝑔𝑛(𝑅) ∙ 𝛾𝑠 ∙  𝑃𝑢𝑝𝑑𝑎𝑡𝑒(𝑣)� 

 
Equation 3. 

 
where PHistory(v) is the cue selection probability history for 
cue value v, γs is the memory-updating reinforcement 
strength for feedback s (positive or negative), and R is the 
change in the outcome value’s distance to the goal from the 
previous trial. 
 
In summary, there are two memory-updating reinforcement 
strengths, one for positive outcomes and one for negative 
outcomes. Each strength represents the weight with which 
current choices impact choice history (see Figure 1). 
 

 
Figure 1: Sample probability density curves of selecting a 

given value for a given cue. Over the course of a block, the 
curves will alter in various ways depending on the model 
parameters, trial success, and uncertainty inherent in the 

outcome value. 
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Inter-cue Parameter 
Before the final probabilistic selection of the cue value 
occurs, for each of the three cues, the reinforcement history 
of the two other cues are taken into consideration. The level 
of this consideration is controlled by an inter-cue parameter. 
This parameter determines the strength at which the 
reinforcement history of other two cues will influence the 
action selection of the cue at hand. This is done using a 
gating equation which weights the alternate cues using the 
inter-cue parameter (Equation 4). 
 

𝑃𝐼𝑛𝑡𝑒𝑟𝑐𝑢𝑒�𝑣𝑐𝐴� = ��1 −
2𝛽
3
� 𝑃𝐻𝑖𝑠𝑡𝑜𝑟𝑦�𝑣𝑐𝐴��

+ �
𝛽
3
∙ 𝑃𝐻𝑖𝑠𝑡𝑜𝑟𝑦�𝑣𝑐𝐵��

+ �
𝛽
3
∙ 𝑃𝐻𝑖𝑠𝑡𝑜𝑟𝑦�𝑣𝑐𝐶�� 

 
Equation 4. 

 
where PIntercue(vcA) is the probability of selecting value v for 
cue cA (e.g., cue 1), β is the inter-cue parameter, and cA and 
cB are the other two cues (e.g., cue 2 and 3). As the inter-cue 
parameter approaches 1, the computational model is more 
likely to pick similar cue values for all three cue inputs. As 
the inter-cue parameter approaches 0, the model is less 
likely to select an action for one cue based on the 
reinforcement history of the other two. In this way, the 
computational model can vary the strength in which cue 
values vary together in the action selection state of the 
decision process. 
 
Exploration Parameter 
On each trial, the computational model evaluates the 
reinforcement history of each cue to generate the probability 
of selecting each of the 100 cue value options. From these 
options, a single value is chosen using the Softmax decision 
rule (Equation 5). The equation's exploitation parameter, K, 
determines the level of determinism in the choice process 
(Daw & Doya, 2006). As K approaches ∞ , the process is 
more likely to choose the most probable option. As K 
approaches 0, the equation is more likely to pick a less 
probable option. 
 

𝑃𝐹𝑖𝑛𝑎𝑙(𝑣𝑖) =
𝑒[𝑃𝐼𝑛𝑡𝑒𝑟𝑐𝑢𝑒(𝑣𝑖)∙𝐾]

∑ 𝑒�𝑃𝐼𝑛𝑡𝑒𝑟𝑐𝑢𝑒�𝑣𝑗�∙𝐾�100
𝑗=0

 

 
Equation 5. 

 
where PFinal (vi) is the final probability of selecting cue 
value vi, K is the exploitation parameter, and vj are all the 
cue values from 0 to 100 for given cue. 

Results 
Task Analysis 

By considering the optimal cue actions that will maximize 
the outcome value's movement toward the target, the 
optimal selections can be computed for each trial (Equation 
5). The difference between the optimal selections and the 
actual chosen selections results in an optimality score for 
each participant. Figures 2 and 3 shows that the Younger 
group tended to select more optimal responses in both Test 
blocks, although the difference was not statistically 
significant. 

 
Figure 2: Optimality scores for Congruent Test block 

 
Figure 3: Optimality scores for Transfer Test block 

 
At first blush, it may seem that the Older group performed 
similarly to the Younger group. However, further analysis 
of the strategies used by both groups demonstrates critical 
differences in the way the Older adults completed the 
dynamic control task. The strategy analysis considered four 
different types of cue changes: varying none, varying one 
cue, varying two cues, and varying all three cues. Figures 4 
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and 5 illustrate the cue varying strategies for both groups on 
both the Congruent Test and Transfer Test. A 2 (Older, 
Younger) x 2 (Congruent, Transfer) x 4 (Strategy Type) 
repeated measures ANOVA reveals an Age by Block by 
Strategy interaction, F(3, 120) = 2.95, p < 0.05, η = 0.07. 
There was also a main effect of strategy, F(3, 120) = 24.42, 
p < 0.001, η = 0.38. No other main effects of interactions 
were statistically significant. 
 

 
Figure 4. Cue varying strategies for Congruent Test 

 
Figure 5. Cue varying strategies for Transfer Test 

 
Not only did the Younger and Older groups differ in their 
cue varying strategies, they also differed in the values 
selected for the cues. Figures 6 and 7 report the mean cue 
values (between 0 and 100) selected for each of the three 
Cue Types. A 2 (Older, Younger) x 2 (Congruent, Transfer) 
x 4 (Strategy Type) repeated measures ANOVA revealed a 

main effect of Cue Type, F(2, 80) = 5.11, p < 0. 01, η = 
0.11, as well as an interaction of Age and Cue Type, F(2, 
80) = 3.51, p < 0.05, η = 0.08. This suggests that the Older 
group tended to select higher values for the Positive and 
Null cues 

 
Figure 6. Cue values selected for Congruent Test 

 
Figure 7. Cue values selected for Transfer Test 

 
Taken together, analyses of surface level behavior suggest 
the Older group differed from the Younger group in 
completing the dynamic control task. However, the nature 
of the underlying cognitive processes which led to these 
patterns of behavior remains elusive using basic task 
analysis. In order to distill psychologically relevant 
characteristics of the processes involved in the dynamic 
decision making task performance, a computational 
reinforcement learning model of the dynamic control task 
was fit to individual participant data. 
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Model Based Analysis 
Task behavior was fit to the computational model using an 
optimization procedure that attempted to minimize the 
difference between observed trial-by-trial cue value 
selections and the expected cue value selections as 
determined by the model. This was done by considering the 
probabilities given to the various cue values for each cue on 
a given trial. The optimization procedure attempted to 
determine best fitting free parameters (exploitation 
parameter, inter-cue parameter, positive and negative 
reinforcement sensitivity parameter) that maximized the 
probability that the model would select the same cue values 
as the human participant on a given trial.  

 
Figure 8. Exploitation Parameter 

 

 
Figure 9. Inter-Cue Parameter 

 

 
Figure 10. Positive Sensitivity Learning Parameter 

 
Figure 11. Negative Sensitivity Learning Parameter 

 
Figures 8 through 11 reports the mean best fit parameter 
values for the Younger and Older groups. In the Congruent 
Test, those in the Older groups were best fit with a lower 
exploitation parameter  (t[40] = -2.37, p = 0.02), a higher 
positive reinforcement strength parameter (t[40] = 3.17, p = 
0.003), and a lower inter-cue parameter (t[40] = -2.35, p = 
0.02). There was no significant difference in the negative 
reinforcement strength parameter between the two groups, 
t(40) = -0.29, p = 0.85. In the Transfer Test, the Older adults 
continued to be better fit by a higher positive reinforcement 
parameter than Younger adults, t(40) = 2.74, p < 0.01.  In 
short, in the Congruent Test, the Older group’s performance 
was better fit with parameters associated with higher 
exploration, higher positive feedback sensitivity, and lower 
inter-cue selection. In the Transfer Test, the Older group 
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continued to be better fit by model parameters associated 
with higher positive feedback sensitivity. 

Discussion 
The present study examined the role of normal aging in a 
dynamic control task using a novel computational modeling 
technique. Standard behavioral analysis revealed older 
adults potentially utilized an alternative strategy in 
completing the dynamic control task than younger adults. A 
computational model of the task revealed specific 
behavioral characteristics associated with normal aging. In 
the Congruent block, older adults demonstrated more 
exploratory behavior, less inter-cue behavior, and more 
reliance on recent and positive success. On the Transfer 
block, older adults did not differ from younger adults in 
their exploratory and inter-cue behavior, but continued to 
demonstrate more reliance on recent and positive success. 
 
One possible interpretation of this pattern of results is that 
older adults were able to achieve the final performance 
profile of younger adults (as measured by deviation from 
optimal responses) by relying on compensatory mechanisms 
to engage the task. Specifically, in the congruent goal test, 
the older adults were more exploratory, relied less on the 
reinforcement history of alternative cues when determining 
cue values, and were more influenced by trials on which 
they received positive feedback. During the transfer goal 
test, the older adult’s compensatory strategy gave way to a 
closer performance signature exhibited by younger adults. 
However, they remained more influenced by positive 
feedback. This interpretation is supported by previous 
research which has shown that older adults are able to 
achieve the performance levels of younger adults via a 
compensatory strategy (Glass, et al., 2012;Worthy & 
Maddox, 2012). 
 
Another interpretation of the current results is that older 
adults approached the task by utilizing alternative 
mechanisms which may be enhanced in older adults. For 
example, older adults exhibit a positivity effect 
characterized by superior emotional processing of positively 
valenced content (Carstensen & Mikels, 2005).  This could 
account for the older adults' higher learning rate sensitivity 
parameter for positive feedback, but not for negative 
feedback. Thus, when older adults encountered successful 
trials, their learning rate parameters increased such that prior 
knowledge was discounted. In this interpretation, older 
adults differed in their overall strategy due to specific 
enhancements associated with normal aging. This 
interpretation is supported by the positive learning rate 
sensitivity parameter remaining higher for older adults than 
younger adults in both the congruent and transfer tasks. 
Future research should determine whether the differences in 
strategies used by older adults to complete the dynamic 
control task are simply the result of slower overall learning 
rates, or due to differences in underlying cognitive 
mechanisms associated with normal aging. Future work 

should incorporate manipulations to test these 
interpretations, such as limiting feedback types to determine 
whether the aging positivity effect can account for 
performance differences. 
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