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Abstract

The faces of other people are a critical information source
for young children. During early development, children un-
dergo significant postural and locomotor development, chang-
ing from lying and sitting infants to toddlers who walk inde-
pendently. We used a head-mounted camera in conjunction
with a face-detection system to explore the effects of these
changes on children’s visual access to their caregivers’ faces
during an in-lab play session. In a cross-sectional sample of
4-20 month old children, we found substantial changes in face
accessibility based on age and posture. These changes may
translate into changes in the accessibility of social information
during language learning.
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Introduction

A father offers his young daughter a novel object: a bright
yellow feather duster. A few moments after she accepts the
toy, he remarks, “Isn’t the zem funny?” Her father may still
be talking about the feather duster, or he may be describing a
new object. To find out she has access to a simple and reliable
method: she can look to his face to infer the direction of his
attention.

The ability to follow social signals like eye-gaze is an im-
portant part of early social cognition (Scaife & Bruner, 1975)
and a strong predictor of children’s early language develop-
ment. For example, Brooks and Meltzoff (2005) found that
children who followed an experimenter’s gaze better before
their first birthday had larger vocabularies at 18 months. Sim-
ilarly, Carpenter, Nagell, and Tomasello (1998) found that
children’s level of joint engagement (as well as the degree to
which mothers followed the child’s focus of attention in their
labeling) predicted vocabulary growth in both language pro-
duction and comprehension. These studies suggest that chil-
dren’s social environment plays a powerful supportive role in
language learning.

But at the same time as children are beginning to learn
their first words, their view of the world is changing radically
(Adolph & Berger, 2007). As speechless infants, they are un-
able to locomote independently. Before their first birthday,
they begin crawling; soon after, they begin to walk indepen-
dently. Infants’ visual field is subject to the whims of their
caregivers, but caregivers often place them in positions con-
ducive to joint attention. In contrast, toddlers determine their
own input to a much greater degree, but as a consequence
they spend much of their time in a world primarily populated
by knees. These postural and locomotor changes may have a
profound effect on what children see.

A recent study suggests the possibility of links between
motor milestones, social cognition, and language. Walle and
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Campos (under review) noted robust correlations between
children’s ability to walk and their vocabulary, both recep-
tive and productive. On the basis of an observational study of
parent input, they speculated that the emergence of walking
may change the ability of the child to access social informa-
tion (because walking toddlers see more of the social world
than crawling infants). Accessing more social information
may in turn allow children to discover word meanings more
effectively.

Recent methodological developments have the potential to
provide data that would allow this hypothesis to be tested.
The availability of head-mounted cameras and eye-trackers
allows for the measurement of children’s naturalistic envi-
ronment in a way that was not previously possible. Yoshida
and Smith (2008) gave the first demonstration of the radi-
cal differences between toddler and adult perspectives on the
social world, with toddlers’ visual field being dominated by
hands and objects much more than that of adults. More re-
cent work has used head-mounted eye-tracking methods to
measure young toddlers’ fixations (Franchak, Kretch, Soska,
& Adolph, 2011), also finding that children look relatively
infrequently at their mothers’ faces in naturalistic play.

These methods are now being applied to understand inputs
to language acquisition. Work by Yu, Smith, and colleagues
suggests that word learning is facilitated when parents and
children create moments in which the visual field is domi-
nated by a single object (Smith, Yu, & Pereira, 2011; Yu &
Smith, in press). Some data even suggest that young chil-
dren’s restricted viewpoint may be more effective for learn-
ing words than the comparable adult perspective (Yurovsky,
Smith, & Yu, in press). Together, this body of evidence
suggests that measuring infants’ perspective—and how it
changes in motor development—is a critical part of under-
standing early language learning.

In the current study we took a developmental approach to
understanding the relationship between perspective and ac-
cess to social information. We recorded head-camera data
from a group of infants and children across a broad age range
as they played with their caregivers during a brief laboratory
visit. We then hand-annotated these data for the child’s pos-
ture and parents’ naming behavior and used face-detection
algorithms to measure the frequency of faces in the child’s vi-
sual field. The resulting dataset allows us to analyze changes
in access to faces according to children’s age, posture, and
linguistic input.



Figure 1: Our light-weight, low-cost head-mounted camera
with fisheye lens.

Methods
Participants

Participants were 20 infants and children (N=4 each at 4,
8, 12, 16, and 20 months, 9 females total) in an ongoing
large-scale study, recruited from the surrounding community
via state birth records. Participants had no documented dis-
abilities and were reported to hear at least 80% English at
home. Success rates for children wearing the camera for long
enough to initiate the play session varied from 100% at 8
months to approximately 50% at 20 months.

Head-mounted camera

Our head-mounted camera (“headcam”) is composed of a
small, inexpensive MD80 model camera attached to a soft
elastic headband from a camping headlamp. An aftermarket
fisheye lens intended for iPhones and other Apple devices is
attached to increase view angle. The total cost of each cam-
era is approximately $60. The camera captures 720x480 pixel
images at approx. 25 frames per second, and has battery life
of 60-90 minutes. Without the fisheye lens, the viewing an-
gle for the camera is 32° horizontal by 24° vertical; with the
fisheye, 64° horizontal by 46° vertical. The device is pictured
in Figure 1.

The vertical field of view of the camera was consider-
ably smaller than the child’s approximate vertical field of
view, which—even at 6-7 months—spans around 100-120°
in the vertical dimension (Mayer, Fulton, & Cummings,
1988; Cummings, Van Hof-Van Duin, Mayer, Hansen, & Ful-
ton, 1988). We were therefore faced with a choice in the ori-
entation of the camera. If we chose a lower or higher ori-
entation, we would be at risk of truncating either the child’s
own hands and physically proximate objects, or the faces of
the adults around the child. Yet if we chose the middle ori-
entation, we would still be at risk of underestimating the pro-
portion of faces viewed by the child. Thus, for the purposes
of the current study—measuring visual access to faces—we
chose to orient the camera towards the upper part of the vi-
sual field.! While this orientation decreased our chances of

IPrevious studies have shown that children’s head movements in
the horizontal dimension are approximated by (though are slightly
lagged by) their head movements (Yoshida & Smith, 2008). Our
own experience with the current apparatus ratifies these conclusions
for the horizontal field but suggests that head movements in the ver-
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recording the objects being manipulated by the child, it nev-
ertheless allowed us to capture the majority of the faces in the
child’s visual field.

Procedure

After coming to the lab, families were seated in our waiting
room where they signed consent documents and where chil-
dren were fitted with the headcam. After a short period of
play, they were escorted to a playroom in the lab where the
free-play session (the focus of the current study) was con-
ducted.

In the waiting room, the experimenter placed the headcam
on children’s heads after they had time to adjust to the envi-
ronment. For children who resisted wearing the headcam, the
experimenter used distractor techniques (presenting stimulat-
ing toys or engaging the children in hand-occupying activi-
ties) intended to keep children’s focus elsewhere and prevent
them from taking off the camera (Yoshida & Smith, 2008).
Once the child was wearing the camera comfortably for a pe-
riod of time, child and caregiver (or caregivers: in two cases,
there were two adults present) were escorted to the playroom.

In the playroom, the experimenter presented the child’s
parent with a box containing three labeled pairs of objects,
each consisting of a familiar and a novel object (e.g. a ball and
a feather duster, marked as a “zem”). Parents confirmed that
the child had not previously seen the novel toys. Parents were
instructed to play with the object pairs with the child, one at
a time, “as they typically would” and to use the novel labels
to refer to the three toys. After giving these instructions, the
experimenter left the room for a period of approximately 15
minutes. During this time, a tripod-mounted camera recorded
video from a corner of the room and the headcam captured
video from the child’s perspective.

Data Processing and Annotation

All headcam videos were cropped to exclude the period of
entry to the playroom and were automatically synchronized
with the tripod-mounted videos using FinalCut Pro Software.
The final sample was approx. 5 hours of headcam video (M
= 12 min, range: 2-21 min), for a total of roughly 400,000
frames.

Posture and Orientation Annotation One major goal of
our study was to understand the relationship between chil-
dren’s posture and their access to information from the faces
of their caregiver. To investigate this relationship, we cre-
ated a set of annotations for the child’s physical posture (e.g.
standing, sitting) and orientation of the caregiver relative to
the child (e.g. in front of, behind, close, far away). For each
headcam video, a coder used OpenSHAPA software to anno-
tate both orientation and posture (Adolph, Gilmore, Freeman,
Sanderson, & Millman, 2012).

Orientation was initially categorized as having the care-
giver in front, to the side, or behind the child, and close (de-

tical field are less reliable. Hence, these studies may run the risk of
underestimating the proportion of faces actually seen by children.
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Figure 2: Sample frames from the headcam videos for a child from each age group, selected because they featured successful

face detections (green squares).

fined informally as within arm’s reach) or farther away. Be-
cause of data sparsity, we consolidated this scheme into three
categories: close to the caregiver with the caregiver either in
front or on the side, farther from the caregiver again with care-
giver either in front or on the side, and a global category of
caregiver behind the child. Posture was categorized as being
held/carried, lying face-up, sitting, prone (crawling or lying),
standing, or other. Data from when the child was out of view
of the tripod camera was marked as uncodable and excluded
from these annotations.

Labeling Annotation We were also interested in the avail-
ability of social information proximate to naming events in
the caregivers’ speech to children. Accordingly, a human
coder marked the onset time when the name of any of the six
objects in the object set was used. Overall, caregivers pro-
duced a median of 35 labels in a highly skewed distribution
across participants (range: 9 — 131).

Face Detection

An additional goal of the study was to measure the presence
of caregivers’ faces in the child’s field of view (as approxi-
mated by the headcam). To avoid hand-annotating the size
and position of faces in every frame of video, we tested two
face detection systems. Sample frames from the video with
successful detections are given in Figure 2.

Face detection algorithms The first algorithm was based
on freely available computer vision tools (Bradski & Kaehler,
2008) and is described in depth in our previous work (Frank,
2012). This system had two parts. The first was the appli-
cation of a set of four Haar-style face detection filters (Viola
& Jones, 2004) to each frame of the videos independently.
These detectors each provide information about whether a
face is present in the frame as well as size and position
for any detections. In a second step, these detections are
then combined via a hidden Markov model (HMM), trained
on hand-annotated data (see Appendix). The HMM model
(which performed nearly as well as the more complex and
computationally-intensive Conditional Random Field model
used in our previous work) attempted to estimate whether a
face was truly present in each frame of the videos, using as
its input the number of Haar detectors that were active in any
given frame.
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The second algorithm that we evaluated was a semi-
automated adaptive tracker-by-detection (SAATD). The al-
gorithm required manual user input (selecting a single face
example per video) for its initialization, but then needed no
additional training data. The tracker is based on Kalal, Miko-
lajczyk, and Matas (2010) which uses patches in the trajec-
tory of an optical-flow based tracker (Lucas & Kanade, 1981)
to train and update a face detector. The optical flow tracker
and the face detector work in parallel. If the face detector
finds a location in a new frame exhibiting a high similarity
to its stored template, the tracker is re-initialised on that loca-
tion. Otherwise, the tracker uses the optical flow to decide the
location of a face in the new frame. The primary advantage of
the SAATD algorithm is the use of motion for face detection:
Following the movement of the pixels that define a face it is
possible for the algorithm to adapt to new morphologies (i.e.
different face poses).

Detector evaluation To ensure that our evaluation was not
biased by the relatively rare appearance of faces in the dataset,
we annotated two samples, both a random sample from the
data and a sample with a high-density of faces (see Ap-
pendix). We evaluated each algorithm on its precision (hits
/ hits + false alarms) and recall (hits / hits + misses), as well
as F-score (the harmonic mean of these two measures). Re-
sults are reported in Table 1.

The HMM model obtained a relatively high level of per-
formance for the random subsections, but performed poorly
when there was a relatively high density of faces present.
In contrast, SAATD performed well on both samples, giving
better performance especially in cases where there was partial
occlusion. Our goal in using face-detection algorithms was to
provide a measurement technique that eliminated tedious and
expensive hand-coding and provided acceptable results. We
therefore selected the SAATD model and report detections
from this algorithm as an estimate of face presence in all fur-
ther analyses.

Results

We report results from three different sets of analyses. First,
we explore developmental changes in posture and orientation
in our dataset. Next, we explore how these changes affect ac-
cess to faces, as measured using our face-detection algorithm.
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Figure 3: Proportion time in each posture, plotted by child’s age (left panel). Proportion time in each orientation relative to the
caregiver, again plotted by child’s age (right panel). For clarity, the “other” code is not plotted in either figure. Error bars show

standard error of the mean across participants.

Table 1: Model performance on gold standard generalization
training set dataset. P, R, and F denote precision, recall, and
F-score for each of the two samples.

High-density Random
Model P R F P R F
HMM S5 38 45189 74 81
SAATD | 86 .78 .81 | .93 .76 .83

Finally, we report preliminary results on the accessibility of
faces during labeling.

Changes in Posture and Orientation

Our posture coding captured typical developmental mile-
stones (Figure 3, left). Overall, sitting was the most common
posture for interactions in the caregiver play session. The
youngest infants in our sample mostly sat (with parental as-
sistance), but also lay down and were carried a significant pro-
portion of the time. The 12-month-olds were the only group
who spent a large amount of time crawling, and the 16- and
20-month-olds sat and stood in equal parts.

Similarly, our coding of orientation revealed some signifi-
cant developmental changes (Figure 3, right). Younger chil-
dren more frequently had the caregiver behind them, often
because the caregiver was supporting the child’s sitting pos-
ture (for the 4-month-olds especially). In contrast, the 12-20
month olds were able to locomote independently and so were
able to spend more time further from the caregiver.

Access to Faces

We next investigated the effects of the child’s posture and ori-
entation on the presence and size of the caregiver’s face in the
visual field. Figure 4 shows the proportion of frames with a
positive face detection, plotted by the child’s age, posture,
and orientation relative to the caregiver.

Overall, there were very large differences in access to faces
across age. The 4-month-olds saw almost no faces—their par-
ents were behind them most of the time, supporting them
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since they could not sit independently. In contrast, the 8-
month-olds, who could sit independently, typically sat across
from their caregiver and saw many faces in both the sitting
and prone postures. The 12-month-olds spent a large amount
of time in the prone position (typically crawling after the ball,
for example) and saw almost no faces in that posture. The 16-
and 20-month-olds saw many faces because they were stand-
ing while their parents were sitting, putting their faces at a
relatively similar level.

Across ages, the carrying and prone postures resulted in the
smallest number of faces seen, while standing and sitting re-
sulted in far more. These postures both presented opportuni-
ties for seeing faces in large part because parents were sitting
or lying on the floor with children. Although far fewer faces
were seen when the caregiver was behind the child,? both the
close and far positions resulted in approximately equal pro-
portions of face detections.

Access to Faces During Labeling

Our final analysis concerned the accessibility of caregivers’
faces during labeling events. Franchak et al. (2011) found
that referential speech was marginally more likely to draw
toddlers’ attention to mothers’ faces. We were similarly in-
terested in whether looking at faces occurred during label-
ing. Accordingly, we used the labeling annotations for each
child to identify the 2s before and after each labeling event.
We then computed the proportion face detections within this
window across ages.

The overall pattern of face accessibility closely mirrored
the base rates shown in Figure 4. Although this general pat-
tern in itself is important in assessing developmental access to
social information, in the current analysis we were interested
in whether there was differential access to faces around label-
ing instances. We thus computed difference scores between
the baseline face detection rate and the rate of face detections

2Since orientation was coded via body posture, faces seen while
the caregiver was behind the child were due to children looking over
their shoulder.
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in labeling windows for each participant. Figure 5 shows the
results of this analysis.

Although any conclusion must remain extremely tentative
because of the small sample, we nevertheless saw an increase
in label-related face access for the 20-month-olds. This dif-
ference was robust across a variety of window sizes from 1-6
S. (8-month-olds were more variable but similarly showed
some trend towards greater face access during naming.) We
cannot yet make inferences about the source of these differ-
ences: They could be could be caused by children, caregivers,
or a combination of the two. Nevertheless, these results con-
verge with previous work and suggest that, in combination
with face detection techniques, the headcam may be a viable
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method for examining social access during language learning.

General Discussion

Using a head-mounted camera, we explored the relationship
between infants’ postural and locomotor development and
their visual access to social information. The use of auto-
mated annotation tools from computer vision allowed us to
measure the prevalence of caregivers’ faces in their children’s
visual field. We found systematic differences in the visual
accessibility of faces based on posture, orientation, and age,
as well as hints of differences in language-related changes in
visual access. While these results remain preliminary given
the size of our developmental sample, this work nevertheless
provides an important proof-of-concept that computer vision
techniques can be used as a measurement method in the de-
velopmental context.

The measures developed here have broad applicability to
the study of individual and cultural differences. Since the
physical circumstances of child rearing vary widely across
households and across cultures, there may be important and
predictable differences in children’s visual experience. As
suggested by the correlations between walking and vocabu-
lary development (Walle & Campos, under review), postural
development may have substantial downstream consequences
for language. For example, shifts in how infants are placed in
particular postures by strollers or carriers (Zeedyk, 2008) or
how their motor development is encouraged by parent prac-
tices (Bril & Sabatier, 1986) may lead to differences in social
input which in turn affect their language learning. Since our
variant of the headcam method is both inexpensive and highly
portable, we have been able to deploy it in children’s homes
with some success; it may thus be a valuable tool for investi-
gating differences in child-rearing practices.

A deep body of work uses children’s linguistic input—
measured using audio recordings—to understand the
learning mechanisms underlying vocabulary acquisition



(Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Hart
& Risley, 1995; Fernald, Perfors, & Marchman, 2006).
There have been some important initial successes in using
visual input to predict language uptake (Yu & Smith, in
press). Nevertheless, we have a long way to go before
our knowledge about children’s visual input parallels our
understanding of their linguistic environment. Coming to
such an understanding will require the creation of both
corpus resources and automated tools such as those we have
begun to develop here.
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Appendix: Face presence annotation

We selected 1 minute of interaction for each age group, di-
vided evenly across the four dyads at that age. For each
dyad, we divided the recorded video into contiguous 1 s seg-
ments and selected 16 in accordance with two criteria. First,
8 of these segments were selected by choosing the parts of
the videos highest in face detection (high density sample).
To be fair to both algorithms, half of this was chosen from
the segments with the most HMM detections and half were
chosen from the segments with the most SAATD detections.
The remaining segments were chosen by randomly sampling
from segments not yet selected for coding (random sample).
Segments were annotated frame-by-frame by a human coder,
who marked each frame as containing a face if at least half
of the face was in the child’s view. Detector output for each
of these frames was then compared to this gold standard. A
detection was counted as correct if it overlapped a face with
half of its total area. The HMM training sample was selected
via the same method as this gold standard sample, but used
separate set of video segments.



