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Abstract

Language learners tend to regularize unpredictable variation
and some claim that is due to a language-specific regularization
bias. We investigate the role of task difficulty on regularization
behavior in a non-linguistic frequency learning task and show
that adults regularize variable input when tracking multiple fre-
quencies concurrently, but reliably reproduce the variation they
have observed when tracking one frequency. These results sug-
gest that regularization behavior may be due to domain-general
factors, such as memory limitations.
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Introduction

Languages contain very little unpredictable variation (Cham-
bers et al., 2003) and language learners tend to regularize the
inconsistent input they encounter (Reali & Griffiths, 2009;
Hudson Kam & Newport, 2009, Smith & Wonnacott, 2010).
For example, English contains two forms of the indefinite ar-
ticle a and an, but a deterministic rule (based on the initial
phoneme of the following noun) governs the use of these two
variants. Why are languages regular, and what drives learn-
ers to eliminate free variation in language? Some have sug-
gested that we come to the task of language learning with the
expectation that languages are regular and that this expecta-
tion takes the form of a language-specific innate bias (Bicker-
ton, 1984; DeGraaff, 1999; Lumsden, 1999; Becker & Veen-
stra, 2003). Others claim that linguistic regularization can
be explained by domain-general learning mechanisms, such
as the effects of memory limitations on the type of variation
that learners produce (Hudson Kam & Newport, 2005, 2009;
Hudson Kam & Chang, 2009). Hudson Kam and Newport
(2005, 2009) have shown that children tend to regularize free
variation, whereas adults maintain it by probability matching,
and attribute this difference to children having lower work-
ing memory capacity than adults. Newport (1990) demon-
strated that children have more of a limited ability to learn
from inconsistent input and Hudson Kam and Chang (2009)
showed that adults probability matched more when word re-
trieval was made easier and regularized more when it was
difficult, further corroborating their claim that memory limi-
tations can lead to regularization, although see Perfors (2012)
for an account of restricted memory encoding that does not
lead to regularization.

A similar effect of memory limitations can be found in a
non-linguistic tasks. In a study with adults, Kareev et al.
(1997) reported an effect of individual differences in work-
ing memory capacity (as determined by a digit-span test) on
participants’ perception of the correlation of two probabilistic
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variables. Participants with lower capacity overproduced the
most common variant, whereas participants with higher ca-
pacity did not. Regularization is also modulated by the num-
ber of variables in a task; adults regularized slightly more
when predicting which of three lights will flash next than
when predicting for two lights (Gardner, 1957).

In this paper, we explore the effect of tracking single versus
multiple frequencies on the regularization behavior of adults
in a non-linguistic task. We show that participants probabil-
ity match when tracking a single frequency, but regularize
when tracking six frequencies concurrently. Because con-
current frequency learning is a prominent aspect of language
learning (Saffran, Alin & Newport, 1996), and also elicits
regularization in a non-linguistic task, this is consistent with
a domain-general account of the observed regularization bias
in language, possibly attributable to limited working memory.

Frequency learning experiment

Participants 381 participants were recruited via Amazon’s
Mechanical Turk crowdsourcing platform and completed our
experiment online. 37 participants were excluded on the ba-
sis of the following criteria: failing a color vision test (2),
self-reporting the use of a pen or pencil during the task (14),
not reporting their sex or age (2), or having previously partic-
ipated in any of our experiments, as determined by their user
ID with MTurk (19). More participants were recruited than
necessary with the expectation that many would be excluded
by these criteria. Once the predetermined number of partic-
ipants per condition was met, data from the last participants
was excluded, totaling 24 participants across all conditions
and tasks. All excluded participants received the full mone-
tary reward for the task. The average monetary reward per
participant, converted to an hourly rate, was $2.64. Of the
final 320 participants, 184 are female, and the mean age is 36
(min = 18, max = 69), with a standard deviation of 12 years.

Materials The experiment was coded up as a java applet
that ran in the participant’s web browser in a 600x800-pixel
field. Photographs of 6 different containers (a box, pouch, jar,
bowl, bucket, and basket) and graphically generated images
of marbles in 12 different colors (blue, orange, brown, grey,
black, yellow, red, teal, olive, pink, purple, and lime) served
as stimuli.

One-item task This experiment consisted of a training
phase in which participants observed a series of 10 marble
draws from a bag, and a testing phase in which participants
were asked to produce another several likely draws from the
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Figure 1: Each pane displays the percentage of participants that responded with a given output frequency of the minority marble
(m) during testing. Columns are the input ratio of m:M during training. Dashed lines mark the input frequency of m. In the
one-item task, participants probability matched, reproducing the input ratio with high fidelity. This task was between-subjects;
each participant was trained on one input ratio only. In the six-item task, participants were more likely to regularize than to
reproduce the input ratio. This task was within-subjects; each participant was trained on all six input ratios concurrently.
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Figure 2: Training and testing trials for the six-item task.

same bag. In each training trial, a picture of the bag was
displayed for 1000 milliseconds and then a marble (blue or
orange) appeared over the bag for 2000 milliseconds. There
were 10 training trials, with no break between trials. In each
testing trial, the bag was displayed with the two marble colors
below. Participants mouse clicked on a marble to make their
choice of one draw from the bag. Their choice was displayed
above the bag for 2000 milliseconds and then the next testing
trial began. There were 10 testing trials with no breaks be-
tween trials. Locations (left or right) of the blue and orange
marbles were held constant across test trials for each partici-
pant, but counterbalanced across participants.

A fixed ratio of blue to orange marbles was shown in the
training phase. Each participant was randomly assigned to
one of 6 training conditions based on this ratio. The color of
the training ratio’s minority marble () and majority marble
(M) was counterbalanced across participants. All possible ra-
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tios of m:M were tested and will be referred to as the 0:10,
1:9, 2:8, 3:7, 4:6, and 5:5 conditions. 192 participants took
part in this task, with 32 in each condition.

Six-item task This task is based on the word frequency
learning task from Reali and Griffiths (2009). Participants
observed 10 marble draws each from six different containers,
totaling 60 marble draws (see Figure 2). Each container was
associated with 2 unique marble colors (12 unique marble
colors were therefore used). Training and testing trials were
identical to the one-item task. Each container was uniquely
associated with one of the possible ratios specified by condi-
tion 0:10, 1:9, 2:8, 3:7, 4:6, and 5:5 above. Thus, the six-item
task is a within-subject version of the one-item task, with the
addition that training and testing trials from all six conditions
are interleaved. Assignments of a ratio and marble colors (in
predefined color pairs) to each container was randomized per
participant. 64 participants took part in this task. Two ad-
ditional versions of this experiment were also run; one where
all 6 bags were in condition 0:10 (each container was mapped
to one color only) and one where all 6 containers were in con-
dition 5:5. Each of these versions was completed by 32 new
participants.

Experiment results

Participants in the six-item task were more likely to regular-
ize their responses per container than participants in the one-
item task. Here, we refer to regularization as the production
of a more extreme ratio than that observed during training,



07 [ one-item task - ™ variable
O six-item task -
— 0.8 - A
28 -
-
£8 =
>8 06
5 o |
E8
cE 04
© ©
foRE=%
E'5
0.2 4
regular
0.0 -
0:10 19 2:8 37 46 5:5
input frequency

Figure 3: Difference in mean entropy scores between tasks,
for each input ratio. Each participant’s sequence of marble
draws during testing was converted into an entropy score.
Lower scores denote greater regularity within a response.
Participant responses were significantly more regular in the
six-item task than in the one-item task for input ratios 3:7,
4:6, and 5:5. Error bars show the standard error of the mean.

where 0:10 and 10:0 are the most extreme ratios and 5:5 is
the least extreme. The distributions of participant responses
are shown in Figure 1. Each pane displays the percentage of
participants that responded with a given output frequency of
m, per input frequency and per task. In the one-item task, par-
ticipants probability matched; the mode of the population is
on the input frequency of m, meaning that the most common
response was perfect reproduction of the ratio observed dur-
ing training. In the six-item task, visual inspection suggests
that participants did not reproduce the training ratios with as
high fidelity. Most participants regularized by overproducing
the majority marble (all mass in the bars to the left of the dot-
ted line) and a large number of responses are fully regular,
meaning the output frequency of m is 0 or 10.

To better assess the different degrees of regularization be-
tween tasks, we calculated the entropy of each participant’s
sequence of test choices. This quantifies the amount of vari-
ation (in bits) with a value between 0 and 1; where 0 denotes
a completely regular sequence (i.e. a series of all blue marble
draws) and 1 denotes a maximally variable sequence (i.e. a
series of 5 blue and 5 orange draws, in any order). This allows
us to refine our definition of regularization as the overproduc-
tion of one marble, such that the entropy of the participant’s
testing choices is lower than that of their training observa-
tions. The mean entropy scores of participant responses per
input frequency are shown in Figure 3.

A linear mixed effects regression analysis showed a signif-
icant effect of task on entropy scores, ¢(34) = —7.226,p <
.001, and a significant effect of input frequency on entropy
scores, (34) = —10.832, p < .001. This means the two tasks
elicited different amounts of regularity within participants’
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Figure 4: Distribution of participant responses for two addi-
tional versions of the six-item task, where all items contained
the same input ratio of m:M. One group of participants was
trained on all 0:10 ratios and another group was trained on all
5:5 ratios.

responses and that participants’ responses were modulated by
training frequencies; they noticed differences in the input fre-
quencies and this affected their responses. A significant inter-
action of task and input frequency on entropy scores was also
obtained, 7(34) =4.570, p < .001; participants responded dif-
ferently to different input frequencies, and this pattern of re-
sponses also differed by task.

There was a significant difference in mean entropy scores
between tasks for input frequencies 3:7, 4:6, and 5:5 (W =
1427.5,p = .001;W = 1714,p < .001;W = 1585.5,p <
.001), respectively.! The difference in mean entropy be-
tween tasks was not significant for input frequencies 0:10,
1:9,and 2:8 (W =894, p = .228;W = 1184.5,p = .192,W =
1264, p = .054%), respectively.

Two additional experiments were conducted to explore the
possibility that regularization in the six-item task is due to
interference between containers, such that ratios learned for
one container get confused with ratios learned for another
container. We eliminated this type of interference by train-
ing participants on 6 containers with identical ratios. Figure
4 shows participant responses when trained on all 0:10 ratios
(left) and all 5:5 ratios (right). The average entropy for the all
0:10 task is significantly lower than that of the 0:10 condition
in the six-item task (W = 5061, p = .004), but not signifi-
cantly different than the 0:10 condition in the one-item task
(W =2900.5, p = .466). Tracking multiple 0:10 ratios is no
different than tracking one 0:10 ratio, but it is different from
tracking one 0:10 ratio concurrently with other ratios. This
means interference may account for the errors participants
make in the original six-item task when producing draws for
the container they observed as 0:10. However, for the all 5:5
task, the average entropy was not significantly different from

IThese were determined with a non-parametric t-test, the
Whitney-Mann U-test, since the distributions of entropy scores are
non-normal.

2 After correction for multiple comparisons, this is not approach-
ing significance.



the 5:5 condition in the six-item task (W =5892.5, p = .617).
Participants still produced 0:10 and 10:0 responses in the ab-
sence of observing these ratios during training. Therefore, in-
terference may account for some of the differences between
the one-item and six-item tasks, but this isn’t the sole cause
of the regularization behavior observed in the six-item task.

Frequency learning models

What cognitive processes cause regularization? So far our
analyses have quantified the difference in regularity between
participants’ training and testing responses. In this sec-
tion, we turn our focus to an internal force that can affect
a learner’s behavior; an inductive bias favoring certain ratios
of marbles.

Bayesian model

Bayesian models provide a way to quantify inductive bi-
ases and understand their effect on behavior. We fit a beta-
binomial Bayesian sampler model to participants’ responses,
following Reali and Griffiths (2009), and ask what prior ex-
pectation for regularity a Bayesian rational learner would
need to have in order to produce the data that our participants
produced.

A Bayesian rational learner uses Bayes’ rule, P(h|d) o<
P(d|h)P(h), to infer what proportion of marbles generated
the draws that they observed. Here, each proportion is a hy-
pothesis and the observed draws are the data. Bayes rule
combines the prior probability of a hypothesis, P(h), with
the likelihood of the data under that hypothesis, P(d|k), to
arrive at a posterior probability of that hypothesis given the
data, P(h|d). The prior is a beta distribution over all hypothe-
ses, Beta(%, %), where the parameter o determines whether
the learner expects to see regular draws or variable draws. A
learner with o0 < 2 will tend to regularize their productions,
a learner with o = 2 is unbiased toward any particular pro-
portion of draws, and a learner with o > 2 is biased towards
variability in draws. The likelihood of drawing N marbles in
ratio k : (N — k) from a container of marbles in proportions
p: (1—p) follows a binomial distribution (Equation 1).

(Z) pr—pNt

Once the posterior probability over all hypotheses has been
determined, the learner must choose a hypothesis to generate
testing responses from. We take the case where learners sam-
ple a hypothesis from the posterior distribution, and then sam-
ple data from this hypothesis according to its likelihood (as if
the learner were randomly drawing marbles from the hypoth-
esized proportion, with replacement, as in Equation 1).

This model defines the probability of generating all test-
ing proportions (output states) from all training proportions
(input states) and can be visualized as a transition matrix be-
tween all possible states in the system. Because our exper-
iment covers all possible training proportions for 10 draws
from a bag, we can also construct an empirical transition ma-
trix from participant responses in each task. From here on,

P(k|p,N) (1)
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we switch to visualizing our data in terms of marble 1 (m)
and marble 2 (m,)?. Figure 5 (top row) shows the two empir-
ical transition matrices and three model matrices for different
values of the prior parameter o.. Each value of o defines a
unique transition matrix, and thus a unique pattern of behav-
ior. For example, if a Bayesian learner observes 1 draw of
mp and 9 of my, and if their prior is o = 0.01, they are most
likely to produce O draws of m; and 10 of m;, regularizing
their productions. If their prior is o = 2, they are most likely
to produce 1 draw of m; and 9 of my, probability matching
their productions. And if their prior is o0 = 10, they are most
likely to produce 3 draws of m and 7 of m,, increasing varia-
tion in their productions. Thus, the prior used here intuitively
captures a range of human behaviors in frequency learning.

The model fitting task at hand is to determine which model
transition matrix most resembles the empirical transition ma-
trix, by assigning the most likelihood to the empirical data.
The prior associated with the best-fit model is the one that
best explains participant behavior and gives us an idea of what
biases our participants may have.

The best-fit bias in the one-item task is o0 = 1.55 with a
log likelihood of —413, which is equivalent to correctly pre-
dicting 20% of participant responses in this task 4. This prior
shows an expectation for a slight amount of regularity in the
data set. For the six-item task, the best-fit bias is o0 = 1.21
with a log likelihood of —1186, equivalent to 9% response
prediction. This prior shows a stronger bias toward regularity
in the six-item task than in the one-item task.

Prediction percentages are lower for the six-item task be-
cause participant responses are more variable in the this task
than in the one-item task. Only deterministic processes (with
one output per input) can be predicted with 100% accuracy.
The ceiling on model prediction for each task was determined
by fitting each data set to itself, yielding a maximum of 32%
accuracy for the one-item task and 16% accuracy for the six-
item task. Relative to these ceilings, the best-fit models ac-
count for 61% and 56% of participant responses in the one-
item and six-item tasks, respectively.

Bootstrap model

An input-based random sampling model was also fit to the
data. This model defines the transition matrix that would be
obtained if participants produced their testing responses by
randomly sampling 10 draws from their training observations,
with replacement. In this case, each row would be a binomial
where p equals the training proportion of m;. It is important
to note that this transition matrix defines the dynamics of drift
in one generation and may be used as a baseline for the loss of
variation that can occur in the absence of a regularization bias.

3marble 1 (m;) refers to the blue marble in the one-item task,
and to the blue, brown, black, red, olive, and purple marbles in the
six-item task.

4The raw log likelihoods should not be compared between tasks,
because there are a different number of observations per task. This
is corrected for in the prediction percentages, which are comparable
between tasks.
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Figure 5: Transition matrices (top row) and their associated stationary distribution (bottom row) for the experimental results of
the two frequency learning tasks, and for the Bayesian model showing three example bias strengths (o0 = 0.01, 2, 10). Transition
matrices give the probability of moving from each input frequency (the number of training trials showing marble 1) to each
output frequency (the number of testing trials in which participants produced marble 1)°. The stationary distribution shows
how often the transition matrix will produce each output frequency of marble 1.

For this model, the log likelihood of the one-item task data is
—259, equivalent to 25% response prediction, and is a bet-
ter fit than the best-fit beta-binomial sampler model®. Thus,
of the models explored in this paper, drift provides the best
account of our participants’ probability matching behavior.
However, a repeated measures Monte Carlo test shows that
the standard deviation among participant output entropies in
the one-item task data are significantly lower than that obtain-
able by drift: p=.04, p=.03, p=.01, p=.003, for conditions
2:8, 3:7, 4:6, 5:5, respectively. Although these data are well-
accounted for by the drift model, they still show a quantitative
difference in standard deviation, meaning that the forces be-
hind probability matching are not truly isomorphic to drift.
As for the six-item task, the log likelihood is —1076, equiva-
lent to 6% response prediction. Here, the sampler model with
a bias toward regularization is still the better fit.

Null model

This model is the transition matrix that would be obtained
if participants were randomly sampling from the two testing
choices each trial (i.e. not engaging in the task). Here,
every row would be a binomial distribution where p = 0.5.
For this model, the log likelihood of the one-item task data
is —604, equivalent to 4% response prediction. For the
six-item task, the log likelihood is —1630, equivalent to
1% response prediction. Of all models considered, this is
the worst fit for both tasks, meaning that participants are
not likely to be randomly sampling from their testing choices.

5This bootstrap model, which defines the dynamics of evolution-
ary drift, is equivalent to a Bayesian MAP model with oo = 0. See
Reali & Griffiths (2010) for the proof.

The results of these model fits strongly suggest that partici-
pants in the six-item condition are not just performing poorly
at reproducing their training proportion, but they are regular-
izing their responses in a way that can not be accounted for
by random errors.

Learning biases and long-term behavior

In addition to comparing the transition matrices, which de-
scribe the behavior of one generation of learners, we can also
look at the long-term behavior of the system, which is de-
scribed by the stationary distribution of the transition matrix
(Figure 5, bottom row). This distribution tells us what per-
cent of the population we would expect to see in each state,
after an arbitrarily large number of generations, if the output
state of one learner served as the input state to another. Grif-
fiths and Kalish (2007) have shown that the stationary distri-
bution mirrors the prior distribution over hypotheses for the
Bayesian sampler model utilized here. The stationary dis-
tributions of the empirical transition matrices are most in-
teresting because these would be an estimate of our partic-
ipants’ regularization bias (the prior) if they were Bayesian
sampler learners®. In line with this interpretation, the sta-
tionary distribution of the six-item task closely resembles
that of its best-fit Bayesian model, which has a beta distri-
bution Beta(0.605,0.605). However, the stationary distribu-
tion of the one-item task does not resemble that of its best-
fit Bayesian model, which has a u-shaped beta distribution
Beta(0.775,0.775). In general, the Bayesian model is a good
fit to participant behavior in the six-item task, but does not ac-
count very well for participant behavior in the one-item task.

5Both of the empirical transition matrices are ergodic.



A close examination of the model’s transition matrices and
stationary distributions shows that probability matching be-
havior with a low standard deviation is not within this model’s
range of behavior.

Discussion

We have shown that learning a single versus multiple fre-
quencies modulates participants’ regularization behavior in a
non-linguistic task. When participants tracked the frequency
associated with a single item, they probability matched; re-
producing the variation they had observed with high fidelity.
However, when tracking multiple frequencies concurrently,
participants regularized their responses, usually by overpro-
ducing the most common variant.

A beta-binomial Bayesian sampler model was fit to the re-
sults of each task and showed a stronger prior bias toward
regularization in the six-item task than in the one-item task.
Strictly speaking, the prior represents the inductive bias of
the learner, and participants should come to a marble-drawing
task with a particular expectation about the ratios of marbles
in containers, regardless of the difficultly of the task. The
fact that we find different best-fit priors according to different
task demands means that we are not revealing the inductive
bias of our participants, per se, but a composite picture that
characterizes more than one cognitive constraint. At least one
constraint that is sensitive to task demands should be added
to the model, such as a memory constraint that disproportion-
ally forgets lower-frequency observations. Such an addition
could free up the prior to more accurately reflect participants’
inductive bias. This raises a point of caution in comparing
inductive biases across domains without controlling for task
demands, since task demands can modulate bias strengths.

Our modeling results also suggest that human probability
matching and regularization behavior do not lie on a simple
continuum that can be captured by the prior alone. Although
the Bayesian model accounted well for our participants’ regu-
larization behavior, it failed to account for the restricted vari-
ance of probability matching. Participants may be trying to
produce a representative sample of draws, where the most
likely response is the training ratio itself. Such a parameter
might lead to high-fidelity reproduction of the training pro-
portion under low memory constraints only.

If memory constraints are the cause of the regularization
bias revealed when learning the frequencies of marbles in sev-
eral containers, then this same domain-general factor may be
the cause of regularization in tasks naturally characterized by
concurrent frequency learning, such as language learning.
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